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1 Introduction 
 

 
1.1 SCD and DIGRAM 

 
DIGRAM is part of a larger statistical package, SCD1, containing facilities for analysis of discrete 

data. A general introduction to the program may be found in the Introduction to DIGRAM (Kreiner, 

2003) and in notes on  

Project management 

Analysis of contingency tables by chain graph models 

The graph module 

 
The original version of DIGRAM (Kreiner, 1989) was a program dedicated to analysis of high-

dimensional contingency tables by block recursive graphical models. While graphical modelling is 

still important for DIGRAM, the focus has to some degree shifted towards a larger range of 

problems where conditional independence plays important roles, but where graphical models are 

not regarded as full-fledged models, but rather as non-parametric skeletons on which specialized 

models may be build. In addition to graphical modelling DIGRAM now supports: 

 
1) Analysis of collapsibility across categories in multidimensional contingency tables. 
2) Analysis of inherent order and monotonous relationships among nominal or partially 

ordered variables. 
3) MCA analysis of marginal and conditional homogeneity in multidimensional contingency 

tables. 
4) Non-parametric log-linear modelling of ordinal categorical data. 
5) Analysis of multidimensional Markov Chains. 
6) Item analysis by Rasch models as well as graphical and log-linear Rasch models. 
  

We assume that users of DIGRAM are familiar with graphical models and Rasch models. However, 

many users of Rasch model are only familiar with a version of the model for polytomous items 

referred to as a partial credit model. For this reason, Section 1.4 provides a brief introduction to the 

Rasch model for polytomous items, presenting the five equivalent versions of the model that 

DIGRAM applies. Since the versions are equivalent, it does not matter which version of the model 

                                                 
1 SCD/DIGRAM is giftware. It comes without a charge and you are free to distribute copies of the program to anyone to 
whom it may be useful. You can download a copy of the program from Biostat.ku.dk/DIGRAM where updates of the 
programs and the user guides will be available as they appear.  
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that a program for item analysis by Rasch models uses. The results of the analysis will be the same. 

DIGRAM applies all five versions since they are useful for different purposes and because they 

provide different insights in the way that the polytomous Rasch items function. Section 1.4 

elaborate on these issues. 

DIGRAM supports item analysis by graphical log-linear Rasch models (GLLRMs). Sections 1.5 

and 1.6 provides a short illustration of analysis by GLLRMs and a list of publications that describe 

and/or use GLLRMs. Readers that are familiar with the models may skip these section and proceed 

directly to Section 2.1 with the first guided tour.  

 
1.2 Item analysis 
 
The purpose of item analysis in DIGRAM is to 
  

1) To examine whether a summated scale counting responses to a set of items provides a valid, 
objective and useful measure of a latent trait by an item analysis of the fit of item responses 
to a conventional Rasch model or a graphical and log-linear Rasch model. 

 
2) To identify items and persons that do not fit the proposed model if the fit to the Rasch model 

is unsuccessful, and/or to find a graphical log-linear Rasch model (GLLRM) where uniform 
differential item functioning (DIF) and uniform local dependence (LD) is permitted. 

  
3) To calculate estimates (measures) of the value of the person parameters and to assess 

measurement error, reliability and targeting of measurements.  
 

Item parameters are always estimated and presented during the item analysis, but estimates of item 

parameters are often subordinate to the other purposes during tests-of-fit of the model and in 

connection with estimation of person parameters. However, they may also be of interest in 

themselves in connection with special applications, for instance during development and revision of 

of tests or summary scales, and in connection with criterion referenced classification of scores.  

For this reason, it is important that estimates of item parameters provide information that can be 

used to assess and compare the qualities of items. It is to help with this that, that DIGRAM provides 

estimates of all the item parameters associated with the five different versions of the Rasch model 

(RM) for polytomous items.  
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1.3 Four examples 
 
We include four DIGRAM projects with the guide. The data for these examples can be found in 

DIGRAM projects that are distributed together with the program. 

 
1.3.1 The DHP project 

The data in the DHP project originated in a study of The Diabetes Health Profile (DHP). The DHP 

is a multidimensional patient self-completion diabetes-specific inventory designed to identify 

psychosocial dysfunction among adult insulin dependent and insulin requiring patients. Factor 

analyses have suggested that responses to DHP items depend on three latent variables representing 

Psychological distress, Barriers to Activity and Disinhibited eating. Chwalow et.al (2007) describe 

a randomized study of the quality of life of type 2 diabetic patients. We use data from this study to 

illustrate item analysis of the Disinhibited eating (DE) subscale summarizing responses to the 

following five questions with four ordinal response categories that were coded in such a way that 0 

represents no dysfunction and 3 represents a high degree of dysfunction: 

 
A: DHP32 Do you wish there were not so many things to eat? 

                  Responses: a) “Not at all”, b) “A little”, c) “A lot”, d) “Very much” 
  
B: DHP34 How likely are you to eat something extra when you feel bored or fed up? 

                    Responses: a) “Not at all likely”, b) “Not very likely”, c) “Quite likely”, d) “Very likely” 
  
C: DHP36 When you start eating, how easy do you find it to stop? 

                  Responses: a) “Very easy”, b) “Quite easy”, c) “Not very easy”, d) “Not at all easy” 
  
D: DHP38 Do you have problems keeping to you diet because you eat to cheer yourself up? 

                  Responses: a) “Never”, b) “Sometimes”, c) “Usually”, d) “Always” 
  

E: DHP39 Do you have problems keeping to your diet because you find it hard saying no to 
                  food you like?  

                  Responses: a) “Never”, b) “Sometimes”, c) “Usually”, d) “Always” 
 
In addition to the items, the DHP project also includes information on sex and age.  
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1.3.2 The CONF08 project 

The data for this project originated in the Danish component of the European values studies in 

2008. We use five polytomous items measuring confidence in the following public institutions. 

D) The police 
E) The parliament 
G) The social security system 
K) The health system 
L) The courts. 

 Response categories were “High degree of confidence” (0), “Some degree of confidence” (1), 

“Little degree of confidence” (2) and “No confidence” (3). Note that responses were coded in such 

a way that a high item score indicate a high degree of distrust. We refer to the instrument as the 

CONF scale even though a high CONF score is an indication of lack of confidence of public 

institutions. 

 
1.3.3 The PF3 project 

The second project originated in a Danish Health survey. We will here be concerned with the 

validity of the SF-36 subscale measuring physical functioning. The scale summarizes responses to 

the following ten items: 

Does your health now limit you in these activities? If so, how much? 

  A)  PF1: Vigorous activities 
  B)  PF2: Moderate activities 
  C)  PF3: Lifting or carrying groceries 
  D)  PF4: Climbing several flights of stairs 
  E)  PF5: Climbing one flight of stairs 
  F)  PF6: Bending, kneeling, or stooping 
  G)  PF7: Walking more than a mile 
  H)  PF8: Walking several blocks 
  I)   PF9: Walking one block 
  J)  PF10: Bathing or dressing yourself 

The responses to these questions were coded so that a low score indicates physical impairment. 

0 :  Limited a lot    1:   Limited a little   2:   Not limited 

Gender and Age are also included in this project. 



 8 

1.3.4 The ADLtired project 

The majority of the features implemented in DIGRAM apply for both polytomous and dichotomous 

items, but DIGRAM also supports a number of methods for item analysis by Rasch’s model for 

dichotomous items. To illustrate these methods we use data on from a study of the construct validity 

of a so-called PADL (Physical Activities of Daily Living) measure of functional ability of healthy 

elderly (Avlund et.al., 1993).  

In this study, data was collected from 734 70-year old in the County of Copenhagen, Denmark. The 

PADL scale consisted of 16 items covering the three domains shown in Table 1.1.  

Responses for the example used throughout these notes were coded as 0 = “Cannot do it at all, or 

cannot do it without getting tired” and 1 = “can do it without getting tired”  

Table 1.1 PADL items. 
 

Mobility function Lower limb function Upper limb function 
A: Are you able to walk 
     indoors? 

G: Are you able to wash the 
     lower part of the body? 

L: Are you able to wash the 
     upper part of the body? 

B: Are you able to walk out 
     of doors in nice weather? 

H: Are you able to cut your 
     toenails? 

M: Are you able to cut your 
      fingernails? 

C: Are you able to walk out 
     of doors in nice weather? 

I: Are you able to go to the 
    toilet yourself? 

N: Are you able to comb 
     your hair? 

D: Are you able to manage 
     stairs? 

J: Are You able to dress the 
    lower part of the body? 

O: Are you able to wash 
     your hair? 

E: Are you able to get 
     outdoors? 

K:Are you able to take 
    shoes/stockings on/off? 

P: Are You able to dress the 
    upper part of the body?  

F: Are you able to get up 
    from a chair or bed? 

  

 

Social class, sex and pension age are included in this project.  

 
 
1.4 Parameterizing Rasch models for polytomous items 

We assume that users of DIGRAM are familiar with Rasch models for polytomous items and are 

comfortable with the version of the model known as the partial credit model (PCM). However, the 

PCM is only one of five equivalent versions of the Rasch model for polytomous items that 

DIGRAM use. This section defines these versions and explain why we use them. 
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It is important to underscore that the five versions are equivalent. Tests of fit and estimates of 

person parameters are the same for all versions. For practical reasons, DIGRAM calculates 

conditional maximum likelihood (CML) estimates of the parameters defined by the multiplicative 

PSD version of the model where item are power series distributed and transform these estimates to 

CML estimates of the parameters defined by the other versions. Had it been more practical to start 

by estimating the parameters of another version, the results would have been the same. 

 
1.4.1 Rasch’s model for polytomous items 

It is informative to look at Rasch’s original models for polytomous items. Let Xvi be the response to 

a polytomous item with m response categories where m>2. The model for polytomous items 

presented for the first time by Rasch (1961) and Rasch (1962) was a multivariate model depending 

on a vector of person parameters 

x vx x ix x vx ix x
vi m

h vh h ih h vh ih h
h=0

exp(a θ +b σ +c θ σ +ω )
PR(X = x) = 

exp(a θ +b σ +c θ σ +ω )
    (1.1) 

In (1.1), ax, bx and cx are known scoring functions and θvx, σix and ωx are unknown parameters. 

Obviously, model (1.1) violated the principle of parsimony. Rasch (1962, p. 103) asked “whether it 

is possible to reduce the number, m, of parameters per person and per item” and suggested that the 

“simplest case would seem to be that each person as well as each item is fully characterized by a 

one-dimensional parameters θv and σi”. He also discarded the multiplicative cxθvxσix term and 

assumed that the scoring functions should be the same for the person and item parameters. The 

result was a special case of (1.1) with unidimensional person and item parameters and a vector of 

category parameters ω = (ω1,…, ωm) 

  
  

x v i x
vi m

h v i h
h=0

exp a θ +σ +ω
PR(X =x) = 

exp a θ +σ +ω
                (1.2) 

Except for the scoring function ax, the model defined by (1.2) is equivalent to the so-called rating 

scale model by Andrich (1978). Rasch never documented examples of applications of this model, 

but Andersen (1973) provided one example. Rasch did not discuss whether it was reasonable to 
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assume that the vector of category parameters had to be the same for all items, and Andersen (1977) 

extended (1.2) to a model where category effects depend on the item  

  
  

x v i ix
vi m

h v i ih
h=0

exp a θ +σ +ω
PR(X =x) = 

exp a θ +σ +ω
           (1.3) 

Finally, setting ix x i ixσ  = a σ +ω leads to the model that we today – except for the scoring functions – 

refer to as the Rasch model for polytomous items. 

 

 
x v ix

vi m

h v ih
h=0

exp a θ +σ
PR(X =x) = 

exp a θ +σ
               (1.4) 

1.4.2 The Rasch model for polytomous items 

To Rasch, the advantage of the distributions defined by (1.1) - (1.4) is that they are exponential 

family distributions with sufficient statistics.  

Let Xv = (Xv1,…,Xvk) be the vector of item responses and let  A(x) = ax be the score function. In 

formulas (1.2) – (1.4), the person score Rv = ΣiA(Xvi) is sufficient for the person parameter θv. 

Andersen (1977) showed that data reduction is as efficient as possible if the scores are equidistant 

and preferred scores for m+1 ordinal categories to be decreasing from m to zero. Today, the 

preferred scores refer to the ranks of the categories starting with zero and ending with m. It is the 

(1.4) model defined by such scores that we today refer to as the Rasch model for polytomous items.   

 
1.4.3 The exponential family model (EFM) 

We refer to statistical models in which the distribution of variables are members of exponential 

families as exponential family models (EFM) from which it follows that the Rasch model for 

polytomous items defined by (1.4) is as an EFM. The model that we refer to as the EFM version of 

the Rasch model for polytomous items modifies (1.4) in three ways. 

First to let the polytomous items have different number of ordinal categories with item sores from 

zero to mi. In this way, the rasch model for polytomous items include dichotomous items with mi=1.  
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Second by assuming that the person parameter of (1.4) is the outcome of a latent variable. In other 

words, the Rasch model for polytomous items describe the conditional distributions of responses to 

items given the outcome of an unobservable variable. Since this outcome appear as an unknown 

parameter on the Rasch model it follows that we can provide indirect measures of the unobservable 

outcome by statistical estimates of the person parameter.   

 

 

 

 

 

 

 

 

The model is overparameterized.  In DIGRAM, we assume that σi0 = 0 for all items and that

iimi
σ = 0 .  

The exponential version represent the statistical view on the Rasch model. Statistical models 

defined by exponential family distributions have sufficient statistics.  

In exponential family models, you can read the sufficient statistics and the ways to calculate 

maximum likelihood (ML) estimates directly off formulas like (1.5). In the Rasch model for 

polytomous items, the total person scores are sufficient for the person parameters and the item 

margins counting the number of times that the response categories of an item has been observed are 

sufficient for the item parameters. Finally, the ML estimates are the parameters where the expected 

sufficient statistics are equal to the observed statistics. 

 
1.4.4 The item and category effects (ICE) version 

The EFM version (1.5) of the Rasch model has one serious problem. There is no simple way to 

interpret of the meaning of the item parameters because we cannot separate the effect of the content 

of the item from the effect of the categories.  

The exponential family version (EFM) 

Let ( )zI x  be the indicator function with ( ) 1zI x   if x=z and zero otherwise. The 

exponential family version of the Rasch model for polytomous items is defined by 

  

 

 
 

i

i i

m

v z izz=0v ix
vi v m m

v iz v iz
z=0 z=0

exp xθ + I (x)σexp xθ +σ
PR(X =x | θ ) = =

 exp zθ +σ  exp zθ +σ



 
    (1.5) 
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Polytomous items are defined by an item-issue that respondents have to address and a set of ordinal 

categories. The problem is that several sets of response categories will be available when we 

construct items. 

Consider for instance, the DHP and CONF08 projects described in Sections 1.3.1 and 1.3.2 with 

information on five polytomous items.  

The five items of CONF08 use the following response categories for items addressing degree of 

confidence in public institutions: 

“High degree”, “Some degree”, Little degree”, “No confidence” 

The five DHP items use four different sets of response categories for questions addressing issues 

related to disinhibited reading 

“Not at all”, “A little”, “A lot” and “Very much” 
“Not at all likely”, “Not very likely”, “Quite likely” and “Very Likely”  
“Very easy”, “Quite easy”, “Not very easy” and “Not at all easy” 
“Never”, Sometimes”, “Usually” and “Always” 

 
Given the different sets of response categories (and the many other options that must have been 

available) the unavoidable question is how the different sets of categories influence the way the 

items function and whether the effect of a given set of categories depend on the item issue. In which 

ways is item functioning different for the four sets of DHP categories and does “Some degree of 

confidence” mean the same for the police and the health care system?  

Unfortunately, the parameters of the EFM version is of no help because they do not separate the 

effect of the item issue from the effect of the categories. To compare the different sets of categories 

versions we have to reparametrize the model in a way that attempt to do that; and one way to do that 

is to return to Rasch’s original parameterization in (1.3) with a parameter describing the item effect 

and a set of parameters describing category effects.  

We refer to this version as an item and category effect (ICE) version. The fundamental assumption 

is that the item issue defines the item effect in a way that does not depend on the choice of 

categories. That the general level of confidence in the police is the same whether we use the four 

categories of the CONF08 project, or another meaningful set of response categories. And that a 
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respondent will select a category that accommodates his or her their experiences of confidence. If 

this is correct, the choice of a category must depend on the degree to which the different categories 

accommodate different experiences of problems relating to the issue. 

The ICE model defined in Formula (1.6) provides one way to separate item effects and category 

effects. The person effect is the same as the person parameter in the EFM model, the item effect is 

the EFM item parameter of the highest item score (mi) divided by mi and the category effect is the 

EFM parameter of the category minus the item effect multiplied by the item score. 

 

 

 

 

 

  

 

 

 

 

It follows from the restriction imposed on the EFM version that 
ii0 imω = ω = 0  and ii

= 0 .  

The ICE version of the Rasch model for polytomous items is an exponential distribution. It suggests 

that it makes sense to include the total item score as a sufficient statistic for the item effect together 

with the item margins that are sufficient for the category effects. However, the item score is a 

function of the item margins and the set of sufficient statistics is not minimal. For this reason, there 

are no practical reasons to include the item score among the sufficient statistics during the analysis. 

The easiest way to estimate the item effect is to estimate the parameters of (1.5) and then 

reparametrize as in (1.6) to obtain estimates of item and category effects. 

The estimates of the item and category effects of the CONF08 and DHP items can be found in 

Table 1.4 and Figure 2.2.6. The differences of the category effects are striking. The category effects 

of the extreme categories of the CONF items (“High degree of confidence” and “No confidence”) 

The item and category effects (ICE) version 
 

Parameter Canonical parameters ICE parameters 
Person effect 

vθ  vθ  

Item effect  
σix 

ii im iσ = σ /m  

Category effect ωix =  σix - xσi 
 

 

 

  
 

i i

v i ixv ix
vi v m m

v iz v iz
z=0 z=0

exp x θ +σ +ωexp xθ +σ
PR(X =x | θ ) =  = 

 exp zθ +σ  exp zθ +σ 
       (1.6) 



 14 

are very weak compared to the effects of some or little degree of confidence. The DHP items are 

characterized of extreme category effects that are closer effects of the second and third category.  

 
1.4.5 The multiplicative power series model (PSD) 

The next versions of the Rasch model rewrite (1.5) and (1.6) as multiplicative models where items 

have power series distributions (PSDs) with unknown score parameters. We refer to the 

multiplicative version of the EFM as the PSD version and the multiplicative version of ICE as the 

MICE version.  

The advantages of using the PSD version of the RMP instead of exponential family versions is that 

parameters have values on ratio scales and that formulas are more transparent.  

A second advantage is that we can use results on power series distributions. The most important is 

that the sum of two PSDs depending on the same person parameter belong to the same family of 

PSDs. Since we can rewrite item distributions as PSD distributions, it follows that the sum of two or 

more items also has PSD distributions. In other words, that scores and subscores over polytomous 

Rasch items can be regarded as as polytomous rasch items.  

Formulas (1.7) and (1.8) define the PSD and MICE version. They add an extra benefit: the PSD 

version permits some of the score parameters to be equal to zero. Assume for instance, that 

responses to a question with five response categories for substantive reasons are scored 1, 2, 4, 6 

and 7. To redefine this as a polytomous Rasch item we subtract 1 from the proposed score. In this 

way, the range of item scores change to {0,1,3,5,6}. This would be a problem for the EFM and ICE 

versions, but using the PSD version (1.7) instead (1.5) we may redefine the items as a polytomous 

item with seven categories with score parameters δi2 = δi4 = 0. 

In this way, the PSD and MICE versions represent extensions of the Rasch model for polytomous 

items. Since the implementation of Rasch models in DIGRAM use the multiplicative versions for 

estimation of parameters and tests of fit, item analysis by DIGRAM include the extended PSD and 

MICE versions of the Rasch model for polytomous items. 

A final convenient consequence of using the PSD and MICE versions is that we may assume that all 

items have the same number of response categories. For instance, if the set of items include 
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dichotomous and trinary items we just have to treat the third score parameter of the dichotomous 

items as a structural zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

1.4.6 The partial credit version (PCM) 

Masters (1980 and 1982), Wright & Masters (1982) and Andrich (1978) reparametrized the Rasch 

model for polytomous in a way where the probabilities of responses depend on differences between 

person parameters and item parameters and referred to it as a partial credit model (PCM). However, 

since the PCM is a trivial reparameterization of the EFM version we prefer to refer to it as the PCM 

version of the Rasch model for polytomous items. 

 

The multiplicative PSD and MICE versions 

Parameter Canonical parameters ICE parameters 
Person effect 

vθ  v vξ = exp(θ ) 

Score parameter σix 
ix ixδ = exp(σ )  

 
The PSD version rewrites (1.5) as  

 
m

x j
i v v ix v ij

j 0

Pr(X =x| ) =


         (1.7) 

 
Parameter Canonical ICE parameters MICE parameters 
Person effect 

vθ  vθ  v vξ = exp(θ ) 

Item effect  

σix 
ii im iσ = σ /m  

i iψ = exp(σ )  

Category 
effect 

ωix =  σix - xσi 
ix ixα = exp(ω )  

 
The MICE version is a multiplicative reparameterization of the ICE (1.6)  

 

 

x

i ix
i m

x

i ix
j 0

Pr(X =x| ) =



 


 
       (1.8) 
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Rewriting the RMP as a polytomous IRT model is an advantage because it makes it clear that IRT 

notions and methodology also apply for the RMP. However, there are drawbacks. First at all, that 

(4.3.8) does not make it clear that the item margins are sufficient for the item parameters. 

 

 
During analysis by the PCM version, we define the location i of the item as the average of the 

PCM thresholds,
im

i ix i
x=1

β = β m .  

Calculating a statistic as the average of a number of parameters does not necessarily define a 

statistic with a meaningful interpretation. However, it is not difficult to show that the location 

defined by the PCM is equal to minus the item effect defined by the ICE, i = -σi.. The location of a 

polytomous items is a meaningful measure of item effect that is comparable to the item effect 

defined by ICE in the same way that the difficulty of a dichotomous item relates to the easiness of 

the item. 

 
1.4.7 Interpretation of item parameters 

To understand how a polytomous item function we have to study the conditional distribution of 

item responses given different values of the person parameter and since there are no simple 

functions describing these distributions we have to calculate these differences ourselves. DIGRAM 

provide several ways to obtain these distributions, but in order to understand how the item 

parameters shape the distributions it is useful to recognize the relationships between the item 

parameters and a subset of the conditional item distributions.  

At the origin of the θ scale where the multiplicative person parameter  is equal to 1, the 

distribution of an item is a simple function (1.10) of the score parameters of the PSD version.  

 

The PCM version 

Parameter Canonical parameters PCM parameters 
Person effect 

vθ  vθ  

PCM threshold σix βix = σi,x-1 - σi,x 

 
x x

ij ij
j=1 j=1

vi
vi vi

exp xθ - β exp (θ -β )

Pr(X =x|θ ) =  = 
G G

v v

v

   
   
   

 
                    (1.9) 
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At the location of the item, the distribution of the item is a simple function (1.11) of the 

multiplicative category effects and the probability of an item score equal to zero is the same as the 

probability of the maximum item score as show in Formula (1.12). 

Finally, (1.12) shows that the PCM thresholds define the locations where adjacent categories have 

the same probability. 

 

 

 

 

 

Rewriting the RMP as a polytomous IRT model is an advantage because it makes it clear that IRT 

notions and methodology also apply for the RMP. However, there are drawbacks. First at all, that 

(4.3.8) does not make it clear that the item margins are sufficient for the item parameters. 

 

 
 

 

 

 

 

 

 

To appreciate the category effects of ICE and MICE it is useful to compare how they characterize 

response categories and the way that the PCM version characterize the categories.  

Let x be one of the categories of a polytomous item. The category effects of the ICE and MICE 

provide concrete information on the capacities of this category that we may compare to the 

Conditional distributions of responses defined by item parameters 

The score parameters of the PSD version (1.7) define the item distribution anchored at 

the origin of the θ scale 

im

i v ix ix
z=0

Pr(X = x | θ = 0) = δ δ       (1.10) 

The multiplicative category effects of the MICE (1.8) define the item distribution at the 

location of the item 

im

i v i ix ix
z=0

Pr(X = x | θ = β ) = α α       (1.11) 

Since the effect of the extreme categories are equal to 1 it follows from (1.11) that the 

probabilities of extreme categories are the same at the location of the item 

 i v i i v iPr(X = 0 | θ = β ) = Pr(X = 0 | θ = β )     (1.12) 

The PCM thresholds define location where the probabilities of adjacent categories are 

the same in the item distributions that are anchored at he PCM thresholds, 

i v ix i v ixPr(X = x-1 | θ = β ) = Pr(X = x | θ = β )  for x = 1,…,mi   (1.13) 
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capacities of other categories of the same and other items. Compared to this, the PCM needs two 

statements to characterize category x    

i v ix i v ixPr(X = x-1 | θ = β ) = Pr(X = x | θ = β )   

&  

i v i,x+1 i v i,x+1Pr(X = x | θ = β ) = Pr(X = x+1 | θ = β )   

Since (1.13) does not provide information on the size of the probabilities, the characterization of the 

category is opaque. For this reason, the PCM version is rarely helpful if you want to compare a 

category of a polytomous item with other categories. Therefore, you have to calculate the category 

effects of the ICE or MICE yourself if the PCM thresholds are the only item parameters available to 

you.   

Fortunately, this is easy. 

In terms of the PCM and MICE versions, the probabilities at the item location defined by (1.11) are  

i ii v i m mz

i ij iz
z=1 j=1 z=0

1 1
Pr(X = 0 | θ = β ) =  = 

1+ exp(zβ - β ) α  
 

and 

i i

x

i ij
j=1 ix

i v i m mz

i ij iz
z=1 j=1 z=0

exp(xβ - β )
α

Pr(X = x | θ = β ) =  = 

1+ exp(zβ - β ) α



  
 

because the category effect of extreme categories are equal to 1 in MICE.  

From this, it follows the category effects defined by MICE and ICE are equal to 

x

ix i ij
j=1

α  = exp(xβ - β )  and 
x

ix i ij
j=1

 = xβ - β       (1.14) 

which should not be too difficult to calculate using a calculator app on a phone. 
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1.5 Graphical Rasch models and graphical log-linear Rasch models 
 
Conventional Rasch models are IRT models that describe the conditional distribution of a set of 

locally independent items without DIF given the outcome θ of a latent variable, the value of which 

appears as a person parameter in the conditional distribution of items given the latent trait variable. 

The models for item analysis by DIGRAM extend and generalize the conventional Rasch model in 

two ways. First, as a graphical Rasch model and second, as a graphical log-linear Rasch models. 

 
 1.5.1 The Rasch model as a graphical model 

Chain graph models are multivariate recursive models defined by assumptions of pairwise 

conditional independence given all current and prior variables. The models are characterized by so-

called Markov graphs where variables are represented by nodes and where a missing edge between 

two nodes mean that the two variables are conditionally independent. Since items are locally 

independent and because the sufficiency of the total score for the person parameter implies that 

items are conditionally independent of the latent variable given the total score we may regard the 

Rasch model as a chain graph model defined by two different Markov graphs. 

We will use data in the CONF08 project with five polytomous items measuring confidence in 

public institutions in Denmark in 2008. 

D – The police 
E – The Parliament 
G – The social security system 
K – The health care system 
L – The courts 

Three assumptions characterize the Rasch model of these items. 

1) The model is recursive because we assume that the relationship between the items and the 
latent variable is causal. The latent trait is the cause and responses to items are effects. 
 

2) Items are locally independent. 

 

3) The person score is sufficient for the person parameter representing the outcome on the 
latent trait variable. 
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From these assumptions, follow two properties of Rasch models from which it follows that the 

Rasch model is a graphical model defined by two Markov graphs. 

a) The first is that pairs of items are conditionally independent given the latent trait variable 

and the other items. E.g. that D  E | θ, G, K, L. 

b) The second is that the vector of items is conditional independent of θ given the person score,  

(D,E,G,K,L)  θ | R = D+E+G+K+L because R is sufficient for θ. 

  
It follows from a) that the Rasch model belongs to the family of graphical models. We refer to the 

Markov graph in Figure 1a as an IRT graph, because all conventional IRT models with locally 

independent items are graphical models defined by this graph. In addition to this, it follows from b) 

that the model including the person score is a graphical model defined by the Rasch graph in Figure 

1b where the score separates items from θ. Since the Rasch model is the only IRT model with a 

sufficient person score it follows that the Rasch graph does not apply for other IRT models. Notice 

howevert, that items are not conditionally independent because conditioning with the raw score 

induce negative conditional association among items. 

  

                   (a) The IRT graph                                                        (b) The Rasch graph 

Figure 1.1 The two Markov graphs defining a Rasch model 
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1.5.2 Graphical Rasch models 

During item analysis with Rasch model, it is customary to test for DIF relative to exogenous 

variables. The assumption of no DIF require that items are conditionally independent og exogenous 

variables given θ, but the analysis of DIF is informal relative to the Rasch model, because the Rasch 

model is a model without exogenous variables. Graphical Rasch models (GRMs) provide a riposte 

to this dilemma. Graphical Rasch models insert the Rasch model in a multivariate chain graph 

model together with all the covariates that may create DIF and other covariates that may be 

associated with the latent variable. To illustrate this here, Figure 1.2 defines a graphical Rasch 

model where sex and age are included as exogenous variables.  

  

                  (a) The IRT graph                                                        (b) The Rasch graph 

Figure 1.2. IRT and Rasch graphs of a graphical Rasch model 

The GRM defined by Figure 1.2 the missing edges and pairs induce three sets of pairwise 

conditional independence 

i. Items are locally independent 
ii. There is no DIF among CONF items relative to Sex and Age because items are conditionally 

independent of Sex and Age given θ 
iii. Items are conditionally independent of sex and age given the raw score   
iv. Theta is conditionally independent of Age given Sex 

i), ii) and iv) applies for all IRT models embedded in a graphical model with Sex and Age, but iii) 

requires a sufficient score and therefore a Rasch model.  
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Graphical Rasch models are similar to structural equation models (SEMs) for confirmatory factor 

analysis. Graphs also characterize SEMs, but the SEM graphs are not Markov graphs. A missing 

link between two variables of a SEM does not imply that the variables are conditionally 

independent. 

  
1.5.3 Item analysis by Graphical Rasch models 

Embedding the Rasch model in a graphical model including all the exogenous variables that may be 

sources of DIF is useful for two reasons. It suggests a simple test of no DIF in Rasch models that 

we may apply before we estimate the item parameters and it explains why spurious evidence of DIF 

is expected to turn up and how to distinguish between genuine and spurious DIF.  

To test that there is no DIF of confidence in the Police relative to Sex we just have to count the 

three-way table with Police and Sex stratified by the Score and test that Police and Sex are 

conditional independent given the score. Had Police been a dichotomous item we could use the 

Mantel-Haenszel test2. Since items are polytomous we need tests defined for ordinal categories, but 

this is a minor technical issue. The point is that we only need to look at three-way tables to test for 

DIF in Rasch models.  

Assume that there is DIF of confidence in the police relative to sex. The Markov graphs suggests 

that spurious evidence may turn op for two reasons. 

Except for the tests of no DIF of the CONF items and the analysis of the dependence of the latent 

trait variable on Sex and Age there is little difference between conventional Rasch analysis and 

analysis by graphical Rasch models. Item parameters are estimated in the same way, the test of fit 

of the model include the same tests of item-fit and local independence, person parameters are 

estimated in the same way. Conventional Rasch analysis may use the same tests for no DIF, but DIF 

analysis is informal because the conventional Rasch model does not recognize exogenous variables.  

The following tables present the CML estimates of the item parameters of the CONF items.  

                                                 
2 The MH test of no DIF of dichotomous items is often proposed and used for general IRT models. The point is, that the 
MH-test is a Rasch test. No DIF insists that items are conditionally independent of exogenous variables given θ. In 
Rasch model, this implies that items are conditionally independent of exogenous variables given the score. Since this is 
not true for general IRT models without a sufficient raw score it follows that the MH test may provide spurious 
evidence of DIF, because the null-hypothesis of the MF test may be false even though there is no DIF. 
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Table 1.1 shows the distribution of item responses and in the manifest order of the items defined by 

the average item scores. The confidence is highest for the police and lowest for the social security 

system.  

Table 1.1 Marginal distribution of confidence in public institutions.  

 Degree of confidence  
Item High (0) Some (1) Little (2) No (3) Average 
G – Social security 0.082 0.601 0.295 0.021 1.26 
E - Parliament 0.101 0.612 0.267 0.019 1.20 
K – Health care 0.113 0.608 0.257 0.021 1.19 
L – Courts 0.230 0.647 0.118 0.005 0.90 
D – Police 0.265 0.649 0.083 0.003 0.82 

 
The frequencies of Table 1.1 are the sufficient statistics for the item parameter. We use proportional 

fitting of these frequencies to obtain the CML estimates of the multiplicative parameters of the PSD 

version of the Rasch model for polytomous items. Table 1.2 puts these estimates on view.  

Table 1.2 CML estimates of multiplicative item parameters (δix) 

 Degree of confidence  (Item scores) 
Item  High (0) Some (1) Little (2) No (3) 
G – Social secur. 1.000 70.883 98.992 7.035 

E - Parliament 1.000 53.365 62.910 4.221 
K - Health care 1.000 45.504 51.286 3.969 
L – Courts 1.000 15.986 5.635 0.153 
D - Police 1.000 12.680 2.889 0.056 

 
DIGRAM calculated the parameters of Table 1.2 by iterative proportional fitting and used them to 

calculate the thresholds and the item location defined by the PCM (Table 1.3) and the item and 

category effects of the ICE and MICE (Table 1.4).  

Table 1.3 CML estimates of PCM thresholds (ix) 

Item  1: High vs some 2: Some vs 
Little 

3: Little vs None Location 

G – Social security -4.261 -0.334 2.644 -0.650 

E - Parliament -3.977 -0.164 2.702 -0.480 
K - Health care -3.818 -0.120 2.559 -0.459 
L – Courts -2.772 1.043 3.609 0.627 
D - Police -2.540 1.479 3.951 0.963 
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Table 1.4 CML estimates of item and category effects. (ωix) and (ix) 

  Degree of confidence  (Item scores)  
Version Item  High (0) Some (1) Little (2) No (3) Item effect 
 G – Social secur. 0.000 3.603 3.222 0.000 0.650 

 E - Parliament 0.000 3.593 3.321 0.000 0.480 
ICE K - Health care 0.000 3.413 3.100 0.000 0.459 
 L – Courts 0.000 3.462 3.067 0.000 -0.627 
 D - Police 0.000 3.538 3.016 0.000 -0.963 
       

 G – Social secur. 1 36.993 26.962 1 1.916 
 E - Parliament 1 33.027 24.087 1 1.616 
MICE K - Health care 1 28.741 20.459 1 1.583 
 L – Courts 1 29.914 19.730 1 0.534 
 D - Police 1 33.222 19.835 1 0.382 
 

The category effects draw the same picture for all items. The capacity is a little larger for “Some 

confidence” than for “Little confidence” and much larger for than the capacities of the extreme 

categories. The only way to interpret this is to assume that some and little confidence cover a wide 

range of different experiences with public institutions.  

Attempting to interpret the PCM thresholds as statements on categories is less easy. The thresholds 

define locations where adjacent categories have the same probabilities. The probability of high 

confidence is equal to the probability of no confidence at the threshold between these categories. 

However, since the thresholds say nothing about the sizes of the probabilities, we find it difficult to 

compare the functioning of the items. Do they function in the same way or are some items better 

than other items? And why?  

If we want to compare categories, the problem is the same. The category “Some confidence in the 

health care system” is characterized by two thresholds: -3.818 separating High and Some degree of 

confidence and -0.120 separating some and little degree of confidence whereas “Little confidence is 

characterized by -0.120 and 2.559. Since these threshold refer to all four categories is not obvious 

what they say about the “some confidence” and “little confidence” categories.  

The best way to interpret the different parameters of the Rasch model for polytomous items is to 

examine the effects of the parameters on the distributions of the items. To do this, Formulas (1.10) – 

(1.13) may be useful.  
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It follows from formula (1.10) that the conditional probabilities of responses to items given θ = 0 

are proportional to the multiplicative parameters in Table 1.2. Table 1.5 presents these probabilities. 

They show that the items almost function as trinary items at the origin of the θ scale with close to 

no chance of a response in one of the extreme categories and with large probabilities of some or 

little confidence. Table (1.5) includes the mean and the item information at θ = 0 defined by the 

variance of the item scores. 

The large probabilities of some or little confidence are expected, but it is noteworthy that the 

probability of little confidence is larger than the probability of some confidence for three items even 

though the category effect of some confidence is stronger than the effect of little confidence. 

Table 1.5 Conditional distribution of confidence in public distributions given θ = 0.  

 Confidence in public institutions   
Item  High (0) Some (1) Little (2) No (3) Mean VAR/Inf 
G – Social sec. 0.006 0.398 0.556 0.040 1.63 0.32 
E - Parliament 0.008 0.439 0.518 0.035 1.58 0.33 
K - Health care 0.010 0.447 0.504 0.039 1.57 0.34 
L – Courts 0.044 0.702 0.247 0.007 1.22 0.27 
D - Police 0.060 0.763 0.174 0.003 1.12 0.23 

 

At the item locations, (1.11) claims that the probabilities of item responses are proportional to the 

multiplicative category effects of the MICE and (1.12) that the conditional probabilities of extreme 

item scores are the same. Table 1.6 confirms these claims. 

Table 1.6 Conditional distribution of confidence in public distributions at the item locations.  

 Location Confidence in public institutions   
Item θ High (0) Some (1) Little (2) No (3) Mean VAR/Inf 

G -0.650 0.015 0.561 0.409 0.015 1.42 0.30 
E -0.480 0.017 0.559 0.407 0.017 1.42 0.31 
K -0.459 0.020 0.561 0.400 0.029 1.42 0.32 
L 0.627 0.019 0.579 0.382 0.019 1.40 0.32 
D 0.963 0.018 0.603 0.360 0.018 1.38 0.31 

 

At the item locations, the CONF items function as dichotomous items with little risk of an extreme 

category. The dichotomous distributions are close to uniform for items G, E and K and the item 

information a little better than a true dichotomous item could provide. 
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Finally, Formula (1.13) shows that the conditional probabilities of adjacent categories are the same 

at the locations defined by the PCM threshold that separating the categories. Tables 1.7 and 1.8 

present these distributions for items G and D. 

Table 1.7 The distribution of confidence in social security (G) at the pcm thresholds.  

 Confidence in public institutions   
θ High (0) Some (1) Little (2) No (3) Mean VAR/Inf 

-4.261 0.495 0.495 0.010 0.000 0.51 0.27 
-0.334 0.010 0.483 0.483 0.025 1.52 0.32 
2.644 0.000 0.025 0.488 0.488 2.46 0.30 

 

Table 1.8 The distribution of confidence in the police (D) at the pcm thresholds.  

 Confidence in public institutions   
θ High (0) Some (1) Little (2) No (3) Mean VAR/Inf 

-2.540 0.496 0.496 0.009 0.000 0.51 0.27 
1.479 0.009 0.476 0.476 0.040 1.55 0.35 
3.951 0.000 0.040 0.480 0.480 2.46 0.30 

 

The similarities between the probabilities of Table 1.7 and Table 1.8 are remarkable. Together with 

Tables 1.5 and 1.6, the conclusion is that except for the location of the items defined by the item 

effects, the five CONF items functions in the same ways and as close to dichotomous items in a 

wide range on the θ scale. To add to and modify this picture, we have to calculate the conditional 

distributions for other values of θ. The longer tour through the Rasch model will show you how to 

do that in DIGRAM. 
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1.5.4 Graphical log-linear Rasch models 

A Log-linear Rasch model (Kelderman, 1984) doES not require that items are locally independent 

and without DIF. Despite this, it a member of the Family of Rasch models for measurement because 

the total score is sufficient for the person parameter . Log-linear Rasch models permit uniform DIF 

and uniform local dependence if the associations between items and exogenous variables do not 

depend on θ. To accommodate such situations, log-linear Rasch models include log-linear 

interaction parameters that do not depend on the person parameter representing DIF and LD.   

Graphical log-linear Rasch models (GLLRMs) are log-linear Rasch models embedded in chain 

graph models in the same way that Rasch models insert conventional Rasch models in graphical 

models. Therefore, GLLRMs are generalizations of GRMs that may be helpful when item analyses 

have disclosed DIF and local dependence among items. 

DIGRAM provides facilities for analysis by both GRMs and GLLRMs. Some of the methods 

capitalize on techniques associated with inference in chain graph models, but conventional 

inference in Rasch models is also supported and extended to inference in log-linear Rasch models. 

 

In GLLRMs, the total score R is sufficient for  in exactly the same way as in conventional Rasch 

models. Inference in GLLRMs can therefore be conditional in exactly the same way as in convent-

ional Rasch models and all estimates and fit statistics that apply for the Rasch models also work for 

the GLLRMs. It is beyond the scope of this introduction to discuss the details of analysis by 

GLLRMs. For that purpose, we refer to a number of papers by Kreiner & Christensen (2002, 2004, 

2006, 2007, 2011).  

 

The tests of fit rejected the fit of the CONF items to a graphical Rasch model and disclosed 

evidence of both local dependence and DIF. Contrary to this, the graphical log-linear Rasch model 

defined by the IRT graph in Figure 1.3 survived all attempts to find evidence against the model. 
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Figure 1.3. IRT graph of a graphical log-linear Rasch model. 

The GLLRM defined by Figure 1.1 adds three sets of interaction parameters (one for each pair of 

locally dependent items and one for DHP36 and Sex) to the usual Rasch model structure in the 

following way 

D E G K L (GK) (KL) (EL) (DE) D,SEX E,SEX
d e g k l gk kl el de dy ez

Pr(D = d, E = e, G = g, K = k, L = l | θ, SEX = y, Age = z)

=

exp(rθ+σ +σ +σ +σ +σ +λ +λ +λ +λ +δ +δ )

K

  (1.15) 

where the σ parameters are the item parameters,  parameters represent local dependence and the  

parameters are DIF parameters. 

 
Models like (1.15) have many interesting features. The first is that the composite sum of items that 

are connected in the IRT graph have the same distribution as conventional polytomous Rasch items. 
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If it is convenient, we can define PCM thresholds and item and category effects of component 

scores in GLLRMs. 

In addition to this, the CONF example illustrate that GLLRMs without locally independent items 

may fit data. That measurement can do without locally independence, also in cases, where there are 

no locally independent items. The total CONF score over all items has the same distribution as a 

score over independent Rasch items and estimation of person parameters proceeds in exactly the 

same way as in the Rasch model. 

 
In this way, GLLRMs may provide solutions to measurement problems caused by the disagreement 

of the data and the pure Rasch model. There is, however, no guarantee that the solution works, so 

for this reason we have to check the GLLRM just as carefully as we checked the Rasch model. The 

sufficiency of the total score under the GLLRM means that we can do this in exactly the same way 

as for the Rasch model. The tours through the graphical log-linear Rasch models will illustrate how 

to do it on another data set. The CONF example is included with DIGRAM and we suggest that you 

check if the model defined by Figure 1.3 fits, on your own after the tours and compare the estimates 

of the person parameters defined by a conventional Rasch model to estimates by the GLLRM.  
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1.6 Publications on graphical (log-linear) Rasch models 
 
The primary purpose of the guided tours is to show you how to analyse item response data in 

DIGRAM using graphical Rasch models and graphical log-linear Rasch models. We will add a few 

notes in the detours on technical details that are not covered elsewhere, but many technical details 

relating to these models are not discussed here because they have been documented in papers on 

these models and in the book by Christensen et.al. (2013) that is included in the following list of 

publications that includes a number of papers where GRMs and GLLRMs have been used. 

 
1.6.1 Technicalities 

 

Kreiner S (1987) Analysis of multidimensional contingency tables by exact conditional 
          tests: Techniques and Strategies. Scandinavian Journal of Statistics 14, 97 - 112. 
 
Kreiner S (1993/2006) Validation of Index Scales for Analysis of Survey data: The  
           Symptom Index.  In Bartholomew, DJ (ed) Measurement VOL III: 297-328 
 
Kreiner S, Christensen KB. (2002) Graphical Rasch Models. In Mesbah et.al. (2002): Statistical 
          Methods for Quality of Life Studies. Design, Measurement and Analysis: 169-184. 
 
Kreiner S, Christensen, KB. (2004) Analysis of local dependency and multidimensionality 
            in graphical log-linear Rasch models. Communications in Statistics, 33: 1239-1276 
 
Kreiner S, Hansen M, Hansen CR (2006) On local homogeneity and stochastically ordered Mixed Rasch 
           models. Journal of Applied Psychological measurement, 30: 271-297 
 
Christensen KB, Kreiner S (2007) A Monte Carlo approach to unidimensionality testing 
            in polytomous Rasch models.  Journal of Applied Psychological Measurement, 31: 20-30 
 
Kreiner S, Christensen KB (2007) Validity and Objectivity in health-related Scales: 
           Analysis by Graphical Log-linear Rasch models. In von Davier & Carstensen (2007). 
          Multivariate and Mixture Distribution Rasch Models: 329-346. Springer. 
 
Kreiner S (2007) Validity and objectivity. Reflections on the role and nature of Rasch 
          Models.  Nordic Psychology, 59: 268-298 
 
Kreiner S (2007) Determination of Diagnostic Cut-Points Using Stochastically Ordered 
           Mixed Rasch Models. In von Davier & Carstensen (2007). Multivariate and Mixture 
           Distribution Rasch Models; 131-146. Springer. 
 
Christensen K.B. & Kreiner S. (2010) Monte Carlo tests of the Rasch model based on scalability 
         coefficients. British Journal of mathematical and Statistical Psychology, 63, 101-111. 
 
Kreiner, S & Christensen KA (2011) Item Screening in Graphical Log-linear Rasch models. 
        Psychometrika,76, 228-256 
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Kreiner S, Christensen KB (2011) Exact evaluation of Bias in Rasch model residuals. Advances in 
        Mathematics Research, 12, 19-40 

 
Kreiner S (2011) Item-rest-score association. Applied Psychological Measurement, 35, 557-561 
 
Christensen KB, Kreiner S, Mesbah M (eds.) (2013) Rasch Models in Health. London: ISTE Wiley  

 
Nielsen, T & Kreiner S. Improving items that do not fit the Rasch models: exemplified with  
         the physical functioning scale of SF36.  Pub.Inst.Stat.Univ.Paris, 57, fasc. 1-2, 85-90 
 
Kreiner S. (2013) A note on α-curves for dichotomous items. Pub.Inst.Stat.Univ.Paris, 57, fasc. 1-2,  
          91-108 
 
Eusebi P, Kreiner S. (2015) Differential item functioning analysis by applying multiple comparison 
          procedures. Journal of Applied Measurement. 16, 13-23. 
 
Mûller M & Kreiner S. (2015) Item Fit Statistics in Common Software for Rasch Analysis. 
 Department of Biostatistics, Univ. of Copenhagen. Research report 15/06.19 pages. 
 
 
1.6.2 Applications 
 
Kreiner S, Simonsen E, Mogensen J (1990) Validation of a Personality Inventory 
            Scale: The MCMI P-Scale (Paranoia) Journal of Personality Disorders, 4: 303-311 
 
Schultz-Larsen K, Kreiner S, Lomholt RK (2007) Mini-Mental Status Examination:  
           A short form of MMSE was as accurate as the original MMSE in predicting dementia 
           Journal of Clinical Epidemiology 60: 260-267 
 
Schultz-Larsen K, Lomholt RK, Kreiner S (2007) Mini-Mental Status Examination: Mixed 
           Rasch model item analysis derived two different cognitive dimensions of the MMSE 
           Journal of Clinical Epidemiology 60: 268-279 
 
Nielsen, T., Kreiner, S. & Styles, I. (2007). Mental self-government: Development of the additional 

democratic learning styles using Rasch measurement models. Journal of Applied Measurement, 2(8), 
pp. 124-148. 

   
Nielsen, T. & Kreiner, S. (2011). Reducing the item number to obtain same-length self-assessment scales: A 

systematic approach using result of graphical loglinear Rasch modeling. Journal of Applied 
Measurement. 12(4).  

 
Soee A-B L, Skov L, Kreiner S, Tornoe B, Thomsen LL (2013) Pain Sensitivity and Pericranial 
  Tenderness in Children with Tension-Type headache: a Controlled Study. Journal of Pain 
          Research, 6, 425-434 
 
Soee, A-B L, Thomsen, LL, Kreiner S, Tornoe, B & Skov, L. (2013) Altered pain perception in 
        children with chronic tension-type headache: Is this a sign of central sensitization? 
        Cephalalgia, 33, 454-462 
 
Ringsted TK, Wildgaard K, Kreiner S. (2013) Pain-related impairment of daily activities after 
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           Thoraic surgery. The Clinical Journal of Pain, 29, 791-799 
 
Nielsen, T. & Kreiner S. (2013). Improving items that do not fit the Rasch model: exemplified with the 

physical functioning scale of the SF-36. Annales de L’I.S.U.P. Publications de L’Institut de Statistique 
de L’Université de Paris, Numero Special, 57(1-2), 91-108. 

   
Kreiner S & Christensen, K B (2014) Analysis of Model Fit and Robustness. A New Look at the 
        PISA Scaling model Underlying Ranking of Countries According to Reading Literacy. 
        Psychometrika, 79, 210-231 
  
Lauritsen M-B G, Kreiner S, Söderström M, Dørup J, Lous J. (2015) A speech reception in noise 
 test for preschool children (the Galker-test): Validity, reliability and acceptance. International 
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1.7 Item analysis commands 
 
Tables 1.7 shows commands providing information on the current version of DIGRAM and Table 

1.8 shows the commands for item analysis that are illustrated in the guided tours. The following five 

types of commands are the most important: 

 

1) ITEMS, FLIP, CUT, and EXO defines the set-up of the analysis 
 

2) SHOW I and S provides information on distribution of items and scores 
 

3) DIF, SCREEN I and S, CHECK I end D, and MDIF are used for analyses of the manifest 
variables of the models by tests of the global Markov properties of the models. 

  
4) GRM, RASCH and PERSONFIT are used for parametric analyses of the models.  

 
5) STABLE are used to create multivariate contingency table describing the joint distribution 

over score groups together with other variables. 

 

You can use DIGRAM’s graph module to display the IRT graphs and to redefine the models by 

adding or deleting edges and arrows between items and exogenous variables. 

Table 1.7 Information on DIGRAM 

Commands Parameters Purpose 

Information on DIGRAM 

SHOW N Shows additions to the program since 2003 

SHOW L Shows the current limitations of DIGRAM 

SHOW E Provides information on the environment 

SHOW P Provides a list of the DIGRAM projects that you have worked with  

Information on commands 

HELP  Lists all available commands 

command ? Provides information on a specific command 
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Table 1.8 Commands for item analysis 

 
Commands 

 
Paramete
rs 

 
Purpose 

Shown 
in 

section 

Select and define variables 

ITEMS variables Selects items and defines scores and score groups 2.1.1 
FLIP  Changes the orientation of items 2.2.1 
IMISS  Provide info on missing item responses 2.1.1 
CUT Cut points Redefines score groups 2.2.2 
EXO variables Selects exogenous variables 2.1.2 

Information on variables 

SHOW  I Provides information on items 2.4.1 
SHOW S Provides information on scores 2.4.1 

Analysis of global Markov properties of Rasch models 

DIF variables Performs analyses of DIF 2.2.3 
LDE variables Tests of local independence 2.2.3 
SCREEN  I Define a model by item screening 2.4.2 
SCREEN J Performs item screening by do not define a model 2.4.2 
SCREEN E Analyze the effect of exogenous variables on the score 2.4.2 
CHECK I Check global Markov properties of the model  2.4.5 
CHECK D Check the global Markov properties relating to DIF 2.4.5 
COMP  Provide info on item components of the current GLLRM 2.4.7 

Parametric analyses 

GRM Generators Analysis by graphical log-linear Rasch models 2.1.3 
WML  Calculates the WML estimates of person parameters  
SAVE R Saves a command file with the definition of the current 

GLLRM so that you can easily return to this model if 
you want to continue the analyses 

2.3.5 

PERSONFIT  Analysis of response patterns and exact person fit test 2.4.6 
IPR   

Creates scale anchored item distributions  
 

SPR  2.2.7 
TPR   

Score tables 

STABULATE variables Creates a contingency table containing the score groups 
and other variables. 
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1.8 Abbreviations and acronyms 
 
 

  Mentioned the first 
time on page 

CML Conditional maximum likelihood estimates 9 
DE Disinhibited eating 6 

DHP Diabetes Health Profile 6 
DIF Differential item functioning 5 
EFM Exponential family model  10 

GLLRM Graphical log-linear Rasch model 5 
GRM Graphical Rasch model  
ICE The item and category version of the RM 12 
IRT Item response theory 19 
LD Local dependence 5 

MICE The multiplicative item and category version of the RM 14 
ML Maximum likelihood estimates 61 
PF Physical functioning 7 

PSD Power series distribution 9 
RM Rasch model 5 

RMSE Root mean squared error 61 
WML Weighted maximum likelihood estimate of person 

parameters 
61 

WPG Weighted mean of the partial gamma coefficient testing the 
hypothesis of local independence during item screening 

127 
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2 Guided tours 
 

This chapter describes four tours through DIGRAM where you will get a chance to see what 

DIGRAM has to offer for item analysis by Rasch models.  

 

We start with a very short tour, where you will learn how to select items and exogenous variable, 

how to estimate item parameters and person parameters, and how to perform a rudimentary check of 

whether the Rasch model provides a reasonable description of the distribution of item responses. 

 

The next tour is somewhat longer. You will learn how to manipulate items and score groups, how to 

test that the model is able to explain observed correlations among item, how to test for unidimens-

ionality, and how to assess how well the items actually target the study population. During this tour, 

we will also look at a number of graphical descriptions of the model: item and test characteristic 

curves, item maps, and IRT and Rasch graphs encapsulating the assumptions on which the Rasch 

model is built. 

 

The third tour is also relatively short. During this tour, you will learn how to define log-linear Rasch 

models with uniform DIF and/or uniform local dependence and you will see that, there is no 

difference between inference in Rasch models and inference in graphical log-linear Rasch models. 

You estimate parameters and test the fit of models in exactly the same way that you did it for the 

standard Rasch models. 

 

The fourth tour is a long tour through graphical log-linear Rasch modeling. It is during this tour that 

the differences between inference by Rasch models and inference by graphical log-linear Rasch 

models become apparent. 
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2.1 Rasch models. The very short tour 

During the first tour where we use the Diabetes Health profile (DHP) project to illustrate the basics 

of item analysis by Rasch models. During this tour, you will learn how to 

1)  select items and exogenous covariates, 
2)  estimate the item parameters of the Rasch model, 
3)  test the model, 
4)  estimate the person parameters. 

We need three DIGRAM commands on this tour: ITEMS, EXOGENOUS, and GRM. The GRM 

command invokes a dialog where you have to select among a number of options guiding your 

analysis and where output will be displayed. The dialog is described in Section 2.1.3 and shown in 

Figure 2.1.5. We suggest that you pay particular attention to this dialog since most of the item 

analysis will happen here.  

 
2.1.1 Selecting items 

Use the ITEMS command to select items. “ITEMS ABCDE” selects the DHP items, recodes item 

responses so that item are scored from zero to the number of categories of the items minus one, 

calculates the total score as the sum of item scores, and defines two score groups in such a way that 

the number of respondents with non-extreme scores is as close to being the same as possible in the 

two groups. Figure 2.1.1 shows DIGRAM’s main form after selection of items. Two buttons (“IRT 

graph” and “Graphical Rasch models”) have been enabled, a list of items is shown in the panel 

below the main form, and the current model recognized by DIGRAM is written in red below the 

“Graphical Rasch model” button. The IRT and Rasch graphs will be discussed in Section 2.2.4 

during the longer tour through the Rasch models. 

 
Limitations: 
 
The Rasch models accepts items with different numbers of response categories, but DIGRAM 

expects all items to have the same number of categories. DIGRAM therefore proposes to redefine 

the project variables creating dummy categories that are never used, because DIGRAM knows how 

to handle such variables during the Rasch analysis.  
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Figure 2.1.1 DIGRAM’s main form after selection of items. The definition of the current GLLRM is written with red letters below 
the “Graphical Rasch model” button. When you select items, DIGRAM, assumes that the current model is a Rasch model. 
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Figures 2.1.2 and 2.1.3 show the output produced by item selection. Figure 2.1.2 provides 

information on items while Figure 2.1.2 gives information on the distribution of scores. 

. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.2 Information on items 
 

Information on average item scores is provided for all the persons that responded to an item and for 

persons with complete responses on all items. Use this information to check that item responses 

seem to be missing at random.  

 
Use an IMISS command for information on missing items. Seven persons is missing response on 

one item and two on two items. Additional information on items is available if you invoke the 

“SHOW I” command. This will be described during the first detour in Chapter 3. We suggest that 

you wait with this detour until later. 

 

Figure 2.1.3 shows the distribution of the score over all items.  

  +--------------------------------------+ 
  |                                      | 
  | Variables selected for item analysis | 
  |                                      | 
  +--------------------------------------+ 
 
5 items: ABCDE 
--------- 
A:    DHP32 - 4 ordinal categories. 
B:    DHP34 - 4 ordinal categories. 
C:    DHP36 - 4 ordinal categories. 
D:    DHP38 - 4 ordinal categories. 
E:    DHP39 - 4 ordinal categories. 
 
Exogeneous variables have not been defined 
 
 
  +--------------------------------------------+ 
  |                                            | 
  | Average item scores and score distribution | 
  |                                            | 
  +--------------------------------------------+ 
 
                                 complete cases 
  items      n       mean      mean    item range 
------------------------------------------------------ 
A:   DHP32  195     0.856     0.852      0 - 3 
B:   DHP34  197     1.513     1.487      0 - 3 
C:   DHP36  194     1.247     1.259      0 - 3 
D:   DHP38  197     0.731     0.746      0 - 3 
E:   DHP39  196     1.199     1.206      0 - 3 
 
Obtainable score range:  0 - 15 
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Figure 2.1.3 Information on the score and score groups 

 

The information on the score includes Cronbach’s . The score is missing if responses are missing 

for one or more items. 13 persons have extreme scores and 9 persons have missing responses on at 

least one item. Persons with extreme score can be of interest in themselves, but they do not provide 

information that can be used to estimate item parameters and test the fit of items to the Rasch 

Score distribution: 189 Cases 
--------------------------------- 
Score  Count Percent  Cumulated 
------------------------------- 
   0      11     5.8        5.8 
   1      13     6.9       12.7 
   2      10     5.3       18.0 
   3      22    11.6       29.6 
   4      22    11.6       41.3 
   5      18     9.5       50.8 
   6      17     9.0       59.8 
   7      26    13.8       73.5 
   8      22    11.6       85.2 
   9       6     3.2       88.4 
  10       9     4.8       93.1 
  11       2     1.1       94.2 
  12       5     2.6       96.8 
  13 
  14       4     2.1       98.9 
  15       2     1.1      100.0 
------------------------------- 
Total    189   100.0 
 
Mean     =   5.55 
Variance =  11.21 
s.d.     =   3.35 
skewness =   0.46 
Missing =      9 
 
Chronbach´s Alpha = 0.693 
 
  +----------------------------------------+ 
  |                                        | 
  | Score groups for tests of Rasch models | 
  |                                        | 
  +----------------------------------------+ 
 
ScoreGrp:   189 Cases 
------------------------------ 
Score  Count Percent Cumulative 
------------------------------- 
 0- 5     96    50.8       50.8 
 6-15     93    49.2      100.0 
------------------------------- 
Total    189   100.0 
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model. The data used for these purposes therefore consists of item responses from 176 persons. The 

skewness of the score distribution may influence the iterative procedure that DIGRAM uses to 

estimate item parameters. If it is positive as in Figure 2.1.3 where the distribution is right skewed, 

you should have no problems. If it is negative, you should consider changing the orientation of the 

items to save time and to avoid situations where the iterative procedure cannot find the estimates. 

(See Section 2.2.1 on how to do this). 

 
In this example, a cut point equal to 5 defines two score groups where 85 (= 96-11) persons have 

scores between 1 and 5 and 91 (=93-2) persons have scores between 6 and 14. These score groups 

are used for tests of item homogeneity during the item analysis and in tables where you can 

examine the association between the score and other variables. During the next and somewhat 

longer tour, we will show you how to use the CUT command to redefine the score groups. 

 
The second detour in Chapter 3 will describe the “SHOW S” command providing additional 

information on the score. 

 
2.1.2 Selecting exogenous variables 
 
Exogenous variables are covariates that we include in the model to test for DIF and for association 

with the latent variable. The DHP project has two exogenous variables, F = Age defined by four 

ordinal categories, 18-49, 50-59, 60-69, and 70-100 and G =Sex. To select these variables we 

invoke the “EXOGENOUS FG” command. Figures 2.1.4.a and 2.1.4.b show the results. 

 
Figure 2.1.4.a provide a list of the exogenous variables and information on persons where some of 

the information on exogenous variables is missing. DIGRAM reports the number of cases that are 

lost for this reason and compares the mean scores for respondent with and without information on 

the exogenous variables. Missing outcomes on exogenous variables reduce the number of cases that 

are covered by the graphical Rasch model. For this reason, DIGRAM also shows the distribution of 

the score for all persons with complete responses to items and exogenous variables, but this table is 

not included in Figure 2.1.4a. 

 
Next, DIGRAM, shows the recursive structure of the variables included in the model with items, the 

total score labelled ‘#’, the latent variable labelled ‘¤’, and the exogenous variables. The model 

assumes that items are located in the ultimate recursive block of the model. Exogenous variables, 
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appearing after items in the recursive structure defined by the DIGRAM project, are therefore 

included in the same recursive block as the items to enable analyses of DIF relative to these 

variables. However, evidence DIF relative to such variables should probably be interpreted as 

evidence of differential item functioning because the recursive project structure describe the 

association between items and these variables as asymmetric relationships pointing from items to 

the exogenous variables 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.4a Exogenous variables 

When exogenous variables have been selected, DIGRAM screens the relationships between the 

total score and the exogenous variables in order to identify the exogenous variables with a direct 

effect on the latent variable3.  

                                                 
3 Item screening including screening of the associations between the score and the exogenous variables are described in 
more details in Section 2.4.1 of these notes. 

  +---------------------------------+ 
  |                                 | 
  | Overview of exogenous variables | 
  |                                 | 
  +---------------------------------+ 
 
2 Exogeneous variables: 
------------------------ 
F:      AGE - 4 ordinal categories.  Recursive level: 2 
G:      SEX - 2 ordinal categories.  Recursive level: 2 
 
   189 cases with complete item responses 
   188 cases with complete item and exo responses 
 
Frequency of missing values among cases with complete item responses 
 
                    mean score  mean score 
Variable    count   if missing   if known     t    p 
------------------------------------------------------- 
F:      AGE     1       14.0        5.5     35.40 0.000 
G:      SEX     1       14.0        5.5     35.40 0.000 

 
  +---------------------------------------------------------+ 
  |                                                         | 
  | Recursive structure among items and exogenous variables | 
  |                                                         | 
  +---------------------------------------------------------+ 
 
               ABCDE# <- ¤ <- FG 
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Figure 2.1.4.b shows the results for the DHP project. The first two lines with statistical tests show 

the test of marginal association between the score (labelled #) and sex (F) and age (G). Both tests 

provide significant evidence of marginal association. The next lines tests conditional independence 

of the score and one exogenous variable given the other. In both cases, the tests reject conditional 

independence. For this reason, DIGRAM concludes that both sex and age have direct effects on the 

DHP score. 

 
 

 

 

 

 

 

 

 

 

Figure 2.1.4b Screening of the association between the score and the exogenous variables 

If you need to select additional or other exogenous variables, you have to use the EXOGENOUS 

command again. When you do this, the current set of exogenous variables will be disposed and 

replaced with the new set. If you for some reason just want to get rid of the current set of exogenous 

variables, you must use a “DISPOSE E” command. In both cases, DIGRAM reinitializes the 

graphical Rasch model and the results obtained during the item analysis with the previous set of 

exogenous variables have to be recalculated.   

 
2.1.3 Item analysis 

Invoke the GRM command without parameters or click on the “Graphical Rasch model” button to 

initiate the item analysis. When you do this, the GRM dialog shown in Figure 2.1.5 turns up 

following which, DIGRAM estimates the item parameters and shows the results on the large output 

field at the right side of the GRM dialog.  

 
Before proceeding, you should familiarize yourself with the GRM dialog form. 

  +-------------------------------------------------------------+ 
  |                                                             | 
  | Analysis of the effects of exogenous variables on the score | 
  |                                                             | 
  +-------------------------------------------------------------+ 
2 variables with a marginal effect on the score: F G  
 
                         p-values                 p-values (2-sided) 
Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 
--------------------------------------------------------------------------------------- 
#&F            48.9  42 0.215 0.214 (0.183-0.249) -0.26 0.000 0.000 (0.000-0.007) 1000 --  
#&G            16.1  14 0.305 0.325 (0.288-0.364)  0.26 0.004 0.003 (0.001-0.012) 1000 ++  
#&F|G          90.5  81 0.220 0.224 (0.192-0.260) -0.26 0.000 0.001 (0.000-0.008) 1000 --  
#&G|F          47.9  42 0.245 0.220 (0.188-0.256)  0.21 0.035 0.045 (0.031-0.065) 1000 +       
-------------------------------------------------------------------------------------- 
Benjamini Hochberg rejects if p <  0.025 for FDR = 0.05 
                          and p <  0.004 for FDR = 0.01 
Significance of  
X²        xx : FDR = 0.01    x : FDR = 0.05 
Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05 
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Figure 2.1.5 The GRM dialog. Item parameters are estimated when the GRM dialog is 

invoked. 

At the upper left corner, the GRM dialog provides information on items and exogenous variables. 

You cannot edit the information on items and exogenous variables from within the GRM dialog, 

except for the filter that defines the cases to be used during the item analysis. The default filter tells 

DIGRAM to consider persons with non-extreme scores (persons with scores larger than zero and 

less than 15 which is the maximum score on the 5 items). You can delete, change and add other 

filters as you wish4 if you want to restrict the analysis to a specific subset of persons.  

 

Below the information on items and exogenous variables, you find two fields with information on 

two models. You can use these fields to define graphical log-linear Rasch models with DIF and 

local dependence. Since this tour is about the pure Rasch models with locally independent items 

                                                 
4 The format of a filter has to be “variable min max. Since # is the label for the score,. “# 1 14” means that the score 
should be in the [1,14] range.   
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without DIF, we do not need these fields for now, but return to them later. Below the models, the 

GRM dialog offers a number of options that you may select to guide your analysis.  

 
The GRM dialog has a number of buttons and additional options. Use the Start button when you 

have selected decided on the options that you need. If no options are selected DIGRAM will 

estimate the item parameters of the model (unless it already has done so, in which case it will tell 

you that the model is the same as before). Output generated during the analysis will appear at the 

output field of the GRM dialog form. The rest of the buttons and options will be described below 

Figure 2.1.5.  

 
Table 2.1.1 summarize the buttons and the analysis options on the GRM dialog. The first buttons 

relating to GLLRMs and will not be used during analysis by conventional Rasch models.  

Table 2.1.1 GRM buttons 

Button Function 
Use current model Copies the current model to the new model 
Change model Copies the new model to the current model 
Start Estimate the model and initiate analysis 
Save current model Save the current model on a command file 
Erase Erase the GRM output memo 
Save and Erase Save the GRM output on the DIGRAM memo and erase the GRM output 
Save Save the GRM output on the DIGRAM memo 
Exit Exit the GRM dialog 
Clear DIGRAM 
memo, save and 
erase 

Clear the output on the DIGRAM memo and save and erase the GRM 
output 

 
 
Table 2.1.2 summarize the GRM dialog’s analysis options and refer where you can find information 

on them in these notes. In addition to using buttons and selecting analysis options, you can also ask 

for extended output and output on files. Table 2.1.2 include information on whether these options 

are available, but these tours provide no or little information on what you may obtain if you ask for 

it.  
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Table 2.1.2 Analysis options 

Option Described in Section Extended output Output on files 
Reduce model    
Check local independence 2.1.3.5 yes yes 
Check missing DIF 2.1.3.4 yes yes 
Test of global homogeneity 2.1.3.2 no yes 
Test of local homogeneity -   
Test of global invariance 2.1.3.2 yes yes 
Test of local invariance -   
Test unidimensionality 2.2.5.1 yes no 
Item correlations -   
Item fits 2.1.3.3 yes yes 
Estimate person parameters 2.1.3.6 yes yes 
Show margins of main model -   
Show margins of all models -   
Show estimates for all models -   
Export data for latent regression -   
Export data for ICC curves -   
Include incomplete responses -   
Test information and targeting -   
Items-by-scores tables -   
Not ready yet 1 -   
Extended info on estimates 2.1.3.1 no no 

 

2.1.3.1 Estimating item parameters 

DIGRAM uses iterative proportional fitting to estimate the item parameters. The default options are 

to use at least 50 steps before it gives up and to stop when the largest difference between the 

observed and expected sufficient marginal is less than 0.0001. In cases with pure Rasch models, 

iteration always use less the 50 steps to reach the level of precision. For instance, Figure 2.1.5 

shows that DIGRAM used 16 steps to estimate the item parameters of the DHP items and that the 

largest difference between the observed and expected item margins was equal to 0.0000517.  

However, feel free to change the limits if you are busy or if you want to increase the precision of 

the estimates. 

DIGRAM calculates conditional maximum likelihood estimates of item parameters since these 

estimates are known to be consistent and do not require any assumptions on the distribution of the 
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person parameters. If item parameters have not been estimated, you have to click on “Start”. You 

may also choose some of the options if you want to do more than this, but you are not required to 

do so if you only want to have a look at the item parameters. Figures 2.1.6 - 2.1.9 show the results. 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 2.1.6 The multiplicative items parameters of the PSD5 version of the Rasch model 

Section 1.4 describe five ways to parameterize the Rasch model, but the default analysis only 

present four of those ways. If you want to see the item parameters defined by the EFM6 version of 

                                                 
5 The PSD version of the Rasch model parameterizes the item distributions as power series distributions. 
6 The EFM version parameterizes item distributipns as exponential family distributions 

 
  +----------------------------------------------+ 
  |                                              | 
  | Analysis by graphical loglinear Rasch models | 
  |                                              | 
  +----------------------------------------------+ 
 
The model is estimated under the following assumptions: 
 
   1 <= raw score <= 14 
   1 <= F <= 2 
   1 <= G <= 4 
 
The assumed model: 
 
All items are assumed to be locally independent 
No DIF 
 
175 valid cases included 
 
Nvalid      = 175 
Nincomplete = 9 
Nresponses  = 4 
Nuseful     = 8 
Nuseless    = 1 
 
 
Observed score range: 0 - 15 
 
  +----------------------------------------------------+ 
  |                                                    | 
  | Estimated item parameters: complete item responses | 
  |                                                    | 
  +----------------------------------------------------+ 
 
       item          0         1         2         3   
------------------------------------------------------ 
A:    DHP32        1.000     2.048     0.862     0.272 
B:    DHP34        1.000     1.073     2.103     4.171 
C:    DHP36        1.000     1.365     3.377     1.308 
D:    DHP38        1.000     1.903     0.286     0.230 
E:    DHP39        1.000     9.285     2.479     2.932 
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the model, you have to select the “Extended info on estimates” option that also provide the so-

called Thurstonian thresholds.  

DIGRAM use proportional fitting to estimate the multiplicative PSD parameters and transform 

these estimates to the parameters defined by the PCM, ICE and MICE version.  

Figure 2.1.7 shows the PCM thresholds. Disordered thresholds are of concern to some users of 

Rasch models, and DIGRAM include a “>”between thresholds if they are disordered7. Four out of 

five DE items have disordered thresholds and DHP34 have completely disordered thresholds8.   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.7 The partial credit thresholds and information on item locations  

 
The locations of the polytomous items are related to the item effects defined by the ICE version of 

the model shown in Figure 2.18 

                                                 
7 Disordered thresholds have implications for the estimates of the person parameter, but is not evidence against the 
model and therefore not evidence against the validity and objectivity of measurement. 
8 DIGRAM offers no facilities for collapsing of categories during the item analysis. If you want to analyse items with 
collapsed response categories you must define a new DIGRAM project with the collapsed versions of the items. 

  +----------------+ 
  |                | 
  | PCM thresholds | 
  |                | 
  +----------------+ 
 
The location of the item is the average of the PCM thresholds 
Locations may be meaningless if thresholds are disordered or 
+/- infinity 
 
  +---------------------------+ 
  |                           | 
  | Locally independent items | 
  |                           | 
  +---------------------------+ 
 
  item             1        2        3    Location 
-------------------------------------------------- 
A:    DHP32    -0.717    0.865    1.153     0.434 
B:    DHP34    -0.071 > -0.673 > -0.685    -0.476 
C:    DHP36    -0.311 > -0.906    0.949    -0.089 
D:    DHP38    -0.643    1.896 >  0.218     0.490 
E:    DHP39    -2.228    1.321 > -0.168    -0.359 
 



 52 

 

 

 

 

 

 

 

 

 

 
Figure 2.1.8 Estimates of item and category (ICE) effects 

In addition to the item location, DIGRAM offers three summary item statistics - the item midpoint, 

the item target, and the item information at target. Figure 2.1.9 shows these statistics. 

The item midpoint is the value of the person parameter where the expected item score is equal to 

half the maximum item score, the item target is the person parameter where item information is 

maximized and target info is equal to the item information at the target.  

The number in the parentheses following the item info is equal to target info divided by the 

maximum item score. If this number is close to 0.25, the target info corresponds to the information 

provided by three dichotomous items targeted at the item target of the polytomous item. In this 

example, some item provide much more information than targeted dichotomous items can offer. 

Locations, midpoints and targets are often close to each other and always the same for 

dichotomous9 items, but Figure 2.19 show that there are examples with considerable differences. 

The location of DHP36 is -0,089, the midpoint is -0.232 and the target is 0.454. This has 

                                                 
9 Locations and midpoints are always the same for trinary items, but trinary items may have two targets lying far away 
from the location. 

 
  +---------------------------+ 
  |                           | 
  | Item and category effects | 
  |                           | 
  +---------------------------+ 
 
  item             0        1        2        3   Item effect 
----------------------------------------------------------- 
A:    DHP32       0.000    1.151    0.719    0.000    -0.434 
B:    DHP34       0.000   -0.405   -0.209   -0.000     0.476 
C:    DHP36       0.000    0.222    1.038   -0.000     0.089 
D:    DHP38       0.000    1.134   -0.272   -0.000    -0.490 
E:    DHP39       0.000    1.870    0.190    0.000     0.359 
 
             ---- MICE effects ---- 
 
A:    DHP32       1.000    3.160    2.053    1.000     0.648 
B:    DHP34       1.000    0.667    0.812    1.000     1.610 
C:    DHP36       1.000    1.249    2.824    1.000     1.094 
D:    DHP38       1.000    3.107    0.762    1.000     0.613 
E:    DHP39       1.000    6.487    1.210    1.000     1.431 
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implications for the ranking of items according to these statistics. The rank order according to the 

location is B, E, C, A, E, while the rank order according to the midpoints is B, C, E, A, D.  

The target of DHP36 is equal to -0.45 where the item information is equal to 0.96 and the target of 

DHP32 is equal to 0.74. In this case, the rank order of items from low to high target values is the 

same as for the midpoints while the rank order from low to high location is B, E, C, A, D. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 2.1.9 Item midpoints and targets 

In addition to the estimates of the item parameters, DIGRAM includes information on how long it 

took to calculate the estimates, the logarithm of the likelihood function and the AIC and BIC 

information criteria. These results can be seen in Figure 2.1.5. 

 
2.1.3.2 Overall tests of fit 

DIGRAM uses Andersen’s (1973) conditional likelihood ratio (CLR) test for overall tests of 

homogeneity and invariance. The test of homogeneity compares item parameter test in the two 

score groups defined during selection of items10, whereas the tests of no DIF compares item 

parameters in groups defined by the exogenous variables.  

                                                 
10 You can redefine the score groups if you are not satisfied with DIGRAM’s initial proposal. Section 2.2.2 describes 
how to do that. 

  +-----------------------+ 
  |                       | 
  | Midpoints and targets | 
  |                       | 
  +-----------------------+ 
 
Item target = the person parameter where item information is maximized. 
Midpoint    = the person parameter where the expected score = max score/2. 
 
  +---------------------------+ 
  |                           | 
  | Locally independent items | 
  |                           | 
  +---------------------------+ 
 
A -    DHP32   Midpoint =  0.529  Target =  0.739  Info =  0.825  (0.28) 
B -    DHP34   Midpoint = -0.491  Target = -0.504  Info =  1.401  (0.47) 
C -    DHP36   Midpoint = -0.232  Target = -0.454  Info =  0.955  (0.32) 
D -    DHP38   Midpoint =  0.703  Target =  0.970  Info =  1.030  (0.34) 
E -    DHP39   Midpoint =  0.042  Target =  0.522  Info =  0.884  (0.29) 
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To invoke these tests, you must select the “Test of global homogeneity” and “Test of global 

invariance11” options. The results are collected in a small table presented at the end of the output 

produced during the calculation of the tests. Figure 2.1.10 shows the results.  

 

 

 

 

 

 

 
 

 

 
Figure 2.1.10 Overall test of homogeneity and invariance of the Rasch model  

In most cases, there will be no reason to look at anything but the final table containing the CLR 

tests where the critical limits of the tests has been adjusted for multiple testing by the Benjamini-

Hochberg procedure. Situations may occur, however, where the rest of the output produced during 

the calculation of the tests could be of interest. For instance, the weak evidence against the 

hypothesis of homogeneity (p = 0.018) 12 motivates a closer look at what happened during the 

calculation of the test comparing estimates for persons with low and high scores. Figure 2.1.11 

compares observed and expected average item scores together with standardized residuals in the 

two score groups. The results suggest that the reason for the weakly significant CLR test could have 

something to do with item DHP38 where the observed items scores are lower than expected among 

persons with a score between 1 and 5.  

Taken by itself, the weak evidence against homogeneity and the significant residual for item 

DHP38 does not support the conclusion that DHP38 does not fit the Rasch model. Before this 

conclusion is drawn, we have to look at the item fit statistics described in Section 2.1.3.3. 

                                                 
11 Measureement is invariant if the set of item function in the same way in different subpopulations. 
12 To us, weak evidence, e.g if 0.01 < p < 0.05, is not enough to reject the model unless evidence of more specific 
problems turn up. 

Summary of global test results. Delta will 
be reported if estimation did not converge. 
 
             CLR   df   p        delta 
-------------------------------------- 
scoregroups   27.2  14 0.018 
F:      AGE   42.4  42 0.454 
G:      SEX   23.7  14 0.050 
 
Critical levels adjusted by the Benjamini-
Hochberg procedure: 
 
 FDR = 0.05         reject if p<=  0.0500 
 FDR = 0.01         reject if p<=  0.0033 
 FDR = 0.001        reject if p<=  0.0003 
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Figure 2.1.11 Analysis of homogeneity of item responses  

A final comment. The conditional likelihood ratio test is the fundamental overall fit statistic for the 

Rasch model. It addresses the same fit issue as other overall fit statistics like, for instance, the test 

of no item-trait interaction in RUMM, but it is based on solid statistical footing with well-known 

asymptotic properties as sample sizes increase towards infinity. Section 2.1.3.5 presents an overall 

fit statistic based on a completely different approach where asymptotics is a serious issue.  

 
2.1.3.3 Item fit statistics 

Select “Item fits” if you want to check whether the separate items fit the Rasch model.  

****  Score = 1 - 5  **** 
 
Observed and expected item mean scores 
 
                       mean 
    item         n   obs   exp    res 
------------------------------------- 
A -    DHP32    85 0.612 0.502   1.74  
B -    DHP34    85 0.659 0.714  -0.61  
C -    DHP36    85 0.812 0.722   1.07  
D -    DHP38    85 0.294 0.429  -2.36 - 
E -    DHP39    85 0.882 0.892  -0.15  
 
****  Score = 6 - 14  **** 
 
Observed and expected item mean scores 
 
                       mean 
    item         n   obs   exp    res 
------------------------------------- 
A -    DHP32    90 1.122 1.226  -1.29  
B -    DHP34    90 2.400 2.347   0.59  
C -    DHP36    90 1.778 1.862  -1.00  
D -    DHP38    90 1.189 1.062   1.63  
E -    DHP39    90 1.600 1.591   0.11  
 
Test of homogeneity of 2 score groups. 14 parameters 
 
         CLR =   27.16  df =  14  p = 0.0184 
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DIGRAM calculates three item fit statistics. Outfits and Infits and item-rest-score gamma (IRS γ) 

coefficients measuring the correlation between items and rest scores without the items by Goodman 

and Kruskal’s gamma coefficient. 

Outfits and Infits are well known and much used item fit statistics going back to the early days of 

the theory of Rasch models. DIGRAM calculates conditional Outfits and Infits comparing observed 

item responses to the expected responses under the conditional distribution of responses given the 

total score. The advantage of using conditional Outfits and Infits is that they avoid bias and provide 

more realistic assessment of significance than conventional Outfits and Infits (see Kreiner & 

Christensen, 2011b for details). Both fit statistics have expected values equal to one under the 

Rasch model. Fit statistics above one indicate weaker item discrimination than expected under the 

Rasch model, whereas fit statistics below one suggest that the item discrimination is too strong for 

the items in a Rasch model. 

The IRS γ compares the observed correlation between the score of a separate item and the total 

score on all other items to the expected score under the Rasch model. To make sure that the 

estimates and test statistics are consistent and unbiased, the significance of this coefficient is also 

assessed under the conditional distribution of item responses given the total score on all items (see 

Kreiner (2011) for details). 

The issue of item discrimination is important during item analysis by general IRT models. Item 

discrimination is a question of the steepness of the item characteristic curves because the steepness 

determines how well an item is able to distinguish between persons. The degree of item 

discrimination is known to be the same for all dichotomous Rasch items, but not for polytomous 

Rasch items where ICC curves are rather flat when there are large differences between PCM 

thresholds and steeper if there is little difference or even disorder among thresholds. The expected 

IRS γ in Figure 2.1.2 take this into account.   

Figure 2.1.12 provides evidence against the Rasch model. The observed correlation between 

DHP38 and the rest score without DHP38 is much stronger than expected by the Rasch model. The 

significant Outfit of DHP38 agree and significant Infits and Outfits suggest that the item 

discrimination of DHP32 and DHP34 are weaker than expected by the Rasch model. However, 

DIGRAM dismiss the significance of these statistics by adjusting for multiple testing. 
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Figure 2.1.12 Item fit statistics. The assessment of significance is adjusted by the Benjamini-
Hochberg procedure controlling the false discovery rate at 5 % (*), 1 % (**) and 0.1 % (***) 

 

Evidence of discrepant item discrimination is evidence against the fit to the Rasch model, but the 

interpretation of the departures from the Rasch model depends on whether item discrimination is 

weaker or stronger than expected by the Rasch model. Weaker discrimination is expected for 

corrupt items that do not relate exclusively to the latent variable. In such cases, items are often 

eliminated. Evidence of too strong item discrimination does not support such interpretations. To 

some, it suggests that the Rasch model should be abandoned in favour of another type of IRT 

model. While this may be one way to address the problem, we in general avoid taking this step until 

further investigation has confirmed that the evidence is not caused by other types of violations of 

the assumptions of Rasch models (e.g. by local dependency, and/or DIF) that because such 

problems require very different kinds of solutions. 

 

  +--------------------------------+ 
  |                                | 
  | Conditional outfits and infits | 
  |                                | 
  +--------------------------------+ 
               Outfit                         Infit                     
Item          observed     sd       p       observed     sd       p     
----------------------------------------------------------------------- 
A -    DHP32    1.237    0.107  0.02750       1.246    0.108  0.02249    
B -    DHP34    1.042    0.146  0.77173       0.910    0.107  0.39952    
C -    DHP36    1.260    0.110  0.01828       1.190    0.094  0.04391    
D -    DHP38    0.754    0.125  0.04840       0.815    0.128  0.14664    high  
E -    DHP39    0.937    0.128  0.62388       0.923    0.119  0.51693    
----------------------------------------------------------------------- 
 
  +-----------------------------+ 
  |                             | 
  | Item rest-score association | 
  |                             | 
  +-----------------------------+ 
 
                   Item-rest-score gamma 
Item           observed expected    sd      p    
------------------------------------------------ 
A -    DHP32    0.305    0.426    0.068  0.07385     
B -    DHP34    0.500    0.465    0.060  0.56575     
C -    DHP36    0.345    0.445    0.062  0.10452     
D -    DHP38    0.686    0.432    0.072  0.00039**  high  
E -    DHP39    0.522    0.470    0.070  0.45460     
------------------------------------------------ 
 
Critical levels adjusted by the Benjamini-Hochberg procedure:  
* < 5 % FDR, ** < 1 % FDR, *** = FDR < 0.1 % FDR 
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2.1.3.4 Tests of no DIF 

DIGRAM uses Kelderman’s (1984) test of no DIF to test that there is no DIF relative to the two 

exogenous variables. To obtain these estimates you must select “Check missing DIF” from the list 

of options. Figure 2.1.13 shows the results. DIGRAM’s default is to print the significant evidence 

of DIF. To obtain a complete list of the tests of DIF you have to check the “Extended output” int the 

GRM dialog.  

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.1.13 Tests of no DIF. The evidence of DIF is adjusted for multiple testing by the 
Benjamini-Hochberg procedure controlling the false discovery rate at 5 %. 

 

Figure 2.1.13 discloses evidence of DIF for item C (DHP36) relative to G (Sex). However, 

adjustment for multiple testing suggests that the evidence should be discarded, confirming the 

results of the over-all test of invariance of DHP in Figure 2.1.10.  

   

2.1.3.5 Tests of local independence 

DIGRAM uses Kelderman’s (1984) test of local independence to test that the assumption of local 

independence of the Rasch model is not violated.  To obtain these estimates you must select the 

“Check local independence” options. DIGRAM will only show the significant test results unless 

you have checked the “Extended output” box. 

Figure 2.1.14 shows the results. The tests of local independence disclose evidence of local 

dependence for two pairs of items: B & D (DHP34 & DHP38) and D & E (DHP38 & DHP39). The 

evidence is so strong that there is no doubt that the fit of item responses to the Rasch model has to 

be rejected. During the tours through graphical log-linear Rasch models, we will show you how to 

Check assumptions of no DIF 
 
A & F:   lr =    9.71  df =   9  p = 0.3745 
B & F:   lr =    5.68  df =   9  p = 0.7710 
C & F:   lr =   13.08  df =   9  p = 0.1592 
D & F:   lr =    3.39  df =   9  p = 0.9470 
E & F:   lr =    9.91  df =   9  p = 0.3577 
A & G:   lr =    1.47  df =   3  p = 0.6890 
B & G:   lr =    3.19  df =   3  p = 0.3637 
C & G:   lr =   12.72  df =   3  p = 0.0053 
D & G:   lr =    5.47  df =   3  p = 0.1406 
E & G:   lr =    4.93  df =   3  p = 0.1773 
 
Benjamini & Hochberg rejects at 0.00500 
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deal with that. For now, we only need to point out that the results support the weak evidence against 

homogeneity in Figures 2.1.10 and 2.1.11 and that both cases of local dependence involves the item 

(DHP38) that the analysis of the IRS γ in Figure 2.1.13  had too strong item discrimination. This 

result illustrates that evidence of strong item discrimination often turns up together with evidence of 

local dependence. 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.1.14 Tests of local independence. The evidence of local dependence is adjusted by the  
Benjamini-Hochberg procedure controlling the false discovery rate at 5 %. 

 
2.1.3.6 Estimating person parameters 

Even though the tests of fit rejected the Rasch model, we proceed as if nothing was wrong to show 

you how to estimate the person parameters and how to assess the reliability and targeting of 

measurement by the five items. 

Select “Estimate person parameters” to obtain estimates of person parameters together with 

assessment of the bias and errors of the estimates. 

 

Check assumptions of local independence 
 
A & B:   lr =    6.22  df =   9  p = 0.7182 
A & C:   lr =   15.87  df =   9  p = 0.0696 
A & D:   lr =   17.57  df =   9  p = 0.0405 
A & E:   lr =   14.69  df =   9  p = 0.0999 
B & C:   lr =   19.82  df =   9  p = 0.0190 
B & D:   lr =   41.76  df =   9  p = 0.0000 
B & E:   lr =    5.61  df =   9  p = 0.7780 
C & D:   lr =    4.39  df =   9  p = 0.8839 
C & E:   lr =    6.10  df =   9  p = 0.7295 
D & E:   lr =   38.09  df =   9  p = 0.0000 
 
Benjamini & Hochberg rejects at 0.01000 
 
Suggested additions to the model: 
 
LD:           BD DE 
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Person parameter estimates are monotonic functions of the total score over all items. The exact13 

distribution of the total score depends on the person parameter and on a set of so-called score 

parameters that are functions of the item parameters. To calculate the person estimates, DIGRAM 

1) re-estimate the item parameters to make sure that they are estimated without error, 2) uses these 

parameters to calculate the score parameters, and 3) calculates likelihood based estimates of the 

person parameter for each value of the total score.  

 
It follows from the monotonic relationship between the total score and the person parameter 

estimates that the exact distribution of the person parameter estimates is known. For this reason, 

assessment of the properties of the estimates does not depend on the assumption that the distribution 

of the person parameter estimate can be approximated by the normal distribution14.  

 
DIGRAM calculates three different types of person estimates: Höglund’s exact estimates (Höglund, 

1974) Maximum likelihood (ML) estimates, and weighted maximum likelihood estimates (WML).  

 
Figures 2.1.15 – 2.1.17 show these estimates. The exact estimates are interval estimates defined by 

the range of person parameter values where the observed score is the most probable outcome. In 

addition to being of some interest in themselves, these estimates are also of interest because the 

thresholds between the intervals correspond to the thresholds of the distribution of the total score if 

this is re-parameterized as a partial credit distribution. Exact person parameter estimates therefore 

only exist, if the thresholds of the total score are ordered, which is the case in this example even 

though the majority of items had disordered thresholds. 

 
Höglund shows that the ML estimate corresponding to a given score is always included in the 

interval defined by the exact estimate for the same score. Concerning the ML estimate, the only 

complication is that the ML estimate for extreme scores are infinite. In order to calculate the 

moments of the distribution of the ML estimate for given values of the person parameter, we have 

to assign finite estimates to extreme scores. DIGRAM calculates such estimates, assuming that the 

                                                 
13 One of the important features that set the Rasch model apart from other IRT model is that the exact distribution of the 
score and the estimates of parameters are known and can be estimated. IRT models have to assume that estimates of 
person parameters have asymptotic normal distributions. Since this require the number of items to increase towards 
infinity, it is easy to show and illustrate that this is unrealistic. Rasch models can avoid this assumption, but DIGRAM 
appears to be the only Rasch models that have implemented the exact distributions of person parameters. 
14 It is one important difference between estimates of person parameters in Rasch and IRT models. In the Rasch model 
we have estimates of the exact distribution of the estimates of person parameters. In IORT models, they have to rely on 
approximations by the asymptotic distribution under the assumption that the number of items increase towards infinity.  
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expected score is equal to 0.25 and 14.75 respectively. These values lie within the intervals defined 

by the exact estimates for extreme scores, -4.061  ]-,2.752] and 3.573 [2.122,+ [.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 2.1.15 Maximum likelihood (ML) and weighted maximum likelihood (WML) estimates 
and exact interval estimates of person parameters. 

 

Figures 2.1.16 and 2.1.17 summarizes the properties of the ML and WML estimates. For each value 

of the person parameter estimate, the tables provide information on the expected (true) score, the 

bias of the estimate, the root mean squared error (RMSE), and the standard error of the estimate of 

the expected score. To us, the most important information in Figure 2.1.16 and 2.1.17 is the bias 

and the RMSE of the estimates of the person parameters because these two statistics tell us how 

  +---------------------------------+ 
  |                                 | 
  | Estimates of person parameters. | 
  |                                 | 
  +---------------------------------+ 
 
189 cases.   Mean score =  5.55  s.d. of score =  3.35 
 
            ML          Hõglunds exact       WML 
Score   estimate      interval estimate   estimate 
--------------------------------------------------- 
    0      -inf.       -inf.  -  -2.752     -3.512 
    1     -2.493      -2.752  -  -1.672     -2.064    
    2     -1.672      -1.672  -  -1.189     -1.437    
    3     -1.203      -1.189  -  -0.912     -1.066    
    4     -0.865      -0.912  -  -0.663     -0.787    
    5     -0.585      -0.663  -  -0.437     -0.545    
    6     -0.329      -0.437  -  -0.229     -0.316    
    7     -0.082      -0.229  -   0.024     -0.084    
    8      0.167       0.024  -   0.299      0.156    
    9      0.420       0.299  -   0.531      0.404    
   10      0.683       0.531  -   0.797      0.655    
   11      0.963       0.797  -   1.051      0.911    
   12      1.279       1.051  -   1.335      1.185    
   13      1.675       1.335  -   1.696      1.503    
   14      2.304       1.696  -   2.122      1.933    
   15      +inf.       2.122  -   +inf.      2.803 
-------------------------------------------------- 
 
The lower limits of Hõglund´s exact estimate corresponds to PCM 
thresholds 
 
Pseudo ML estimates for extreme scores: 
   Score =   0    theta =      -4.061 
   Score =  15    theta =       3.573 
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well the person parameter estimate performs. In this case, we see that there is considerable bias 

outside a narrow range of person parameter values. The weighted ML estimate reduces both the bias 

and the RMSE for a relatively wide range of person parameter values.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1.16 Properties of the maximum likelihood estimates of person parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2.1.17 Properties of weighted maximum likelihood estimates of person parameters. 
 

            Theta     True                            Score 
Score    estimate     score      Bias        RMSE       SEM 
----------------------------------------------------------- 
    0      -4.061      0.25      0.376      0.794      0.48 
    1      -2.493      1.00     -0.274      1.024      0.92 
    2      -1.672      2.00     -0.277      0.962      1.31 
    3      -1.203      3.00     -0.199      0.829      1.61 
    4      -0.865      4.00     -0.127      0.715      1.82 
    5      -0.585      5.00     -0.071      0.630      1.95 
    6      -0.329      6.00     -0.032      0.572      2.00 
    7      -0.082      7.00     -0.007      0.540      2.01 
    8       0.167      8.00      0.010      0.533      2.00 
    9       0.420      9.00      0.026      0.552      1.97 
   10       0.683     10.00      0.052      0.599      1.93 
   11       0.963     11.00      0.096      0.681      1.85 
   12       1.279     12.00      0.166      0.793      1.70 
   13       1.675     13.00      0.257      0.907      1.46 
   14       2.304     14.00      0.286      0.912      1.06 
   15       3.573     14.75     -0.294      0.644      0.51 
----------------------------------------------------------- 

            Theta     True                            Score 
Score    estimate     score      Bias        RMSE       SEM 
----------------------------------------------------------- 
    0      -3.512      0.41      0.549      0.933      0.61 
    1      -2.064      1.43      0.052      0.839      1.10 
    2      -1.437      2.45     -0.007      0.721      1.46 
    3      -1.066      3.38     -0.013      0.633      1.70 
    4      -0.787      4.27     -0.008      0.573      1.86 
    5      -0.545      5.15     -0.001      0.533      1.96 
    6      -0.316      6.05      0.003      0.509      2.00 
    7      -0.084      6.99      0.003      0.496      2.01 
    8       0.156      7.96      0.001      0.495      2.00 
    9       0.404      8.94     -0.002      0.503      1.97 
   10       0.655      9.89     -0.003      0.522      1.93 
   11       0.911     10.82     -0.002      0.550      1.86 
   12       1.185     11.72     -0.002      0.585      1.75 
   13       1.503     12.60     -0.011      0.621      1.57 
   14       1.933     13.49     -0.069      0.637      1.29 
   15       2.803     14.43     -0.427      0.680      0.80 
----------------------------------------------------------- 
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Finally, DIGRAM prints information summarizing other properties of the estimates together with 

an estimate of the distribution of the person parameter and the reliability of the score over all items. 

This is shown in Figure 2.1.18.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1.18 Midpoint, target and reliability of measurement by DHP items. 
 

 

----------------------------------------------------------- 
 
Range of persons with bias < 0.01: [-0.893 - 1.488] 
        True score range:             [3.9 - 12.6] 
 
Range of persons with bias < 0.05: [-2.051 - 1.838] 
        True score range:             [1.4 - 13.3] 
 
----------------------------------------------------------- 
 
Test midpoint   =       0.042 
Test target     =      -0.132   Test information =   4.051 
 
----------------------------------------------------------- 
 
  +--------------------------------------+ 
  |                                      | 
  | Monte Carlo estimates of Reliability | 
  |                                      | 
  +--------------------------------------+ 
 
Normal trait distribution with mean = -0.52 s.d.(trait) =  0.85 
 
 
Expected True Score =   5.59   Variance =     7.84 
Observed mean Score =   5.59   Variance =    11.12 
 
                                  Ratio =     0.71 
 
               Test-retest correlation     =  0.71 
               Test-true score correlation =  0.83 
 
----------------------------------------------------------- 
 
Frequencies of persons with bias less than 0.01:  0.660 
Frequencies of persons with bias less than 0.05:  0.962 
 
----------------------------------------------------------- 
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The information in Figure 2.1.18 includes: 

 
1) The range of the person parameters where measurement by the WML estimate is unbiased. 

If we regard measurement as unbiased if bias less than 0.01 we conclude that measurement I 

unbiased for scores between 4 and 12. Close to unbiased measurement with bias less than 

0.05 is provided by scores from 2 to 13. 

2) The test midpoint defined by the person value with an expected (true) score equal to half the 

maximum score. The midpoint of the DHP score is 0.042. 

3) The test target equal to the person value where test information is maximized. The target of 

the DHP score lies below the midpoint at -0.13. target info is 4.05. 

4) Estimates of the mean and standard deviation of the person parameter distribution under the 

assumption that the distribution is normal. The mean is -0.52 and the standard deviation is 

0.85. 

5) Estimates of the exact reliability calculated under the assumption that the person parameter 

has a normal distribution with the estimated mean and variance. Reliability is equal to 0.72 

or 0.71 (depending on the definition of reliability). 

6) If the distribution of the person parameter is as estimated it follows that measurement will 

be unbiased for 66 % of the population and close to unbiased for 96 %.  

Recall that Cronbach’s  was equal to 0.69. This is in accordance with the theory of Cronbach’s  

that is supposed to provide a lower bound of the true reliability. The example illustrates what we 

find in many (almost all) cases, namely that Cronbach’s  is very close to the true reliability. 

The results concerning the bias and errors of person parameter estimates and the results concerning 

targeting and reliability represent to different viewpoints that we assume when we discuss the 

qualities of the measurement provided by the items. Bias and standard errors of measurement looks 

at the measurement instrument from the point of view of single persons whereas targeting and 

reliability attempt to assess measurement quality from a population point of view.  We pursue these 

points of view during the next (somewhat longer) guided tour through DIGRAM. 
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2.1.3.7 Extended output during estimation of person parameters 

DIGRAM offers a wide range of extended output during estimation of person parameters. Figure 

2.1.19 shows what is available in the current version. We will not illustrate how they work here, but 

some of it may turn up during the next tours. 

  

Figure 2.1.19 Extended output during estimation of person parameters 
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2.2 Rasch models. A longer tour. 

During this tour, we trace the same path with the same DIGRAM project as we did in the previous 

tour, but this time we will take the time to show you facilities that sometimes are useful. On this 

tour, you will hear about  

  
1) how to change the orientation of items, 
2) how to redefine score groups, 
3) how to test for DIF and local dependence, 
4) how to create IRT and Rasch graphs, 
5) how to assess targeting, 
6) how to test for unidimensionality, 
7) how to create plots with ICC, probability and information curves, 
8) how to generate scale anchored item distributions 

 
 

2.2.1 Changing the orientation of items 

The DHP items are scored so that a low score means that the respondent has a high degree of 

control over his eating habits whereas a high score indicates low control. If you think that the 

interpretation of the scores is easier if a high score indicates high degree of control, you should 

change the orientation of the items. You can do this in two ways. 

The first is to select items as before by followed by a “FLIP” command with or without reference 

to specific items. The second is by adding a “-“ to the items when you invoke the ITEMS command. 

“ITEMS ABCDE” followed by “FLIP” is, the same as “ITEMS -A-B-C-D-E” because “FLIP” 

without items flips the complete set of items.  

“ITEMS ABCDE” followed by “FLIP A” is, the same as “ITEMS -ABCDE” because “FLIP A” 

changes the orientation of A, but keep the orientations of the other items.  

Note also, that the possibility of flipping the orientation during item selection can also be used if 

you have some items phrased in a positive way and other items with a negative connotation.  You 

therefore do not have to concern yourself about the orientation of items when you create your 

DIGRAM project.  

  



 67 

Figures 2.2.1 and 2.2.2 show the results if you invoke the FLIP command. Take a little time to 

compare the results with Figures 2.1.2 and 2.1.3. Cronbach’s Alpha and the variance of the score 

remains the same after you flipped the items.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.1 Information on flipped items 
 

The flipped item scores are equal to 3 minus the original item scores. The same is therefore true for 

the average items scores. From this, it follows that the correlation among items are the same as 

before flipping. It is for this reason that Cronbach’s Alpha was unchanged after flipping. Alpha is a 

function of the correlations among items.   

Since the flipped score is equal to 15 minus the original score and Var(15-X) = Var(X) it follows 

that the variance of the flipped score is equal to the variance of the original score.  

  +--------------------------------------+ 
  |                                      | 
  | Variables selected for item analysis | 
  |                                      | 
  +--------------------------------------+ 
 
5 items: ABCDE 
--------- 
A:    DHP32 - 4 ordinal categories. * Flipped * 
B:    DHP34 - 4 ordinal categories. * Flipped * 
C:    DHP36 - 4 ordinal categories. * Flipped * 
D:    DHP38 - 4 ordinal categories. * Flipped * 
E:    DHP39 - 4 ordinal categories. * Flipped * 
 
Exogeneous variables have not been defined 
 
  +--------------------------------------------+ 
  |                                            | 
  | Average item scores and score distribution | 
  |                                            | 
  +--------------------------------------------+ 
 
                                 complete cases 
  items      n       mean      mean    item range 
-----------------------------------------------------
- 
A:   DHP32  195     2.144     2.148      0 - 3 
B:   DHP34  197     1.487     1.513      0 - 3 
C:   DHP36  194     1.753     1.741      0 - 3 
D:   DHP38  197     2.269     2.254      0 - 3 
E:   DHP39  196     1.801     1.794      0 - 3 
 
Obtainable score range:  0 - 15 
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Figure 2.2.2 Information on the flipped score and score groups 
 

During this tour, you should also select F and G as exogenous variable (“EXO FG”). Note that 

DIGRAM will not flip the exogenous variables for you. If you want to change the orientation or 

order of the categories of exogenous variables, you have to use the “RECODE” command 

described in th notes on Project management. 

Score distribution: 189 Cases 
--------------------------------- 
Score  Count Percent  Cumulated 
------------------------------- 
   0       2     1.1        1.1 
   1       4     2.1        3.2 
   2 
   3       5     2.6        5.8 
   4       2     1.1        6.9 
   5       9     4.8       11.6 
   6       6     3.2       14.8 
   7      22    11.6       26.5 
   8      26    13.8       40.2 
   9      17     9.0       49.2 
  10      18     9.5       58.7 
  11      22    11.6       70.4 
  12      22    11.6       82.0 
  13      10     5.3       87.3 
  14      13     6.9       94.2 
  15      11     5.8      100.0 
------------------------------- 
Total    189   100.0 
 
Mean     =   9.45 
Variance =  11.21 
s.d.     =   3.35 
skewness =  -0.46 
Missing =      9 
 
Chronbach´s Alpha = 0.693 
 
  +----------------------------------------+ 
  |                                        | 
  | Score groups for tests of Rasch models | 
  |                                        | 
  +----------------------------------------+ 
 
ScoreGrp:   189 Cases 
------------------------------ 
Score  Count Percent Cumulative 
------------------------------- 
 0- 9     93    49.2       49.2 
10-15     96    50.8      100.0 
------------------------------- 
Total    189   100.0 
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2.2.2 Changing the score groups 

DIGRAM’s default is to define two score groups with approximately the same number of persons 

for tests of homogeneity of item responses across score groups and for tables that show the effect of 

exogenous variables on the score. If you are dissatisfied with these groups you can redefine them 

using the CUT command followed by list of parameters that define the score groups in the way you 

want them. 

 

To define m score groups, CUT requires a minimum score s0, m-1 cut points, s1,…,sm-1, and a 

maximum score sm
15, but CUT may also be used with fewer parameters as shown in Table 2.1. 

 
Table 2.1 Definition of score groups 

 
COMMAND SCORE GROUPS 

CUT 0,1,2,..,smax-1,smax 

CUT s [0,s],[s+1,smax] 
CUT s0 s1 s0,s0+1,..,s1-1,s1 

CUT s0 s1 … sm [s0,s1], [s1+1,s2],.., [sm-1+1,sm] 
CUT  /k Defines k score groups with a uniform distribution of scores 

CUT  #n Defines score groups with at least n persons in each 

 

Score groups are always defined up to and including the cut points.  

“CUT” without parameters define 16 score groups, one for each separate score.  

“CUT 5” defines the two score groups 0-9 and 10-15 shown in Figure 2.2.2.  

Figure 2.2.3 show the results of four applications of the CUT commands.  

In Figure 2.2.3a, ”CUT 0 7 10 15” defines three score groups, 0-7, 8-10, and 11-15.  

In Figure 2.2.3b, “CUT  /3” defines three score groups where the distribution of non-extreme scores 

are as close to uniform as possible. 

                                                 
15 The minimum and maximum scores will in most cases be equal to the extreme scores, but you may use s0 and sm to 
restrict some of the analyses to a subset of persons.  
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In Figure 2.2.3c, “CUT  #25” defines score groups with at least 25 persons with non-extreme scores 

in each group. 

 

Finally, Figure 2.2.3d illustrates that you can define score groups where low scores and high scores 

are excluded. ”CUT 4 7 10 12” defines score groups 4-7, 8-10 and 11-12. 

 

 

 
 

 

 

 

 
         (a) Score groups after “CUT 0 7 10 15”                  (b) Score groups after “CUT / 3” 

 
 
 
 
 
 
 
 
 
 
 

           (c)  Score groups after “CUT # 25”                    (d) Score groups after “CUT 4 7 10 12” 

Figure 2.2.3 Redefined Score groups after “CUT  # 25” 
 

Recall, that the score groups play important roles during the conditional likelihood ratio test of 

homogeneity comparing item parameters estimated in different score groups. During the rest of this 

tour we will used the flipped DHP items and the score groups defined by the “CUT /3” command. 

 

 2.2.3 Item analysis with flipped items and three score groups 

This section present a little of the initial analysis of the flipped items (Figures 2.2.4 – 2.2.6). 

Flipping items change the signs and the order of PCM thresholds and the signs of item locations and 

ScoreGrp:   189 Cases 
------------------------------ 
Score  Count Percent Cumulative 
------------------------------- 
 0- 7     50    26.5       26.5 
 8-10     61    32.3       58.7 
11-15     78    41.3      100.0 
------------------------------- 
Total    189   100.0 
Missing = 9 

ScoreGrp:   189 Cases 
------------------------------ 
Score  Count Percent Cumulative 
------------------------------- 
 0- 8     76    40.2       40.2 
 9-11     57    30.2       70.4 
12-15     56    29.6      100.0 
------------------------------- 
Total    189   100.0 
Missing = 9 
 

ScoreGrp:   189 Cases 
------------------------------ 
Score  Count Percent Cumulative 
------------------------------- 
 0- 7     50    26.5       26.5 
 8- 9     43    22.8       49.2 
10-11     40    21.2       70.4 
12-15     56    29.6      100.0 
------------------------------- 
Total    189   100.0 
Missing = 9 
 

Incomplete score distribution   
minscore = 4  maxscore = 12 
Score  Count Percent Cumulative 
------------------------------- 
 4- 7     39    27.1       27.1 
 8-10     61    42.4       69.4 
11-12     44    30.6      100.0 
------------------------------- 
Total    144   100.0 
Missing = 54 
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item effects. Figure 2.2.5 presents the category in the order defined by flipping, but category effects 

are the same as before flipping. 

The orientation of the item has no effect on the CLR tests of invariance and would have had no 

effect if we had used the default score groups defined by DIGRAM. However, increasing the 

number of score groups provided stronger evidence against homogeneity. 

 
 
 
 

 

 

 

 

Figure 2.2.4 PCM thresholds and locations of flipped items.  

 

 

 

 

 

 

 

 
Figure 2.2.5 Item and category effects 

 

 
 

 

Figure 2.2.6 CLR tests of homogeneity and invariance 

  
  item             1        2        3    Location 
-------------------------------------------------- 
A:    DHP32    -1.153   -0.865    0.717    -0.434 
B:    DHP34     0.685 >  0.673 >  0.071     0.476 
C:    DHP36    -0.949    0.906 >  0.311     0.089 
D:    DHP38    -0.218 > -1.896    0.643    -0.490 
E:    DHP39     0.168 > -1.321    2.228     0.359 
 

 
   item             0        1        2        3  Item effect 
----------------------------------------------------------- 
A:    DHP32       0.000    0.719    1.151   -0.000     0.434 
B:    DHP34       0.000   -0.209   -0.405    0.000    -0.476 
C:    DHP36       0.000    1.038    0.222    0.000    -0.089 
D:    DHP38       0.000   -0.272    1.134   -0.000     0.490 
E:    DHP39       0.000    0.190    1.870   -0.000    -0.359 
 
             ---- MICE effects ---- 
 
A:    DHP32       1.000    2.053    3.160    1.000     1.543 
B:    DHP34       1.000    0.812    0.667    1.000     0.621 
C:    DHP36       1.000    2.824    1.249    1.000     0.914 
D:    DHP38       1.000    0.762    3.107    1.000     1.633 
E:    DHP39       1.000    1.210    6.487    1.000     0.699 
 

             CLR   df   p        delta 
-------------------------------------- 
scoregroups   54.4  28 0.002 
F:      AGE   42.4  42 0.454 
G:      SEX   23.7  14 0.050 
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The results of the tests of fit remain the same after flipping and the estimates of person parameters 

are the same except that the sign of the estimate has changed and that the estimates are presented in 

the opposite order, but it interpretation of parameters and interpretations of test results during 

analyses of DIF may be more challenging. We suggest that you check it yourself before we proceed.  

 
2.2.4 Testing for DIF and local dependence 

This section describes tests of DIF and local dependence by analysis of conditional independence in 

three-way tables that do not need estimates of item parameters. That is, in simple ways that could 

have been included as part of the initial descriptive analysis of data that we undertake before we try 

to fit the Rasch models. 

 
2.2.4.1 DIF 

Assume that Yi is an item that Xj is an exogenous variable and that S is the total score over all 

items. If it is true that item responses fit a Rasch model then it follows that Yi and Xj are 

conditionally independent given S. The hypothesis of conditional independence, YiXj | S, is a 

hypothesis relating to a simple three-way table where the association between the item and the 

exogenous variable is stratified by the total score over all items. Such hypotheses are easy to test 

with statistical programs with facilities for analysis of multidimensional contingency tables in 

general and very easy to test with DIGRAM, because DIGRAM is tailor made for such hypotheses.  

To simplify these analyses, we have implemented a DIF command that you can use if you want to 

perform such DIF analyses for all items relative to some or all exogenous variables or even relative 

to variables that you have not designated as exogenous variables for your Rasch model16. Tables 

with responses to item, exogenous variables together with the total score (not the score groups) are 

counted and test statistics calculated, but the tables are not printed. If you want to see the tables, we 

suggest that you use the STABS17 command to create tables where you can test conditional 

independence in the same way that you do with ordinary tables in DIGRAM. 

                                                 
16  “DIF” without parameters tests for DIF relative to all exogenous variables, whereas “DIF” followed by a list of 
variables tests that there is no DIF relative to these variables. 
17 “STABS v1 v2” creates a three-way table with the v1, v2 and the score groups. “HYP v1 v2” defines the hypothesis 
that v1 and v2 are conditional independent given the score groups and “TEST” test the hypothesis. User guide to 
DIGRAM from 2003 provide mor details on analysis of contingency tables. 



 73 

DIGRAM calculates χ2 tests and partial γ coefficients and assess significance by repeated Monte 

Carlo tests. P-values for the γ coefficients are two-sided. The results are summarized in two 

different ways: first, for the separate items (Figure 2.2.4) and second, for the exogenous variables 

(Figure 2.2.5).  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.4 Overview of tests for DIF for different items. Significant 2 statistics are flagged 
with one or more *’s whereas significant γ coefficients are flagged with –‘s or +’s depending 

on the sign of the γ coefficient.  
 
 

Analysis of DIF for A: DHP32 
Scale : # - RawScore 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
F:     AGE  86.0 63 0.029 0.061   0.05 0.683 0.693 1000  
G:     SEX  26.6 26 0.429 0.667   0.07 0.595 0.524   21  
 
Analysis of DIF for B: DHP34 
Scale : # - RawScore 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
F:     AGE  58.6 56 0.379 0.606  -0.12 0.299 0.242   33  
G:     SEX  18.1 21 0.643 0.745   0.21 0.130 0.160   94  
 
Analysis of DIF for C: DHP36 
Scale : # - RawScore 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
F:     AGE 101.4 66 0.003 0.008   0.14 0.233 0.213 1000 ** 
G:     SEX  28.0 26 0.360 0.530  -0.32 0.012 0.014 1000 - 
 
Analysis of DIF for D: DHP38 
Scale : # - RawScore 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
F:     AGE  40.2 43 0.591 0.740  -0.22 0.113 0.136  154  
G:     SEX  24.4 18 0.143 0.208   0.34 0.039 0.056 1000  
 
Analysis of DIF for E: DHP39 
Scale : # - RawScore 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
F:     AGE  55.5 51 0.309 0.437   0.21 0.120 0.132  174  
G:     SEX  27.1 21 0.168 0.188  -0.03 0.826 0.859   64  
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Figure 2.2.4 disclose evidence of DIF two different ways for item C (DHP36): relative to Gender by 

the γ coefficient and relative to Age by the χ2 statistic.  The summary for the exogenous variables in 

Figure 2.2.5 tells the same story.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.5 Overview of tests for DIF relative to the exogenous variables 
 
 
2.2.4.2 Local dependence 

The test of DIF described above is a simple generalization of the well-known Mantel-Haenszel test 

of DIF for dichotomous items and binary exogenous variables. The test of local dependence 

invoked by the LDE command is probably less well-known but it is based on the same Markov 

properties of graphical models as the DIF test. 

Let (X1,…,XK) be items and ii
R= X be the score. If items are conditionally independent and fits 

a Rasch model it follows that Xi is conditionally independent of Xj given R-Xi. DIGRAM uses this 

  +-----------------------------------------------+ 
  |                                               | 
  | Test results for separate exogenous variables | 
  |                                               | 
  +-----------------------------------------------+ 
 
Analysis of DIF relative to F: AGE 
Scale : # - RawScore 
 
     Item   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
A:   DHP32  86.0 63 0.029 0.061   0.05 0.683 0.693 1000          
B:   DHP34  58.6 56 0.379 0.606  -0.12 0.299 0.242   33          
C:   DHP36 101.4 66 0.003 0.008   0.14 0.233 0.213 1000  **      
D:   DHP38  40.2 43 0.591 0.740  -0.22 0.113 0.136  154          
E:   DHP39  55.5 51 0.309 0.437   0.21 0.120 0.132  174          
 
 
Analysis of DIF relative to G: SEX 
Scale : # - RawScore 
 
     Item   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
A:   DHP32  26.6 26 0.429 0.667   0.07 0.595 0.524   21          
B:   DHP34  18.1 21 0.643 0.745   0.21 0.130 0.160   94          
C:   DHP36  28.0 26 0.360 0.530  -0.32 0.012 0.014 1000      -   
D:   DHP38  24.4 18 0.143 0.208   0.34 0.039 0.056 1000          
E:   DHP39  27.1 21 0.168 0.188  -0.03 0.826 0.859   64          
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property for a test of local independence testing conditional independence of Xi and Xj in the three-

way table with Xi, Xj and R-Xi. 

To invoke a test you of local independence you must use the “LDE itemset1 + <itemset2>” 

command causing DIGRAM to test conditional independence of items in itemset1 and itemset2 

given the score over items in itemset2. If you have not included itemset2, DIGRAM assumes that it 

consists of all items except for those in itemset1.  

The tests of item fit Figure 2.1.12 found evidence against the fit of DHP38 (D). The observed IRS γ 

is larger than the expected under the Rasch model. Since this would happens if DHP is positively 

dependent on other items, we invoke the “LDE D” to test the local dependence of D and the other 

items. Figure 2.2.6 shows the results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.6 Tests of local dependence of item D (DHP38) 

The results in Figure 2.2.6 agree to some degree with the results of Kelderman’s CLR test of local 

dependence (Figure 2.1.14). Kelderman found strong evidence of local dependence between B & D 

Analysis of DIF for A: DHP32 
Scale : # - ABCE 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
D:   DHP38  35.1 43 0.799 0.952  -0.10 0.484 0.714   21  
 
 
Analysis of DIF for B: DHP34 
Scale : # - ABCE 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
D:   DHP38  54.7 37 0.030 0.070   0.33 0.023 0.019 1000 + 
 
 
Analysis of DIF for C: DHP36 
Scale : # - ABCE 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
D:   DHP38  48.0 42 0.243 0.353  -0.53 0.000 0.000 1000 --- 
 
 
Analysis of DIF for E: DHP39 
Scale : # - ABCE 
 
Exogenous   X²   df asymp exact  gamma asymp exact nsim 
------------------------------------------------------- 
D:   DHP38  58.6 39 0.022 0.048   0.26 0.095 0.091 1000 * 
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and between D & E. Figure 2.2.6 agrees, but significance is weak. On the other hand, the CLR test 

of local independence accept the hypothesis for B & C where the test of conditional independence 

between C & D is highly significant. 

A major difference between the tests of conditional independence in Figure 2.2.6 and the CLR tests 

in Figure 2.1.4 is that the tests of conditional independence differentiate between positive and 

negative local dependence whereas the CLR tests are tests for nominal variables and therefore 

cannot describe the association in these terms. 

The differences between the two sets of results leave questions unanswered. We return to these 

issues in the GLLRM tours. 

 
2.2.5 IRT and Rasch graphs 

The tests for DIF and local dependence are derived from the Markov properties of the IRT and 

Rasch graphs of Graphical Rasch models. Since they become more and more important as we move 

along, it is convenient to take a first look at these graphs here. 

Look at Figure 2.1.1 showing DIGRAM’s main form after you have selected the items. In the lower 

right corner above the “Graphical Rasch model” button, you will find the IRT button. When you 

click this button, DIGRAM takes you to the graph module where the IRT graph is displayed (Figure 

2.2.7)18. Next, click the “Rasch” button to see the Rasch graph shown in Figure 2.2.8.  

For now, the main purpose of the IRT and Rasch graphs is to remind you of the assumptions of the 

Rasch model and to make it clear that we are assessing the Rasch model within a multivariate frame 

of reference defined as a graphical model. We return to these graphs during the tours through the 

graphical and-log-linear Rasch models where they play a much more important role and where you 

may define and modify models by adding or deleting connections between pairs of items and or 

connections between items and exogenous variables19.   

 

                                                 
18 It may happen that DIGRAM has problems generating these graphs. If this happens, you have to click on the “Graph” 
button and then click on the “IRT” button in the graph dialog. 
19 The notes describing DIGRAM’s graph module provide information on how to work with the graphs. 
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Figure 2.2.7. The IRT graph of the graphical Rasch model for the five DE items and with Age and Sex as exogenous variables. 
The graph has been edited and therefore do not look exactly like this when you try this for the first time20. 

                                                 
20 Consult the notes on the Graph model to see how to do this. 
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Figure 2.2.8. The Rasch graph of the graphical Rasch model for the five DE items with Age and Sex as exogenous variables. 

The graph has been edited 
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2.2.6 Tests of unidimensionality 

If the set of items consists of two subsets depending on different latent variables, we would expect 

positive local dependence within subsets and negative local dependence between subsets. Figure 2.6 

disclosed significant evidence of both positive between B, D and E and negative dependence 

between C and D. The natural next step in the analysis would be to test whether BDE and AC 

depend on different latent variables  

To invoke a test of unidimensionality you have to select the “Test unidimensionality” option 

following which DIGRAM asks you to define the dimensions of the multidimensional alternative to 

unidimensionality. This is done in the little dialog box (Figure 2.2.9) where you enter the subsets21 

of items separated by a ‘+’. 

 

 

Figure 2.2.9 Definitions of subsets of items for tests of unidimensionality. 
 
You only have to include a single subset of items if you just want to test whether the items in the 

subset measure the same construct as the rest of the items. For instance, “BDE” is the same as 

“BCE+AD” resulting in the same analysis as the one initiated in Figure 2.2.10 except that Subscore 

1 = B+D+E and Subscore 2 = A+C.   

To test the hypothesis of unidimensionality, DIGRAM compares the observed and expected joint 

distributions of the A+C and B+D+E subscores and reject the hypothesis of unidimensionality if the 

observed correlation of A+C and B+D+E is significantly lower than the expected correlation under 

the Rasch model. Figures 2.2.10 and 2.2.11 show the observed and expected distributions and 

Figures 2.2.12 and 2.2.14 present the results of the test22.  

 
 

                                                 
21 You can define more than two subsets of items. 
22 You will only see that tables in Figures 2.2.10 & 2.2.11 you select “extended output” during tests for 
unidimensionality. It is included here to show you what happens during the analysis.  
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Figure 2.2.10 Observed joint distribution of subscores A+C and B+D+E. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2.2.11 Expected joint distribution of subscores A+C and B+D+E. 

In addition to expecting the observed correlation between the subscores to be weaker than expected 

if the assumption of unidimensionality is false, we expect a larger than expected frequencies of 

persons with relatively high score on one subscale and relatively low score on the other. DIGRAM 

therefore include information on the observed and expected frequencies of persons with scores 

outside 95 and 50 percent confidence regions.  

Observed counts 
 
Subscore 1: AC 
Subscore 2: BDE 
 
                Subscore 1 
Subscore 2     0     1     2     3     4     5     6 
 
     0         2     2           2                   
     1         1           1           2             
     2               1     1     4     1     2     2 
     3         1           2     3     4     1       
     4         1     1     2    13    11     4       
     5                     3     9     5     5     4 
     6                     2     5     6     5     4 
     7                     3     6    10     5     3 
     8         1                 2    11     5     9 
     9               1     1     2     2     4    11 
 

Expected counts (expected counts < 0.01 are not 
printed) 
 
Subscore 1: AC 
Subscore 2: BDE 
 
                Subscore 1 
Subscore 2     0     1     2     3     4     5     6 
 
     0       2.0   2.1         0.8   0.1   0.1       
     1       0.9         1.3   0.3   0.4   0.1   0.1 
     2             2.3   0.9   3.1   0.9   1.2   0.4 
     3       0.7   0.5   3.1   2.0   3.9   2.2   0.5 
     4       0.2   2.0   2.3  10.0   8.4   3.3   1.6 
     5       0.3   0.7   5.7  10.7   6.4   5.1   3.5 
     6       0.1   1.1   3.6   4.8   5.8   6.6   4.8 
     7       0.1   0.7   1.7   4.5   7.8   9.5   4.1 
     8       0.0   0.2   1.0   3.8   6.9   5.0  10.2 
     9             0.0   0.2   0.8   0.8   2.8  11.0 
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The results can be seen in Figure 2.2.12. Observed frequencies outside the confidence regions are 

larger than expected, but the differences are not significant. The observed correlation is weaker than 

the expected, which is also what we would find if unidimensionality was false, but the difference is 

far from significant. Taken at face value, this suggests that the hypothesis of unidimensionality 

should be accepted.  

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2.12 Analysis of unidimensionality 

The p-value of the test that there is no difference between the correlations is based on the 

asymptotic distribution of Goodman and Kruskall’s γ. However, since the table with expected 

frequencies in Figure 2.2.11 is large and sparse with many cells with close to no expected 

observations, there is a considerable risk that the asymptotic distribution of the γ does not 

approximate the exact distribution. For this reason, DIGRAM proposes (Figure 2.2.13) that you 

should calculate a Monte Carlo estimate of the exact p-value by parametric bootstrapping. Figure 

2.2.14 shows the result. The importance of using Monte Carlo estimates of p-values is obvious. In 

this case, the difference between the observed and expected correlation between the subscores is 

weakly significant. 

  +---------------------------------------------------------------+ 
  |                                                               | 
  | Overview of significant differences between the two subscales | 
  |                                                               | 
  +---------------------------------------------------------------+ 
 
Count outside confidence regions 
 
AC too low: 
 
level observed expected residual    p 
0.050        8     5.54    1.070 0.1424 
0.250       42    39.51    0.460 0.3228 
 
AC too high: 
 
level observed expected residual    p 
0.050        6     4.41    0.778 0.2182 
0.250       38    36.48    0.295 0.3841 
 
  +--------------------------------------------+ 
  |                                            | 
  | Observed and expected subscore correlation | 
  |                                            | 
  +--------------------------------------------+ 
 
Expected Gamma =   0.464  s.e. =  0.0572 
Observed Gamma =   0.407    p  =  0.3166  (Two-sided) 
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Figure 2.2.13 Monte Carlo estimate of p-value comparing observed and expected correlations 
between subscores. 

 
 
 
 
 
 
 
 
 
Figure 2.2.14 Monte Carlo estimate of the one-sided p-value23 of the test of unidimensionality 

 
2.2.6.1 Assessment of practical unidimensionality 

Disclosing evidence against unidimensionality is important for statistical purposes to make sure that 

we have a model that fits data and for substantive and conceptual reasons if we want to understand 

what goes on. However, it may be less than essential in connection with measurement if we can 

show that the score in practice function as if it was unidimensional. 

We say that a set of items is practically unidimensional if subsets of items rank the persons in the 

same way as the complete set of items. To assess this, we compare the ranking of all pairs of 

persons by the total score and by the subscores and say that there is discordance if the total score 

and a subscore disagree. Even if the model fits data, we do expect a certain degree of discrepancy 

for random reasons.  DIGRAM therefore estimate the expected frequencies of discordance under 

the unidimensional model calculate the ratio between the observed and expected discordance and 

test that it is significantly higher than one. 

                                                 
23 We are using a one-sided p-value because the observed correlation will be smaller than the expected if the latent DHP 
structure is two-dimensional 

  +-----------------------------------------------------+ 
  |                                                     | 
  | Monte Carlo estimate of p-values. Sample size = 400 | 
  |                                                     | 
  +-----------------------------------------------------+ 
 
Gamma:                    p(below) =  0.033 
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In Figure 2.2.15, the ratio between the observed and expected discordance of the A+C subscore is 

equal to 1.31. This is significant confirming that A+C does not measure the same latent variable as 

the B+D+E subscore, and since more than the observed frequency of discordance is more than 30 % 

than the expected frequency24 we conclude that DHP is not practically unidimensional. It is 

unreasonable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.15 Assessment of practical unidimensionality 

 
2.2.7 Describing items 

When item parameters have been estimated and if the fit of the Rasch model have been confirmed 

we often need to describe how the items function. There are both graphical and numerical ways to 

do that.  

  

                                                 
24 The 30 % limit is not meant as a rule of thumb for assessment of practical unidimensionality. It is up to the user 
testing for unidimensionality to decide where the limit between practical and unreasonable unidimensional should be.  

  +-------------------------------------------+ 
  |                                           | 
  | Assessment of practical unidimensionality | 
  |                                           | 
  +-------------------------------------------+ 
 
 Observed    Tied Concordance Discordance 
Subscore1 =  0.26    0.857       0.143 
Subscore2 =  0.18    0.945       0.055 
Joint     =  0.39    0.768       0.232 
 
 Expected 
Subscore1 =  0.24    0.891       0.109 
Subscore2 =  0.19    0.939       0.061 
Joint     =  0.37    0.800       0.200 
 
Ratios between observed and expected discordance 
 
Subscore1 =  1.313   p = 0.003 
Subscore2 =  0.906   p = 0.768 
Joint     =  1.163   p = 0.033 
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2.2.7.1 Item and test characteristic curves, information curves and probability curves 

 

Three types of curves illustrate features of Rasch items:  

  
1) Item and test characteristic curves (ICC and TCC) plot the expected item and test scores 

against values of the person parameter. 

2) Item information curves (IIC) plot the test and item information against the values of the 

person parameter. 

3) Category characteristic curves (CCC) plot the probabilities of item scores against the values 

of person parameter.  

 
DIGRAM will not produce these curves for you, but will print information on a text file that you 

may enter into your standard statistical program, where the curves can be drawn. 

Select the “Export data for ICC curves” in the GRM dialog box if you want DIGRAM to do this. 

Figure 2.2.16 shows the list of text files created by DIGRAM. In addition to the text files with the 

data for the plots, DIGRAM also creates SPSS syntax files with code that define the variables, read 

the data, and create the basic curves that DIGRAM assumes that you want to see.   

 
 
 

 
 
 
 

Figure 2.2.16 Information on files with data for ICC, probability and information curves.  

 
ICC curves 
 
The file with data for the ICC curves contains the following variables.  

Theta =    the person parameter value.  
Score =    the expected total score. 
A-E   =    the expected item scores or the average obtained item scores corresponding to person 
             parameter estimates. 
Type =    0 : expected item score 1: average observed item score. 
Npersons =   number of persons with the person parameter estimate. 
 
Figures 2.2.17 and 2.2.18 show the content of ICC.txt with data. The format of the data on 

ICC_ABCDE.txt is free with variable names in the first row. 

SPSS users can use ICC.sps, INF.sps and PROB.sps to access the ICC, information and probability 
curves. SAS users can use ICC.sas to access the ICC curves 
 
 
Data for ICC curves under the CURRENT(!) model will be written on ICC.txt 
Data for probability curves under the CURRENT(!) model will be written on ItemProbs.txt 
Data for information curves under the CURRENT(!) model will be written on ItemInf.txt 
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Figure 2.2.17 The contents of the ICC.txt file with data for ICC curves.  

 
Figure 2.2.18 shows the ICC curve for item D. If you are dissatisfied with SPSS’s default plots, you 

have to edit the ICC plot yourself. We have done so in the ICC curve for item D (the item that the 

item fit statistics suggested had stronger item discrimination than expected by the Rasch model) 

where we have hidden the legends for item D. The marks refer to the average observed item scores 

for persons with a given total score. 

 
Figure 2.2.18 ICC curve for items D. The green points show the average observed item scores 

for ML estimates of person parameters corresponding to the total score on all items 

Theta score A B C D E type npersons 
-5,000 0,057 0,022 0,003 0,017 0,009 0,006 0 0 
-4,990 0,058 0,022 0,003 0,017 0,009 0,006 0 0 

……… 

-0,040 7,509 1,875 0,826 1,258 2,049 1,502 0 0 
-0,030 7,549 1,882 0,836 1,266 2,055 1,509 0 0 
                                        ……… 

4,990 14,897 2,986 2,993 2,990 2,987 2,940 0 0 
5,000 14,898 2,986 2,993 2,991 2,987 2,941 0 0 
-2,304 1 0,750 0,000 0,000 0,250 0,000 1 4 
-1,279 3 1,200 0,200 0,600 1,000 0,000 1 5 

……… 
 
1,672 13 2,500 2,700 2,600 2,800 2,400 1 10 
2,493 14 2,923 2,769 2,769 3,000 2,538 1 13 
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Figure 2.2.19 shows the ICC curves of all items next to each other. It is easy to see that ICC curves 

for polytomous items do not satisfy the requirement of invariant item ordering. (IIO) 

 
Figure 2.2.19. Overlay plot with ICC curves for all items. 

 

Finally, Figure 2.2.20 shows the relationship between the person parameters and the expected 

scores (the true scores) on all items. Notice the close to linear relationship between the total score 

and the person parameters estimates for total scores equal between 3 and 12. 

 

 
Figure 2.2.20 Person parameter values plotted against the expected (true) total score on all 

items. The red X’s shows the maximum likelihood estimates of person parameters 
corresponding to observed scores on all items.  
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Test and item information 

Figures 2.2.21 and 2.2.22 show the test information and the standard error of measurement (SEM). 

In many cases, the SEM curve is almost horizontal in a wide range of θ values even though the test 

info curve has a noticeable mode. This is not the case for the DHP scale. 

 
Figure 2.2.21. Test information under the current Rasch model 

 
Figure 2.2.22. SEM under the current Rasch model 

 

Figure 2.2.23 shows the item information curves. All the information curves are unimodal defining 

unique targets for the items.  
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Figure 2.2.23. Item information curves for all items. The theta values where information is 
maximized define the targets of the item. 

 

Category characteristic curves 

The CCC curves plots the probabilities of item scores against θ. Figure  

 

Figure 2.2.24. CCC curves for item A – DHP32 
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2.2.7.2 Scale anchored item distributions  

A scale-anchored item distribution is the set of conditional probabilities of responses to items given 

(or anchored at) a specific value of the person parameter. 

The CCC curve of Figure 2.2.24 describe the way the scale-anchored item distributions change as θ 

increase from -5 to +5, but the description is imprecise and less than transparent because the it is not 

easy to read this from CCC curves. For that we need tables with distributions anchored at specific θ 

values of interest. 

DIGRAM has three commands that you may use to create such tables, IPR, SPR and TPR. 

  
Item probabilities - IPR 

Invoke the IPR command for tables relating to separate items with probabilities anchored at the 

WML estimates of the person parameters. 

You do not have to ad parameters to this command, but DIGRAM need to know which items and 

WML estimates you are interested in so you have to respond to the two questions shown in Figure 

2.2.25. 

  

Figure 2.2.25 Information required by the IPR command 

The result is shown in Figure 2.2.26. The IPR command produce on table for each item where you 

can ses how the response probabilities change as the person parameter (the WML) increase from 

lower to higher values. We suggest that you compare the results in Figure 2.2.26 with the CCC 

curve in Figure 2.2.24 and with similar tables for the other items that you have to create yourself.  
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Figure 2.2.26 Item distributions of DHP32 anchored at WML estimates 

 
Score probabilities - SPR 

Invoke the SPR command for tables relating to separate items with probabilities anchored at the 

WML estimates of the person parameters where output is organized in tables summarizing response 

probabilities for all items defined by a person parameter defined as the WML estimate for a single 

score. You have to select items and scores as in figure 2.2.25.  

Tables with scale-anchored distributions are useful if you intend to generate criterion related 

categories that refer to probabilities of low and high scores. The default is to treat zero and 

maximum item score as low and high scores, but DIGRAM will let you select other limits.as shown 

in Figure 2.2.27. 

 
 

Figure 2.2.27. Definition of limits defining low and high scores. 

  +-------+ 
  |       | 
  | DHP32 | 
  |       | 
  +-------+ 
 
Score   WML     0       1       2       3 Expected  VAR/info 
------------------------------------------------------------ 
  1   -1.93  0.6145  0.2818  0.0968  0.0068   0.50   0.485 
  2   -1.50  0.4722  0.3328  0.1758  0.0191   0.74   0.658 
  3   -1.19  0.3601  0.3488  0.2533  0.0378   0.97   0.764 
  4   -0.91  0.2681  0.3416  0.3262  0.0640   1.19   0.816 
  5   -0.65  0.1926  0.3170  0.3912  0.0992   1.40   0.823 
  6   -0.40  0.1322  0.2797  0.4435  0.1446   1.60   0.793 
  7   -0.16  0.0868  0.2354  0.4781  0.1997   1.79   0.739 
  8    0.08  0.0553  0.1906  0.4925  0.2616   1.96   0.672 
  9    0.32  0.0345  0.1499  0.4884  0.3272   2.11   0.603 
 10    0.55  0.0210  0.1146  0.4693  0.3952   2.24   0.537 
 11    0.79  0.0120  0.0837  0.4364  0.4680   2.36   0.470 
 12    1.07  0.0061  0.0562  0.3878  0.5498   2.48   0.399 
 13    1.44  0.0024  0.0316  0.3161  0.6499   2.61   0.315 
 14    2.06  0.0004  0.0109  0.2040  0.7846   2.77   0.200 
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We selected all items and all scores, but Figure 2.2.28 shows the tables for scores equal to 3, 8 and 

13. An item is considered difficult at the given value of θ if the probability of a low score is larger 

than 0.75 and very difficult if the probability is larger than 0.90. Easy items are defined by similar 

probabilities for high scores. DHP34 is “difficult” at θ = -1.28 and easy at  θ = 1.67. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2.28 Item distribution anchored at estimates of person parameters  
for scores equal to 4, 8 and 13.  

  +-------------------------------------+ 
  |                                     | 
  | Score = 3  Person parameter = -1.28 | 
  |                                     | 
  +-------------------------------------+ 
 
Difficult items:      DHP34  
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.393 0.347 0.229 0.031     0.90  0.74 
   DHP34 0.858 0.120 0.017 0.004     0.17  0.20   * difficult 
   DHP36 0.551 0.396 0.045 0.009     0.51  0.39 
   DHP38 0.480 0.166 0.308 0.045     0.92  0.96 
   DHP39 0.672 0.158 0.165 0.005     0.50  0.61 
 
Total info =  2.903 
 
  +-------------------------------------+ 
  |                                     | 
  | Score = 8  Person parameter =  0.08 | 
  |                                     | 
  +-------------------------------------+ 
 
Neither easy nor difficult items at this person level 
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.056 0.191 0.492 0.261     1.96  0.67 
   DHP34 0.464 0.254 0.140 0.142     0.96  1.17 
   DHP36 0.166 0.466 0.205 0.163     1.36  0.89 
   DHP38 0.057 0.076 0.552 0.315     2.13  0.60 
   DHP39 0.164 0.151 0.613 0.072     1.59  0.71 
 
Total info =  4.049 

  +--------------------------------------+ 
  |                                      | 
  | Score = 13  Person parameter =  1.67 | 
  |                                      | 
  +--------------------------------------+ 
 
Easy items:           DHP34  
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.001 0.021 0.272 0.706     2.68  0.27 
   DHP34 0.021 0.057 0.155 0.767     2.67  0.46   * easy 
   DHP36 0.006 0.086 0.185 0.722     2.62  0.44 
   DHP38 0.001 0.007 0.261 0.730     2.72  0.22 
   DHP39 0.007 0.031 0.612 0.351     2.31  0.31 
 
Total info =  1.713 
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The table generated by the SPR command is used to compare the response distributions for items at 

specific values of the person parameter. In addition to this, DIGRAM summarize the results 

counting the numbers of easy and difficult items at the estimates of the person parameters for each 

score. Figure 2.2.29 present the summary. There are no difficult items below θ = -0.68, neither and 

difficult nor easy items for -0.68  θ  1.20, and some easy if  θ is larger than or equal to 1.67.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.2.29 Summary of item distributions anchored at estimates of person parameters.  
 
 
TPR – distributions anchored at θ values 

The TPR command is similar to the SPR command, but it generates scale-anchored distributions at 

values of θ that you have to include as parameters when you invoke it. For instance, “TPT -1.153 -

0.865 -0.434 0.717” generates distributions that are anchored at the PCM thresholds and the 

location of DHP32. 

You also have to select the items for this command. We have selected DHP32 and got the results 

shown in Figure 2.2.30. The tables illustrate that probabilities of adjacent categories are the same if 

  +---------+ 
  |         | 
  | Summary | 
  |         | 
  +---------+ 
                Very                                   Very 
Score  Theta    easy      Easy      ----    Difficult difficult 
-------------------------------------------------------------- 
   1   -2.30      0         0         1         3        1 
   2   -1.67      0         0         3         1        1 
   3   -1.28      0         0         4         1        0 
   4   -0.96      0         0         4         1        0 
   5   -0.68      0         0         5         0        0 
   6   -0.42      0         0         5         0        0 
   7   -0.17      0         0         5         0        0 
   8    0.08      0         0         5         0        0 
   9    0.33      0         0         5         0        0 
  10    0.58      0         0         5         0        0 
  11    0.86      0         0         5         0        0 
  12    1.20      0         0         5         0        0 
  13    1.67      0         1         4         0        0 
  14    2.49      1         3         1         0        0 
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the distribution is anchored at the threshold that separate them and the probabilities of extreme 

score are the same if the distribution is anchored at the location of the item. 

 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.30 Distributions of DHP32 anchored at the PCM thresholds (-1.15, -0.87, 0.72) and 
the item location (-0.43) 
  

  +--------------------------+ 
  |                          | 
  | Person parameter = -1.15 | 
  |                          | 
  +--------------------------+ 
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.349 0.349 0.262 0.040     0.99  0.77 
 
  +--------------------------+ 
  |                          | 
  | Person parameter = -0.87 | 
  |                          | 
  +--------------------------+ 
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.254 0.338 0.338 0.070     1.22  0.82 
 
  +--------------------------+ 
  |                          | 
  | Person parameter = -0.43 | 
  |                          | 
  +--------------------------+ 
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.139 0.285 0.438 0.139     1.58  0.80 
 
  +--------------------------+ 
  |                          | 
  | Person parameter =  0.72 | 
  |                          | 
  +--------------------------+ 
 
    Item   0     1     2     3       Mean Var/Inf  
----------------------------------------------- 
   DHP32 0.014 0.092 0.447 0.447     2.33  0.49 
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2.2.8 Assessment of the measurement quality 

 
The fit of items to a Rasch model supports claims of the validity and objectivity of the measurement 

provided by the person score and estimates of person parameters. However, measurement quality 

require much more than this. Measurement has to be precise and unbiased and since the standard 

error and bias of measurement depend on the person parameter, we have to know whether the 

instrument provide precise and unbiased measurement in populations of interest. 

To assess this issue, you have to select the “Test information and targeting” option. This section 

describe the results.  

 
2.2.8.1 Targeting 

We refer to the question of the degree to which measurement is precise and unbiased in a specific 

population as a question of targeting. We say that the instrument target a population if the average 

test information in the population is close to the maximum test info that the instrument provide and 

DIGRAM calculates a number of targeting indices to assess the degree of targeting for the study 

population. 

If the analysis provided evidence of an effect of exogenous variables on the latent variable, we have 

to assess the degree of targeting in subpopulations defined by these variables. Since the DHP score 

depend on both sex and age, DIGRAM assess and compare targeting in all subgroups defined by 

these variables. Output from these analyses is verbose. For this reason, we only present the details 

for 60-70 years old women after which we present summary results for all the groups.  

 
2.2.8.2 Test information and targeting of 60-70 years old women 

If we want to assess the targeting of a measurement instrument in a specific population, we need to 

know the distribution of θ.  During the analysis of targeting, DIGRAM assumes that the distribution 

is normal and estimates the mean and the variance. Since inference in DIGRAM is conditional 

without assumptions of the distribution, it is important to stress that DIGRAM only use the normal 

distribution for illustrative purposes. The results will show how the measurement instrument 

function if the population is normal. To make the results plausible, DIGRAM calculates a χ2 test 
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that compare the observed distribution of the score to the expected distribution, but you should not 

take the result for more than that unless you have specific hypotheses about the distribution of θ. 

According to Figure 2.2.31, the mean of the distribution of θ is equal to 0.512 among 60-69 years 

old women. The standard deviation is 0.823 and the test accepts the normal distribution (p = 0.55).  

Figure 2.2.32 provides information on the test location25, the test midpoint and the test target where 

the target info is equal to 4.05. The target lies a little above the location, but below the population 

mean. The degree to which this implies that DHP is out of target remains to be seen. 

Table 2.2.33 presents estimates of sensitivity and specificity relative to cut points on the θ scale. 

Consider for instance a situation where you want to classify the persons as lying below or above the 

10 % percentile of the normal population with mean = 0.512 and sd = 0.823. The 10 % percentile is 

-0542. The sensitivity is the probability that a person from this distribution has a WML estimate 

less than or equal -0.542 while the specificity is the probability that a person with θ > -0.542 has a 

WEML estimate above -0.542. Specificity is adequate, but we leave it to decide whether we should 

be satisfied with the sensitivities. 

Figure 2.2.34 summarize the average precision and bias of the ML and WML estimates and define 

target indices comparing the average test information and SEM in the normal distribution with the 

values at test target. Target indices above 0.80 indicate relative good targeting compared to many 

examples of health related scales known to us. 

 

Finally, Figure 2.2.35 presents measurer of reliability. To us, the probabilities of correct or no 

person separation are more meaningful than the other options, but you are free to disagree and 

decide whether reliability is adequate. 

Figure 2.2.35 also provide estimate of the bias of the difference between two random persons from 

the normal distribution. Had measurement functioned as proper interval scaled measurement there 

should be no bias. The results show that WML estimation provide measurement that function as 

interval scaled measurement degree to a higher degree than ML estimates.  

  

                                                 
25 Recall that we have fixed the parameters in such a way that the test location has to be at the origin of the θ scale 
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Figure 2.2.31 The distribution of 60-69 years old women 

 

 

   

 
Figure 2.2.32 Location, midpoints and target of DHP scores 

  

Group: SEX = Female   AGE = 60-69    
 
  +-----------------------------------------------+ 
  |                                               | 
  | Test of normal person parameter distribution  | 
  |                                               | 
  +-----------------------------------------------+ 
 
Observed and fitted score group distributions 
 
         0 - 8  9 - 11 12 - 15 
   --------------------------- 
   Obs    19.0    10.0    13.0 
   Fit    16.0    12.8    13.2 
   --------------------------- 
 
   Chi**2=   1.19  df = 2  p =  0.5506 
 
 
  42 persons.   Mean score =   9.43    sd =   3.30  Mean Theta =  0.512    sd =  0.823 
 

Location        =  -0.000  Test information  =  4.04  SEM =   0.498  True score =   7.7 SEM(TS) =  2.01 

Test midpoint   =  -0.042  Test information  =  4.03  SEM =   0.498  True score =   7.5 SEM(TS) =  2.01 

Test target     =   0.132  Max test info     =  4.05  SEM =   0.497  True score =   8.2 SEM(TS) =  2.01 
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Figure 2.2.33 Analysis of sensitivity and specificity 
 
 
 
 

 
 
 
 
 
 
 
 

 

Figure 2.2.34 Summary of bias and precision  
 

 
 
 
 
 
 
 
 
 
 

 

 
Figure 2.2.35 Reliability and bias of interval estimation 

Figures 2.2.36 and 2.2.37 summarize the results for six groups defined by sex and age. Targeting is 

generally good, but reliability could be better, suggesting that five polytomous items are not enough 

for quality measurement.  

*** Sensitivity and specificity *** 
 
                                                   False    False 
                   Theta  Sensitivity Specificity positive Negative 
< 5% percentile   -0.841     0.727        0.948    0.575    0.015 
< 10% percentile  -0.542     0.732        0.931    0.461    0.031 
> 90% percentile   1.566     0.521        0.944    0.490    0.053 
> 95% percentile   1.865     0.633        0.926    0.691    0.020 
 

**** ML estimates  **** 
Mean bias =      0.107  sd =   0.093 
Mean RMSE =      0.690  sd =   0.151 
Mean SEM  =      0.678  sd =   0.137 
 
 **** WML estimates **** 
Mean bias =      0.010  sd =   0.026 
Mean RMSE =      0.585  sd =   0.101 
Mean SEM  =      0.584  sd =   0.100 
 
Mean test information        =   3.296  sd =   0.865   Target index =   0.814 
Mean SEM defined by test inf =   0.575  sd =   0.123   Target index =   0.864 
 

var(true score)/var(score)     =  0.697 
Person separation index(PSI)   =  0.676 
test-retest correlation        =  0.693 
test-true score correlation    =  0.845 
 
Probability of correct person separation =  0.772 
Probability of no person separation      =  0.086 
 
Bias of interval estimates 
ML estimate   : 0.1310 
WML estimate  : 0.0155 
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Figure 2.2.36 Summary of targeting for subpopulations defined by sex and age. 
 

  +--------------------------------+ 
  |                                | 
  | Targeting and test information | 
  |                                | 
  +--------------------------------+ 
 
                                     theta        test info    target      RMSE(WML)    target 
      SEX      AGE  Target   n   Mean    sd     Mean     max   index     Mean     min   index     PSI 
------------------------------------------------------------------------------------------------------- 
     Male    18-49   0.13   14   0.32   0.83   3.415   4.051   0.843    0.568   0.497   0.874   0.681 
   Female    18-49   0.13   17  -0.30   0.92   3.392   4.051   0.837    0.555   0.497   0.895   0.769 
     Male    50-59   0.13   33   0.59   0.59   3.432   4.051   0.847    0.572   0.497   0.869   0.509 
   Female    50-59   0.13   23   0.33   0.69   3.553   4.051   0.877    0.555   0.497   0.896   0.592 
     Male    60-69   0.13   47   0.80   0.83   3.025   4.051   0.747    0.618   0.497   0.804   0.669 
   Female    60-69   0.13   42   0.51   0.82   3.296   4.051   0.814    0.585   0.497   0.850   0.676 
 
  +---------------------------------+ 
  |                                 | 
  | targeting and test info summary | 
  |                                 | 
  +---------------------------------+ 
 
          Target   Theta    Info    max     n 
------------------------------------------------ 
Over all    0.130   0.486   3.301  4.051   176 
------------------------------------------------ 
 
     SEX  Target   Theta    Info    max     n   
------------------------------------------------ 
    Male    0.130   0.655   3.226  4.051    94 
  Female    0.130   0.292   3.388  4.051    82 
------------------------------------------------ 
 
     AGE  Target   Theta    Info    max     n   
------------------------------------------------ 
   18-49    0.130  -0.020   3.402  4.051    31 
   50-59    0.130   0.483   3.482  4.051    56 
   60-69    0.130   0.663   3.153  4.051    89 
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Figure 2.2.37 True score (TS) estimation and summary 
 

  +---------------------------------------+ 
  |                                       | 
  | True score estimation and reliability | 
  |                                       | 
  +---------------------------------------+ 
 
                                    Score                 separation  no sep.   
      SEX      AGE  Target   n   Mean    sd   reliability     prob     prob   Target SEM(TS) Mean SEM(TS) 
---------------------------------------------------------------------------------------------------------- 
     Male    18-49   8.21   14   8.71   3.43      0.709      0.776    0.081       2.01         1.83 
   Female    18-49   8.21   17   6.65   3.62      0.746      0.797    0.075       2.01         1.83 
     Male    50-59   8.21   33   9.85   2.74      0.548      0.719    0.097       2.01         1.84 
   Female    50-59   8.21   23   8.87   3.08      0.638      0.748    0.091       2.01         1.87 
     Male    60-69   8.21   47  10.34   3.10      0.679      0.748    0.098       2.01         1.71 
   Female    60-69   8.21   42   9.43   3.30      0.693      0.772    0.086       2.01         1.80 
 
Weighted means:  Reliability = 0.66   Person separation = 0.76 

 
  +-------------------+ 
  |                   | 
  | Targeting summary | 
  |                   | 
  +-------------------+ 
 
                                  Target               Population average 
      SEX      AGE    n  Theta   SEM   TS    SEM    Theta   SEM    TS   SEM  reliability 
---------------------------------------------------------------------------------------- 
     Male    18-49   14   0.13  0.50   8.21  2.01    0.32  0.57  8.71  1.83     0.71 
   Female    18-49   17   0.13  0.50   8.21  2.01   -0.30  0.55  6.65  1.83     0.75 
     Male    50-59   33   0.13  0.50   8.21  2.01    0.59  0.57  9.85  1.84     0.55 
   Female    50-59   23   0.13  0.50   8.21  2.01    0.33  0.55  8.87  1.87     0.64 
     Male    60-69   47   0.13  0.50   8.21  2.01    0.80  0.62 10.34  1.71     0.68 
   Female    60-69   42   0.13  0.50   8.21  2.01    0.51  0.58  9.43  1.80     0.69 
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2.2.8.2 Item Maps 

Another way to compare the locations of the items and the persons is to use so-called item maps26. 

DIGRAM will not plot such maps but creates text files with information that you can use to create 

them with a statistical program of your own choice.  

The data with information on item maps is called Imap.txt. SPSS user may use the Imap.sps created 

by DIGRAM together with the data file. Figure 2.2.38 show the beginning of Imap.txt. F and G are 

the exogenous variables on which the distribution of θ depends. Theta is the person parameter. Type 

indicates the ML estimates (0), the WML estimates (1), the estimated population distribution (2), 

the PCM thresholds (3), the item targets, the item info (5) and the SEM defined by the item info (6). 

and the score thresholds (4), . The weight indicates the size of the bars of the item maps27. 

 

 

 

 
 
 
 
 
 
 

Figure 2.2.38 The start of the IMAP.txt file. 
 
The item maps plot the estimated distribution of the person parameter within the 99 % confidence 

range, the distribution of the item thresholds and the distribution of the thresholds of the distribution 

of the score. 

Figure 2.2.39 show the item map of women aged 60-69 years. The map includes the WML, the 

estimated normal distribution, the PCM thresholds and the item targets.  

Figure 2.2.40 show the info map plotting the distribution of the persons above the test info and 

SEM curves. It is easy to see that DHP is a little bit out of target for this population. 

 

                                                 
26 Item maps are sometimes referred to as Wright maps, because Benjamin Wright was the first to suggest them. 
27 The formatting of the maps are described as part of the targeting output for the different groups defined by F and G.  

F G theta type weight 
1 1 -1.89 2 5 
1 1 -1.80 2 2 
1 1 -1.72 2 2 
1 1 -1.63 2 3 
1 1 -1.54 2 4 
1 1 -1.46 2 4 
1 1 -1.37 2 5 
1 1 -1.29 2 7 
1 1 -1.20 2 8 
1 1 -1.12 2 10 
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Figure 2.2.39 Item map for women, age 60-69.  

 

 
Figure 2.2.40 Info map for women men, age 60-69.  
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2.3 Graphical log-linear Rasch models. The Short tour. 
 

On this tour, we return to the original version of the DHP scale where the total score measure the 

level of disinhibited eating. The initial analysis provided evidence suggesting 1) DIF of item C 

(DHP36) relative to G (Sex), 2) local dependence (LD) between items B (DHP34) and D (DHP38), 

3) local dependence between items D (DHP38) and E (DHP39), and 4) that the item discrimination 

of item D was stronger than expected by the Rasch model. During this tour, we will define and test 

a graphical log-linear Rasch model that take this evidence into account and test whether this model 

fits data. 

  

2.3.1 Definition of graphical log-linear Rasch models 

The evidence against the fit of DHP items to the Rasch model is so comprehensive that the scale 

won’t survive attempts to purify it by elimination of items. A much better option is to attempt to fit 

a GLLRM where uniform DIF and uniform local dependence28 is accepted, because it follows from 

the sufficiency of the total score in GLLRMs that they possess the same fundamental properties as 

the Rasch models. 

 
GLLRMs are defined by generating sets (subsets of items and exogenous variables) defining log-

linear interaction among variables).  The current version of DIGRAM only permits two-way 

interactions. The generating sets for a model defined by the evidence of DIF and local dependence 

is therefore equal to (BD, DE, CG). 

 
There are three ways to tell DIGRAM that this is the model that you want to define.  

 
i. You can invoke the “GRM BD DE CG” command. DIGRAM will understand that this is 

GLLRM that you will use as the current model.  

ii. You can invoke the GRM command without parameters or click on the GRM button. 
DIGRAM will define the Rasch model as the current model, following which you have to 
define the GLLRM when the GRM dialog is enabled. 

                                                 
28 DIF is uniform if the strength of the association between the item and the source of DIF does not depend on the 
person parameter. In the same way, we say that local dependence is uniform if the strength of the association between 
two variables is the same for all values of the person parameter. 
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iii. You can use and “ITA BD DE CG” command. DIGRAM will take you to the GRM dialog, 
define and estimate the parameters of the GLLRM and return to DIGRAM’s main dialog 

iv. Finally you can define click on the IRT graph and add edges between the variables to the 
IRT graph as shown in Figure 2.3.1 and then invoke the GRM command without parameters 
or click on the GRM button. 

Figure 2.3.1.shows the IRT graph of the model. We assume that you have used the ITA command 

and the wanted to see the model. Notice, that the “Toggle GLLRM gammas” button has been 

enabled. We will return to that later. For now, you only need to know that the parameters of the 

item parameters have been estimated. 

 

Figure 2.3.1 IRT graph of a GLLRM with DIF and local dependence. The graph has been 
edited to make it easier to read.  

 

Before we go into the details of item analyses by GLLRMs it is useful to take a closer look at the 

GRM dialog (Figure 2.3.2) which appears when you click on the GRM button. The dialog box 

contains two model fields: the “Current model” field with model terms written in red and the “New 

model field” with model terms written in black.  



 104 

The current model is the model defined by the IRT graph or by the parameters added to the GRM 

command. DIGRAM assumes that this is your preferred model. You cannot edit this field. 

The new model is the model that DIGRAM will use for the analysis from the GRM dialogue. To 

begin with, DIGRAM copies the current model to the new model assuming that you want to 

examine this model, but if you want to fit a different model, you have to define this model in the 

“new model” field by adding and/or deleting model terms.  

You cannot edit the “current model” field, but you may replace the current model with the new 

model by pushing the “Change model” button. If you, on the other hand, want to discard the new 

model and return to the current model you can press the “Use current model” button instead. 

 

Figure 2.3.2 The GRM dialog form following either editing of the IRT graph  
or a “GRM BD DE CG” command. Item parameters have been estimated. 

 
 
2.3.2 Item analysis by GLLRMs  
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Since we have just defined the current model, there is no reason to define another model. We 

proceed directly to item analysis by GLLRMs. 

Until you want to define a new model, the analysis proceeds in exactly the same way for the 

GLLRM as for the ordinary Rasch model except that estimates of item parameters include estimates 

of interaction parameters relating to local dependence and DIF and parameters defining the 

distribution of so-called component scores over locally dependent items. 

You have to  

a) Estimate the item parameters by pushing the START button, 

b) select “Test global homogeneity” for CML tests of homogeneity and invariance,  

c) select “Item fits” for the same item fit statistics as for the Rasch model,  

d) select “Reduce model” for confirmatory tests of the model’s claims of local dependence 
and DIF. 

e) select “Check local independence” and “Check missing DIF” to make sure that there is no 
evidence of DIF and LD above and beyond the DIF and LD in the model, 

f) select “Export data for ICC curves” if you want to se the ICC, IIC and CCC curves, 

g) select “Estimate person parameters” for estimates of person parameters,   

h) select “Test information and targeting” to assess the appropriateness of the items for the 
current study population.  

Steps a) to  e) have to be repeated until you have an adequate model before it makes sense to take 
steps f) to h). 

 

2.3.3 Estimates of item parameters  

DIGRAM estimates the item parameters when you invoke the GRM dialog, but you have to click 

start to estimate the parameters again, if you revise the new model.  

Figure 2.3.3 shows the estimates of the multiplicative item parameters. 

The multiplicative parameters include main effect parameters corresponding to the multiplicative 

parameters of the Rasch model and multiplicative interaction parameters. The main effects 
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parameters are fixed so that the product of the parameters for the maximum item scores is equal to 

one.  

The log-linear interaction parameters are fixed in such a way that the interaction parameters 

corresponding to reference categories for both variables in an interaction terms are equal to 1. 

DIGRAM prefers to use the first category as the reference category, but selects another reference 

category to avoid situations where combinations of a reference category on one variable and a value 

of another variable have not been observed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 2.3.3 Estimates of multiplicative item parameters 

       item          0         1         2         3   
------------------------------------------------------ 
A:    DHP32        1.000     1.750     0.741     0.257 
B:    DHP34        1.000     0.724     0.662     0.827 
C:    DHP36        1.000     1.863     4.460     2.103 
D:    DHP38        1.000     4.031     1.662     1.707 
E:    DHP39        1.000     3.792     0.918     1.312 
 
LD: DHP34(B) & DHP38(D) 
                 B 
 D           0        1        2        3    
 
 0          1.000    1.000    1.000    1.000 
 1          0.116    0.213    0.673    1.000 
 2          0.000    0.000    0.000    1.000 
 3          0.253    0.395    1.203    1.000 
 
Standardized Gamma =  0.556 (G2OR =  3.50) 
 

LD: DHP38(D) & DHP39(E) 
                 D 
 E           0        1        2        3    
 
 0          1.000    0.227    0.000    0.000 
 1          1.000    1.856    0.401    0.141 
 2          1.000    1.080    5.269    0.290 
 3          1.000    1.000    1.000    1.000 
 
Standardized Gamma =  0.556 (G2OR =  3.50) 
 
DIF:    item: DHP36(C)      DIF source: SEX(G) 
                      C 
G                0        1        2        3 
 
1    Female    1.000    1.000    1.000    1.000 
2    Male      1.000    0.326    0.320    0.252 
 
Standardized Gamma = -0.350 (G2OR = 0.48) 
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The log-linear interaction parameters are cross-product ratios29 in 2x2 tables defined by the 

reference values and a single column category and a single row category. The complete set of log-

linear parameters describe the conditional distribution of items and exogenous variables given θ. If 

both variables are ordinal or binary, we describe the strength of the partial correlation by the two 

variables by Goodman and Kruskal’s γ in the table defined by the log.-linear structure defined by 

the parameters and the marginal distributions of the variables30.  

The gamma values referred to in Figure 2.3.1 is the standardized γ values. If you select “Toggle 

GLLRM gammas”, the standardized γ values will be added to the edges and arrows connecting 

items and exogenous variables.  

Figure 2.3.4a shows the PCM thresholds of the two locally independent items under the GLLRM. 

One of these (Item A - DHP32) is a conventional PCM item whereas item C (DHP36) is a DIF item 

functioning differently among men and women.  

The PCM thresholds of DHP36 illustrate the limitations of the PCM parametrizations. It is clear 

that the location is lower for men than for women, but it is less clear whether or not the categories 

function differently for men and women and in which way. To address this issue we have to look at 

the version of the Rasch models that separates item and category effects. 

 

Figure 2.3.4b shows the PCM thresholds associated with the locally dependent items. The GLLRM 

defines one item component with items that are directly or indirectly associated. Under the GLLRM 

component scores summarizing the responses to item of item components are polytomous super 

items fitting the Rasch items with PCM thresholds defined by the main effects of the items and the 

log-linear interaction parameters. Figure 2.3.4b shows the PCM thresholds of the B+D+E super 

item. 

 

  

                                                 
29 Often interpreted as odds-ratios. The G2OR values included in Figure 2.33 are functions of the gamma values: G2OR 
= (1+γ)/(1-γ). In 2x2 tables, G2OR is a true odds-ratio value. In larger tables as in Figure 2.3.3, G2OR is not a true 
odds-ratio, but they may still be useful if you want to compare associations in tables with ordinal categorical values 
with association in 2x2 tables. 
30 We refer to γ coefficient defined by the marginal distributions of variables as standardized γ value. Since Goodman 
and Kruskal’s γ depend on the marginal distributions of variable, the measure of the partial correlation of the variables 
would have been different if we had fitted the lo-linear structure to uniform marginal distributions.  
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Figure 2.3.4a PCM thresholds of locally independent items 

 

 

 

 

 

 

Figure 2.3.4b PCM thresholds of the component score  B+D+E. The location is equal to -0.068 

Figure 2.3.5 shows the item and category effects of the main effects of the DHP items. The item 

effect of this item is stronger for men than for women. Because of the orientation of the items, this 

means that it is easier to stop eating for women than for men.   

 
  +------------------------------+ 
  |                              | 
  | PCM thresholds and locations | 
  |                              | 
  +------------------------------+ 
 
  +---------------------------+ 
  |                           | 
  | Locally independent items | 
  |                           | 
  +---------------------------+ 
 
  item                 1        2        3    Location 
------------------------------------------------------ 
A:    DHP32        -0.559    0.860    1.059     0.453 
C:    DHP36 * DIF item * 
  G =   FeMale     -0.622 > -0.873    0.752    -0.248 
  G =   Male        0.498 > -0.854    0.990     0.211 
 

  +------------------------------------------------------+ 
  |                                                      | 
  | Item components defined by local response dependence | 
  |                                                      | 
  +------------------------------------------------------+ 
 
 
B-DHP34 & D-DHP38 & E-DHP39   Component scores from 0 to 9 
 
Thresholds:  
  
-1.531 -0.518 -0.308 > -0.617 -0.361 1.006 > -0.219 1.171 > 0.761 
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Figure 2.3.5 Item and category effects defined by main effects of DHP items 

The category effects of DHP36 = 1 (“Quite easy to stop eating”) of women is close to half the 

category effect of men. To understand the effect of this we have to look at scale-anchored 

distributions. Figure 2.3.6 show the distributions of C anchored at the locations of DHP36 for men 

and women. At the item locations, men and women agree that the probability of “Not very easy” is 

0.44 and the expected item score is close to the same for men and women. But they disagree about 

the probability of “Quiet easy”. Women select his option more often than either of the extreme 

categories whereas men prefer the extreme categories to a higher degree than “Quite easy to stop 

eating”.  

 

 
 
 
 
 
 
 
 
 
 

Figure 2.3.6 Item distribution of DHP36 anchored at θ equal to locations of item C for men 
and women.   

  item                 0        1        2        3    Item effect 
--------------------------------------------------------------- 
A:    DHP32         0.000    1.013    0.606    0.000    -0.453 
B:    DHP34         0.000   -0.260   -0.286    0.000    -0.063 
C:    DHP36 * DIF item * 
  G =   Female      0.000    0.375    1.000   -0.000     0.248 
  G =   Male        0.000   -0.286    0.779    0.000    -0.211 
D:    DHP38         0.000    1.216    0.151   -0.000     0.178 
E:    DHP39         0.000    1.242   -0.266    0.000     0.090 
 
             ---- MICE effects ---- 
 
A:    DHP32         1.000    2.753    1.833    1.000     0.636 
B:    DHP34         1.000    0.771    0.751    1.000     0.939 
C:    DHP36 * DIF item * 
  G =   Female      1.000    1.454    2.717    1.000     1.281 
  G =   Male        1.000    0.751    2.179    1.000     0.809 
D:    DHP38         1.000    3.373    1.163    1.000     1.195 
E:    DHP39         1.000    3.464    0.766    1.000     1.095 
 

  How easy do you find it to stop eating   

 
θ 

 
Sex 

Very 
easy 

Quiet 
easy 

Not very 
easy 

Not at 
all 

 
mean 

 
INF 

-0.25 F 0.16 0.24 0.44 0.16 1.60 0.89 

 M 0.38 0.18 0.34 0.10 1.14 1.09 

0.21 F 0.07 0.16 0.48 0.28 1.98 0.73 

 M 0.20 0.15 0.44 0.20 1.64 1.04 
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Figure 2.3.7 present the midpoint and targets of the items under the GLLRM. At the targets of 

DHP36, the target info is a little stronger for men than for women.  

 

 

 

 

 

 

 

 

 

 

Figure 2.3.7 Item midpoints and targets 

 
You can also select “Export data for ICC curves” for GLLRMs. The text files with data for the ICC 

curves also provides information on  item components with locally dependent items and on DIF. 

The ICC text file defined by the (BD, DE,CF) model information on 

Theta :  the person parameter 
F :  the DIF source (Gender) 
Score :  the expected (true score)  
A :  the expected score on item A  
BDE :  the expected score on the B+D+E item component 
B :  the expected score on item B 
D :  the expected score on item D 
E :  the expected score on item E 
C :  the expected score on item C 
Type :  0 = ICC values, 1 = Observed frequencies 
n  :  number of persons (1 if Type = 0); 

 

  
  +---------------------------+ 
  |                           | 
  | Locally independent items | 
  |                           | 
  +---------------------------+ 
 
A -    DHP32       Midpoint =  0.534  Target =  0.697  Info =  0.873  (0.29) 
C -    DHP36 
     G =   Female  Midpoint = -0.361  Target = -0.556  Info =  0.928  (0.31) 
     G =   Male    Midpoint =  0.075  Target = -0.090  Info =  1.108  (0.37) 
 
  +--------------------------------------------------------------+ 
  |                                                              | 
  | Info on item components defined by local response dependence | 
  |                                                              | 
  +--------------------------------------------------------------+ 
 
BDE: B-DHP34 & D-DHP38 & E-DHP39 
 
Component scores from 0 - 9.   Expected score at midpoint =  4.5 
 
  Location = -0.068 
  Midpoint = -0.051 
    Target = -0.173   Info at target =  3.509  (0.39) 
 
------------------------------------------- 
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Figure 2.3.8 shows the ICC curves for men. Note that the ICC curves are steeper for the locally 

dependent items than for the pure Rasch items. 

 
Figure 2.3.8 ICC curves for women (G = 1) 

 
 
2.3.4 Tests of homogeneity and invariance 
 
Figure 2.3.9 shows the CLR tests of homogeneity and invariance. There is no evidence against the 

model. 

 
 
 
 
 
 
 
 
 

Figure 2.3.9 Overall fit statistics of the BD,DE,CF model 

Summary of global test results. Delta will 
be reported if estimation did not converge. 
 
             CLR   df   p        delta 
-------------------------------------- 
scoregroups   19.2  30 0.936 
F:      AGE   99.9  90 0.223     0.001 
G:      SEX   25.2  24 0.394 
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2.3.5 Item fits 
 

Figure 2.3.10 shows the item fit statistics. After including the local dependence and DIF suggested 

by the tests of the Rasch model there is no evidence against item fit. In this example, we therefore 

conclude that the evidence of too strong item discrimination of item D is spurious evidence caused 

by local dependence. The item fits include tests of fit of the component score B+C+D.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.10 Item fit statistics under the BD,DE,CG model.  
 

  +--------------------------------+ 
  | Conditional outfits and infits | 
  +--------------------------------+ 
 
               Outfit                         Infit                     
Item          observed     sd       p       observed     sd       p     
----------------------------------------------------------------------- 
A -    DHP32    1.075    0.103  0.46476       1.082    0.107  0.44439    
B -    DHP34    1.058    0.144  0.68767       1.014    0.117  0.90562    
C -    DHP36    0.954    0.088  0.60072       0.959    0.084  0.62402    
D -    DHP38    0.982    0.216  0.93251       1.070    0.146  0.63065    
E -    DHP39    0.953    0.145  0.74700       0.980    0.129  0.87692    
----------------------------------------------------------------------- 
 
  +-----------------------------+ 
  | Item rest-score association  | 
  +-----------------------------+ 
 
                   Item-rest-score gamma 
Item           observed expected    sd      p    
------------------------------------------------ 
A -    DHP32    0.296    0.325    0.073  0.69862     
B -    DHP34    0.494    0.497    0.058  0.96664     
C -    DHP36    0.335    0.307    0.069  0.68380     
D -    DHP38    0.681    0.658    0.056  0.68407     
E -    DHP39    0.514    0.518    0.068  0.95517     
------------------------------------------------ 
 
Critical levels adjusted by the Benjamini-Hochberg procedure:  
* < 5 % FDR, ** < 1 % FDR, *** = FDR < 0.1 % FDR 
 
  +----------------------------------------+ 
  | Component-rest-score gamma coefficients | 
  +----------------------------------------+ 
 
                    Gamma 
Component      observed expected    sd      p    
------------------------------------------------ 
   BDE          0.407    0.353    0.064   0.3947 
 
+--------------------------------------------------------------------------+ 
| Benjamini-Hochberg limits for all outfits, infits and gamma coefficients | 
+--------------------------------------------------------------------------+ 
 
FDR = 5 %. Limit =  0.00313 
FDR = 1 %. Limit =  0.00063 
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2.3.6 Confirmatory test of DIF and local dependence 

The results of the item analysis in the previous section confirmed that there was nothing wrong with 

the model. The only thing that we have not considered yet is the question of whether we really need 

to include the two pairs of local dependency and the DIF of item C relative to F (Sex). For this 

purpose, we also use Kelderman’s CLR test. The test is calculated for each of the interaction terms 

in the model where the model without a term is the null-hypothesis and the “new” model is the 

alternative. Select “Reduce model” to get these tests. Figure 2.3.11 shows the results. All 

hypotheses are rejected, but it has to be admitted that the evidence of DIF is not strong (p = 0.024). 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.11 Confirmatory tests of DIF and local dependence 
 

 
2.3.7 Tests of local independence and no DIF 

Select “Check local independence” and “Check missing DIF” to test that we have not overseen 

problems.  

Figure 2.3.12 assumes that we have asked for extended output because we want to see all test resuls 

whether they are significant or not. It adds nothing to the model.  

  +---------------------------+ 
  |                           | 
  | Tests of local dependence | 
  |                           | 
  +---------------------------+ 
 
Standardized gamma coefficients will be reported. 
 
BD: DHP34 & DHP38      lr =  40.59 df =  9 p = 0.0000 Gamma =  0.56 
DE: DHP38 & DHP39      lr =  37.76 df =  9 p = 0.0000 Gamma =  0.45 
 
  +--------------+ 
  |              | 
  | Tests of DIF | 
  |              | 
  +--------------+ 
 
Standardized gamma coefficients will be reported. 
 
CG: DHP36 & SEX        lr =   9.44 df =  3 p = 0.0240 gamma = -0.35 
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2.3.8 Person estimation and targeting in GLLRMs 

Person parameter estimates will be different for men and women because Sex is a DIF source of 

DIF.  We do not show the estimates here, but after the tables with the person parameters estimates, 

DIGRAM prints a table (Figure 2.3.9) with equated scores where scores for men are adjusted to the 

scores for women. In the score range from 1 to 10, the scores for men (G=2) should be increased 

with 0.20 – 0.50 points to be comparable to the scores for women (G=1). To assess the effect of 

DIF, DIGRAM also compares observed and adjusted scores in groups defined by the source of DIF. 

Figure 2.3.10 summarizes the test information and targeting under the GLLRM. Compare these 

results with the results in Figure 2.2.28. Recall, that Figure 2.2.28 summarize targeting for flipped 

items. To compare the results you therefore have to change the sign of the target value and the signs 

of the means of the population parameters in this figure. None of the other statistics included in the 

Check assumptions of local independence 
 
A & B:   lr =    5.04  df =   9  p = 0.8309 
A & C:   lr =   11.03  df =   9  p = 0.2738 
A & D:   lr =   18.06  df =   9  p = 0.0345 
A & E:   lr =   13.23  df =   9  p = 0.1523 
B & C:   lr =   19.52  df =   9  p = 0.0211 
B & E:   lr =    6.83  df =   9  p = 0.6546 
C & D:   lr =    4.75  df =   9  p = 0.8552 
C & E:   lr =    9.80  df =   9  p = 0.3668 
 
               ---                
 
Check assumptions of no DIF 
 
 
A & F:   lr =    9.39  df =   9  p = 0.4020 
B & F:   lr =    5.38  df =   9  p = 0.8004 
C & F:   lr =   12.42  df =   9  p = 0.1907 
D & F:   lr =    2.97  df =   9  p = 0.9653 
E & F:   lr =   12.36  df =   9  p = 0.1940 
A & G:   lr =    0.83  df =   3  p = 0.8421 
B & G:   lr =    1.83  df =   3  p = 0.6075 
D & G:   lr =    2.74  df =   3  p = 0.4342 
E & G:   lr =    6.06  df =   3  p = 0.1089 
 
Benjamini & Hochberg rejects at 0.00294 
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assessment of test information and targeting depend on the orientation of the items so that this 

parameters are directly comparable between Figure 2.2.28 and Figure 2.3.9.  

 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3.9 WML estimates, DIF equated scores and assessment of test bias for women and 
men. The analysis of observed and adjusted means will only be reported if you ask for 

extended output and select the “compare observed and “DIF equated score distributions”. 
 

 

  +--------------------+ 
  |                    | 
  | DIF equated scores | 
  |                    | 
  +--------------------+ 
DIF sources:   G - SEX 
             G      G 
score        1      2 
--------------------- 
    1     1.00   1.22 
    2     2.00   2.39 
    3     3.00   3.47 
    4     4.00   4.49 
    5     5.00   5.48 
    6     6.00   6.45 
    7     7.00   7.40 
    8     8.00   8.35 
    9     9.00   9.29 
   10    10.00  10.23 
   11    11.00  11.17 
   12    12.00  12.13 
   13    13.00  13.08 
   14    14.00  14.05 
 

  +----------------+ 
  |                | 
  | Observed score | 
  |                | 
  +----------------+ 
 n         100     88 
Mean      4.86   6.24 
s.d.      3.12   3.36 
s.e.      0.31   0.36 
  +---------------+ 
  |               | 
  | Equated score | 
  |               | 
  +---------------+ 
Mean      4.86   6.59 
s.d.      3.12   3.31 
s.e.      0.31   0.35 
 
  +-----------+ 
  |           | 
  | Test bias | 
  |           | 
  +-----------+ 
Bias      0.00  -0.36 
stand.    0.00  -0.11 

 

  +------------------------------------+ 
  | Score mean and se by values of SEX | 
  +------------------------------------+ 
 
               Observed      Adjusted 
Category      Mean    se    Mean    se    Bias 
---------------------------------------------- 
 1   Female   4.86   0.31   4.86   0.31   0.00 
 2     Male   6.24   0.36   6.59   0.42  -0.36 
---------------------------------------------- 
 
******************************* 
* Analysis of observed scores * 
******************************* 
 
Mean =    5.5  se =   0.2  Chi =    8.4 df = 1  p =   0.004 
 
******************************* 
* Analysis of adjusted scores * 
******************************* 
 
Mean =    5.5  se =   0.3  Chi =   11.0 df = 1  p =   0.001 

  +---------------+ 
  |               | 
  | WML estimates | 
  |               | 
  +---------------+ 
              G      G   
  score       1      2   
------------------------ 
       0   -2.784 -2.607 
       1   -1.614 -1.297 
       2   -1.010 -0.752 
       3   -0.624 -0.501 
       4   -0.421 -0.349 
       5   -0.286 -0.232 
       6   -0.177 -0.132 
       7   -0.077 -0.036 
       8    0.022  0.063 
       9    0.130  0.173 
      10    0.260  0.310 
      11    0.441  0.502 
      12    0.726  0.785 
      13    1.114  1.158 
      14    1.624 1.667 
      15    2.628  2.701 
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Figure 2.3.10 Targeting and test information under the BD, DE, CF model 
 

 

 

  +--------------------------------+ 
  |                                | 
  | Targeting and test information | 
  |                                | 
  +--------------------------------+ 
 
                                     theta        test info    target      RMSE(WML)    target 
      SEX      AGE  Target   n   Mean    sd     Mean     max   index     Mean     min   index 
----------------------------------------------------------------------------------------------- 
   Female    18-49  -0.16   14  -0.28   0.65   4.221   5.052   0.836    0.514   0.445   0.866 
     Male    18-49  -0.09   17   0.29   0.69   4.274   5.307   0.805    0.510   0.434   0.851 
   Female    50-59  -0.16   33  -0.52   0.42   4.305   5.052   0.852    0.512   0.445   0.869 
     Male    50-59  -0.09   23  -0.21   0.45   4.747   5.307   0.895    0.485   0.434   0.895 
   Female    60-69  -0.16   47  -0.69   0.63   3.757   5.052   0.744    0.550   0.445   0.809 
     Male    60-69  -0.09   42  -0.34   0.59   4.354   5.307   0.820    0.512   0.434   0.847 
 
  +---------------------------------------+ 
  |                                       | 
  | True score estimation and reliability | 
  |                                       | 
  +---------------------------------------+ 
 
                                    Score                 separation  no sep.   
      SEX      AGE  Target   n   Mean    sd   reliability     prob     prob   Target SEM(TS) Mean SEM(TS) 
---------------------------------------------------------------------------------------------------------- 
   Female    18-49   6.74   14   6.29   3.43      0.656      0.756    0.081       2.25         2.04 
     Male    18-49   6.71   17   8.35   3.62      0.695      0.772    0.072       2.30         2.05 
   Female    50-59   6.74   33   5.15   2.74      0.440      0.676    0.104       2.25         2.06 
     Male    50-59   6.71   23   6.13   3.08      0.497      0.695    0.085       2.30         2.17 
   Female    60-69   6.74   47   4.66   3.10      0.606      0.737    0.090       2.25         1.91 
     Male    60-69   6.71   42   5.57   3.30      0.609      0.747    0.082       2.30         2.07 
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2.3.5 Saving the model 

Item analysis by GLLRMs can be time-consuming. To save time used to recall and redefine the 

models DIGRAM will let you save the definition of the models as a DIGRAM command file. 

 
You can do this in two ways: from the DIGRAM main form where you have to invoke a “SAVE R” 

command or from the GRM dialog (Figure 2.3.2) where you have to press the “Save current 

model” button. The contents of the command file for the (BD, DE, CG) model is shown in Figure 

2.3.11.  It first selects items and exogenous variables and then defines the model and open the GRM 

dialog. 

 

  

 
 

 

 

Figure 2.3.11 Contents of a command file defining the (BD, DE, CG) model 

 

The “SCREEN J” command invokes the item screening procedure that we will describe in the 

next session. It is included as part of the definition of the GLLRM because some the information 

provided during the item screening may be useful during the analysis after you have defined the 

model. The ASY command is to make sure that no time is wasted to calculate Monte Carlo 

estimates of p-values during the item screening, while the REP command is meant to reset the 

defaults requiring repeated Monte Carlo tests during analysis of multiway tables. 

 

ITEMS ABCDE 
EXO FG 
ASY 
SCREEN J 
REP 
GRM BD DE CG 
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2.4 Graphical log-linear Rasch models. The longer tour. 

 
On this tour, we abandon the DHP project and turn to the PF3 project with data on the PF subscale 

of the SF-36 inventory claiming to measure physical functioning. The PF3 project includes 

information on sex and age that we will use for analyses of DIF. 

It is often useful to think about the definition of items before we attempt to fit a conventional IRT or 

Rasch model to data. The PF items are defined by responses to the following ten questions with 

three ordinal response categories, 0  = “Limited a lot”, 1 = “Limited a little” and 2 = “ Not limited”. 

Does your health now limit you in these activities? If so, how much? 

A)  PF1:  Vigorous activities 
B)  PF2:  Moderate activities 
C)  PF3:  Lifting or carrying groceries 
D)  PF4:  Climbing several flights of stairs 
E)  PF5:  Climbing one flight of stairs 
F)  PF6:   Bending, kneeling, or stooping 
G)  PF7:  Walking more than a mile 
H)  PF8:  Walking several blocks 
I)   PF9:   Walking one block 
J)  PF10:  Bathing or dressing yourself 

There are several reasons to be concerned with the plausibility of a conventional Rasch model for 

the PF.  

One problem is that the PF items may be multidimensional because the items address two different 

issues: health and physical functioning.  

A second problem is that PF1 (A) is concerned with activities may be limited for reasons that has 

nothing to do with health and that item J is concerned with activities of daily living that are very 

different from the physical activities described by the other items. For this reason, we will not 

include items A and J in the example here.  

A third problem is that the PF questions are phrased in a way that has to generate local response 

dependence. If one, for instance, claims to have no limits climbing several flights of stairs it makes 

little sense to claim that one cannot walk one flight of stairs without limitations. We are sure that 

you will agree that questions are phrased in such a way that there have to be local response 

dependence between B & C, between D & E and between G & H, G & I and H & I. 
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We have three ways to address these issues. 

The first is to do it as we have done in the previous sections. We may start with a conventional 

Rasch model and use the evidence of local dependence and DIF as a starting point for a search for 

an adequate GLLRM. 

A second and better way defines an initial GLLRM with the five pairs of dependent items and start 

from there. This should reduce the problems with spurious evidence of dependence and save some 

time compared to the first approach. 

The third would be to test the global Markov properties of the conventional Rasch model and use 

the results of these tests to define the initial GLLRM. We expect the tests of the Markov properties 

to provide evidence of the local dependence within the five pairs of items together, but the tests may 

provide evidence of local dependence of DIF that we cannot foresee by looking at the contents of 

the items.  

We refer to an analysis of Markov properties of Rasch models as item screening. Item screening is a 

simple procedure that does not require model fitting. All it takes is tests of conditional 

independence in a number of three-way tables. Since these tests are powerful, we expect item 

screening to provide results that will define an initial GLLRM, which will be very close to an 

adequate model. 

  
2.4.1 Descriptive item analysis 

In addition to thinking about the contents of the items, it is always as good idea with a purely 

descriptive analysis before we try to find and fit a Rasch model. DIGRAM have two commands 

serving this purpose. “SHOW I” provide information on items and “SHOW S” will tell you about 

the distribution of the score.  

2.4.1.1 Information on items 

The SHOW I command provides much more information than what we need to present here. You 

will get a list of items and tables with the marginal item distribution. There are tables of relations 

between items and rest-score to give you an idea about the degree to which response functions are 

monotonic. There is a little bit of Mokken analysis, assessment of reliability and tables describing 
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the association between exogenous variables and items including the degree to which the exogenous 

variables is related to the presence of missing responses on items. We cannot show everything here, 

so we suggest that you try it yourself. Figure 2.4.1 shows two things that may be important for the 

analysis. The first is the marginal distributions of responses to items by 968 persons with complete 

responses to items. The second is the frequency of missing item responses in different age groups. 

The complete dataset has responses to PF items by 1069 persons. This means that responses to 

items is incomplete for close to 7.5 % of the persons. Figure 2.4.1 shows that the frequencies of 

missing responses increase with age.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4.1 Information on PF items 

Since we estimate the item parameters by conditional ML estimates and since we are able to 

estimate person parameters for all persons with responses to some items it may not be a problem 

unless the frequency of missing responses depend on an unobserved source of DIF for some items. 

  +--------------------+ 
  |                    | 
  | Item distributions | 
  |                    | 
  +--------------------+ 
 
968 persons with complete responses 
 
Item order from high to low item score: IHEGCBFD 
 
      Item     0      1      2    Mean    Average   
--------------------------------------------------- 
I Walk_1bl    2.0    4.8   93.3   1.91     0.96 
H Walk_2+b    2.5    5.9   91.6   1.89     0.95 
E   Stair1    2.2    8.0   89.9   1.88     0.94 
C Liftgroc    3.7   12.3   84.0   1.80     0.90 
G  Walk_1m    5.5    9.4   85.1   1.80     0.90 
B  Mod.act    4.2   13.7   82.0   1.78     0.89 
F  Bending    4.6   15.2   80.2   1.76     0.88 
D  Stair2+    5.5   16.5   78.0   1.73     0.86 
--------------------------------------------------- 
 
  +--------------------------------------------+ 
  |                                            | 
  | Frequency of Missing item responses by AGE | 
  |                                            | 
  +--------------------------------------------+ 
 
                     B     C     D     E     F     G     H     I  
---------------------------------------------------------------- 
 1  16 - 29   248   1.2   1.2   1.6   1.2   1.2   1.2   1.2   1.2 
 2  30 - 44   293   0.7   0.3   0.3   1.0   1.0   0.7   0.7   1.0 
 3  45 - 59   264   4.9   6.1   4.2   4.9   4.5   5.3   5.3   6.4 
 4  60 - 69   244   8.6   8.6  10.2  13.5   9.4  12.3  13.1  13.5 
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The frequencies of missing responses therefore suggest that it is worth to compare the CML 

estimates of the item parameters by persons with complete responses with the estimates based on 

data with complete and incomplete responses. 

 
2.4.1.2 Information on the score 

Figure 2.4.2 show the distribution of the score over the eight PF items and the relationship between 

physical functioning and age 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2.4.2 Information on the PF score 

The PF score depends on age, but the association between the age and the frequency of missing 

responses imply that we should not draw conclusions on this issue before we have analysed the 

relationship between Age and the estimates of the person parameters.  

In addition to this, the distribution of the score creates an important problem. A sample of 968 

persons is large enough to provide precise estimates of item parameters. However, the responses 

Score distribution: 968 Cases 
--------------------------------- 
Score  Count Percent  Cumulated 
------------------------------- 
   0       8     0.8        0.8 
   1       4     0.4        1.2 
   2       2     0.2        1.4 
   3       7     0.7        2.2 
   4       5     0.5        2.7 
   5       9     0.9        3.6 
   6       6     0.6        4.2 
   7       7     0.7        5.0 
   8      14     1.4        6.4 
   9      10     1.0        7.4 
  10      18     1.9        9.3 
  11      19     2.0       11.3 
  12      32     3.3       14.6 
  13      35     3.6       18.2 
  14      59     6.1       24.3 
  15      89     9.2       33.5 
  16     644    66.5      100.0 
------------------------------- 
Total    968   100.0 
 
Mean     =  14.54 
Variance =   9.40 
s.d.     =   3.07 
skewness =  -2.74 

  +------------------------------------+ 
  |                                    | 
  | Score mean and sd by values of AGE | 
  |                                    | 
  +------------------------------------+ 
 
Category      Mean    se 
------------------------- 
 1  16 - 29  15.46   0.10 
 2  30 - 44  15.43   0.10 
 3  45 - 59  14.19   0.21 
 4  60 - 69  12.48   0.32 
------------------------- 
 
Mean =   15.2  se =   0.1   
Chi =  108.8 df = 3  p =   0.000 
 
The stepwise analysis collapses the 
categories with the largest p-value 
 
Collapsed groups sorted according to 
decreasing mean scores 
 
    Mean   Groups 
---------------------------- 
   15.45   16 - 29 + 30 - 44 
   14.19   45 - 59 
   12.48   60 - 69 
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from the 652 persons with extreme scores provide no information on differences between items. 

The sample only include responses from 316 persons that can be used to estimate the item 

parameters and test the fit of items to the model.  

 
2.4.2 Item screening 

The item screening that we have implemented in DIGRAM is a stepwise procedure described by. 

The output is extensive providing information on every step taken during the screening, however in 

most cases, there will be no reason to look at anything but the final part where results are summar-

ized and the initial GLLRM defined.  

 
Figure 2.4.3 summarizes the result of the item screening and Figure 2.4.2 shows the IRT graph of 

the GLLRM proposed by the result. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.3 Summary of results of item screening of PF3 items. 
 
The interaction terms “BC DE GH HI CK” imply that item screening only disclosed evidence of four 

of the five pairs of locally dependent items that we expected to find, but found evidence of DIF of 

item C relative to K that we could not foresee. In addition to this, item screening also provided 

evidence of direct effect of K and L on the latent variable.  

  +---------------------------+ 
  |                           | 
  | Summary of item screening | 
  |                           | 
  +---------------------------+ 
 
Warnings: 
 
No apparent risk that LD and DIF evidence could be spurious 
 
------------------------------------------------------ 
 
Item screening has defined the following GLLRM: BC DE GH HI CK 
 
Positive local dependence:  BC DE GH HI 
DIF                      :  CK 
 
The score is associated with the following exogenous variables: 
 K: SEX 
 L: AGE 
 
Local dependent items in the model: 4 item components: BC DE F GHI 
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In this case, item screening defined a GLLRM with four item components four item components 

consisting of items that are connected in the IRT graph (Figure 2.4.4). The first consists of items B 

and C, the second of D and E, the third of a single item (F), and the fourth of items G, H and I.  

DIGRAM defines this as the current GLLRM replacing the Rasch model defined when you selected 

the items31. 

We refer to Kreiner & Christensen (2011a) for details on item screening and another example with 

PF items. The rest of this section provides some details. However, if you can do without these 

details right now, we suggest that you skip these details and proceed directly to Section 2.4.2 to see 

what happens after item screening.  

 

Figure 2.4.4 The IRT graph of the initial GLLRM defined by screening of eight PF items. The 
numbers on the edges of the graph are partial Gamma coefficients measuring the strength of 

the association among items and DIF sources32. 

                                                 
31 If you want to screen items, but do not want to replace the current GLLRM, you can use an SCREEN J command 
instead of SCREEN I. If you only want to assess the association between the score and the exogenous variables, you 
can use the SCREEN E command. 
32 To add these values to the edges of the graph you have to press the “Toggle Gamma Values on/off” (that was enabled 
by the item screening) on DIGRAM’s graph form. 
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The first step of the screening of the PF3 items (Figure 2.4.5) consists of an analysis of marginal 

association between the items, and between he items and the total score and the exogenous 

variables. Psychometrics insists that validity requires that item responses are consistent in the sense 

that they are positively correlated. According to Figure 2.4.5, the PF items are consistent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.4.5 Gamma coefficients measuring marginal association among items, scores and 

exogenous variables. Rest-scores are scores without the item defining the row  

The next step of item screening is a test of the global Markov properties of Rasch models. Two 

things follow from these properties. First, that two items are conditionally independent in a three-

way table where the association between the items is stratified by a rest-score without one of the 

two item. Second, that items and exogenous variables are conditionally independent in three-way 

tables where the association between an item and an exogenous variable is stratified by the total 

  +------------------------------------------+ 
  |                                          | 
  | Screening of marginal item relationships | 
  |                                          | 
  +------------------------------------------+ 
 
                                                                             rest 
                     B      C      D      E      F      G      H      I     score 
--------------------------------------------------------------------------------- 
B  Mod.act Gamma           0.973  0.913  0.949  0.868  0.919  0.967  0.958  0.936 
             p             0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
 
C Liftgroc Gamma    0.973         0.895  0.949  0.848  0.886  0.949  0.955  0.913 
             p      0.000         0.000  0.000  0.000  0.000  0.000  0.000  0.000 
 
D  Stair2+ Gamma    0.913  0.895         0.975  0.859  0.920  0.919  0.912  0.892 
             p      0.000  0.000         0.000  0.000  0.000  0.000  0.000  0.000 
 
E   Stair1 Gamma    0.949  0.949  0.975         0.924  0.925  0.973  0.983  0.964 
             p      0.000  0.000  0.000         0.000  0.000  0.000  0.000  0.000 
 
F  Bending Gamma    0.868  0.848  0.859  0.924         0.880  0.909  0.922  0.855 
             p      0.000  0.000  0.000  0.000         0.000  0.000  0.000  0.000 
 
G  Walk_1m Gamma    0.919  0.886  0.920  0.925  0.880         0.965  0.936  0.905 
             p      0.000  0.000  0.000  0.000  0.000         0.000  0.000  0.000 
 
H Walk_2+b Gamma    0.967  0.949  0.919  0.973  0.909  0.965         0.992  0.971 
             p      0.000  0.000  0.000  0.000  0.000  0.000         0.000  0.000 
 
I Walk_1bl Gamma    0.958  0.955  0.912  0.983  0.922  0.936  0.992         0.959 
             p      0.000  0.000  0.000  0.000  0.000  0.000  0.000         0.000 
 
 
Exogeneous variables 
 
                     B      C      D      E      F      G      H      I     score 
--------------------------------------------------------------------------------- 
K      SEX Gamma   -0.366 -0.440 -0.155 -0.264 -0.131 -0.170 -0.185 -0.192 -0.226 
             p      0.000  0.000  0.014  0.004  0.037  0.021  0.043  0.059  0.000 
 
L      AGE Gamma   -0.608 -0.577 -0.545 -0.584 -0.546 -0.557 -0.594 -0.661 -0.478 
             p      0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 
 



 125 

score. During the previous tours, we have already invoked these tests by the LDE and DIF 

commands. The second step of the item screening is a systematic and complete application of these 

tests. Figure 2.4.6 summarize the results. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.6 Partial Gamma coefficients measuring conditional association among items given 
rest-scores without one of the items and between items and exogenous variables given the total 

score over all items. The rest-scores are the scores without the item defining the row.  
 
In Figure 2.4.6, the p-values are Monte Carlo estimates of exact p-values (Kreiner, 1987). To assess 

the significance of the evidence against the Rasch model DIGRAM, adjusts for multiple testing by 

  +-----------------------------------------+ 
  |                                         | 
  | Screening of partial item relationships | 
  |                                         | 
  +-----------------------------------------+ 
 
 
p-values are two-sided and exact(Nsim = 1000) 
 
 Tests of local independence - the row item has been subtracted from the score 
 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
B  Mod.act Gamma           0.715 -0.242 -0.252 -0.301 -0.234 -0.103 -0.449 
             p             0.000  0.103  0.211  0.029  0.193  0.542  0.185 
 
C Liftgroc Gamma    0.802        -0.189 -0.057 -0.386 -0.435 -0.312 -0.315 
             p      0.000         0.237  0.821  0.005  0.004  0.208  0.242 
 
D  Stair2+ Gamma   -0.007 -0.069         0.706 -0.146  0.213 -0.415 -0.511 
             p      0.905  0.696         0.001  0.239  0.177  0.106  0.050 
 
E   Stair1 Gamma   -0.494 -0.232  0.497         0.045 -0.501  0.256  0.736 
             p      0.015  0.213  0.015         0.857  0.004  0.322  0.012 
 
F  Bending Gamma   -0.011 -0.211 -0.097  0.405         0.199  0.094 -0.143 
             p      0.952  0.250  0.454  0.050         0.155  0.714  0.598 
 
G  Walk_1m Gamma   -0.045 -0.404  0.157 -0.277  0.024         0.634 -0.110 
             p      0.800  0.009  0.290  0.169  0.863         0.004  0.677 
 
H Walk_2+b Gamma   -0.245 -0.444 -0.622  0.188 -0.261  0.382         0.899 
             p      0.290  0.041  0.003  0.445  0.333  0.048         0.000 
 
I Walk_1bl Gamma   -0.380 -0.213 -0.633  0.728 -0.387 -0.134  0.931        
             p      0.214  0.524  0.028  0.011  0.138  0.638  0.000        
 
        Test for DIF 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
K      SEX Gamma   -0.471 -0.608  0.194  0.115  0.227  0.258  0.087  0.415 
             p      0.002  0.000  0.153  0.762  0.075  0.160  0.714  0.167 
 
L      AGE Gamma   -0.112  0.007  0.076  0.159 -0.068 -0.002  0.314 -0.136 
             p      0.360  1.000  0.505  0.380  0.429  1.000  0.154  0.555 
 
 
Benjamini & Hochberg rejects at 0.00903 to control the FDR at 0.05 
Benjamini & Hochberg rejects at 0.00069 to control the FDR at 0.01 
Benjamini & Hochberg rejects at 0.00007 to control the FDR at 0.001 
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the Benjamini-Hochberg procedure. We conclude that there is strong evidence of local dependence 

and DIF among the PF items. DIGRAM finds four pairs of items with evidence of positive local 

dependence, four pairs with evidence of negative local dependence and evidence of DIF relative to 

K. However, there is no evidence of positive local dependence between items G and I. In Figure 

2.4.5, the marginal correlation between G & I is positive and significant, but the two partial γ 

coefficients between G & I in Figure 2.4.6 are negative and clearly insignificant.  

The evidence of positive local dependence corresponded to the local response dependence that we 

expected. Since negative local dependence rarely makes no sense in term of response dependence, 

evidence of negative local dependence indicates that the PF scale is multidimensional or that some 

items simply does not fit the Rasch model. However, before we draw such conclusions, the next 

steps of the item screening attempts to distinguish between genuine and spurious evidence.  

Figure 2.4.7 summarize the evidence of local dependence and the attempts to eliminate spurious 

evidence of local dependence. Local dependence between two items will create evidence of 

spurious evidence of dependence among other items because inclusion association between two 

items imply that some of the hypotheses of conditional independences induced by the Rasch model 

no longer applies. DIGRAM use a stepwise elimination routine that agree to regard the strongest 

one piece of evidence33 of positive local dependence as genuine in each step and dismiss the 

significant evidence of local dependence among other items if the evidence could be spurious if the 

decision was correct. Out of 10 pairs of items with significant evidence of local dependence, 

DIGRAM decides that the evidence of positive local dependence appears to be genuine and 

dismisses the evidence of negative local dependence.   

Evidence of DIF may also be spurious, because DIF of one item relative to an exogenous variable 

may generate spurious evidence of DIF for other items and other exogenous variables.  

Figure 2.4.8 illustrates how DIGRAM attempts to distinguish between genuine and spurious 

evidence of DIF. Item screening generated significant evidence of DIF of both B and C relative to 

Sex. To distinguish between genuine and spurious evidence against conditional independence we 

have to look at the association between one of the items and Sex given the score and the other 

                                                 
33 Measured by the weighted mean (WPG) of the two partial γ values were reported in Figure 2.4.4 
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items. Since this hypothesis is accepted for item B, but not for item C we DIGRAM concludes that 

the evidence of DIF for item B was spurious. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 2.4.7 Analysis of evidence of local dependence   
 

The final issue addressed by the item screening is the association between the total score and the 

exogenous variables. Figure 2.4.9 shows the result. There is nothing new here, because the analysis 

is the same as you saw when you defined the exogenous variable, but DIGRAM repeats it to 

remind34 you of the results. 

                                                 
34 If you need to be reminded of these result at a later time, you have to invoke a  “SCREEN E” commando. 

  +-----------------------------------------+ 
  |                                         | 
  | Summary of evidence of local dependence | 
  |                                         | 
  +-----------------------------------------+ 
 
  Beware of Type II errors. p-values are evaluated at a 5 % FDR level. 
 
  ***: FDR <= 0.001, **: FDR <= 0.01,  *: FDR <= 0.05 
 
   Average absolute partial gamma values =  0.334 
 
Two significant positive partial correlations: 
 
   B: Mod.act   & C: Liftgroc  gamma =  0.715*** 0.802***   WPG = 0.757 
   H: Walk_2+b  & I: Walk_1bl  gamma =  0.899*** 0.931***   WPG = 0.915 
 
Only one significant positive partial correlation: 
 
   D: Stair2+   & E: Stair1    gamma =  0.706*   0.497      WPG = 0.596 
   G: Walk_1m   & H: Walk_2+b  gamma =  0.634*   0.382      WPG = 0.510 
 
Only one significant negative partial correlation: 
 
   C: Liftgroc  & F: Bending   gamma = -0.386*  -0.211      WPG =-0.304 
   D: Stair2+   & H: Walk_2+b  gamma = -0.415   -0.622*     WPG =-0.541 
   E: Stair1    & G: Walk_1m   gamma = -0.501*  -0.277      WPG =-0.404 
 
Two significant negative partial correlations: 
 
   C: Liftgroc  & G: Walk_1m   gamma = -0.435*  -0.404*     WPG =-0.419 
 
Stepwise inclusion of local dependence: 
 
   H: Walk_2+b  & I: Walk_1bl   Weighted partial gamma =   0.915 
   B: Mod.act   & C: Liftgroc   Weighted partial gamma =   0.757 
   D: Stair2+   & E: Stair1     Weighted partial gamma =   0.596 
   G: Walk_1m   & H: Walk_2+b   Weighted partial gamma =   0.510 
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                                        Figure 2.4.8 Analysis of spurious evidence of DIF 
  

  +--------------------------+ 
  |                          | 
  | Analysis of spurious DIF | 
  |                          | 
  +--------------------------+ 
 
 
  p-values are two-sided. Significance is evaluated at a 5 % level. 
 
 
 
Evidence of several biased items relative to SEX(K) 
 
exa_summary1 under reconstruction 
-------------------------------------------------------------------------------------------- 
                         p-values     p-values (2-sided)   95% confidence 
Hypothesis       X²  df asymp exact   Gamma asymp exact        interval    nsim     n 
-------------------------------------------------------------------------------------------- 
 1:K&B|C#      19.0  16 0.270 0.501   -0.39 0.049 0.050   [-0.39 - -0.39]   403      0        
 2:K&C|B#      38.9  25 0.038 0.065   -0.53 0.003 0.003   [-0.53 - -0.53]  1000      0     -  
-------------------------------------------------------------------------------------------- 
Benjamini Hochberg rejects if p <  0.013 for FDR = 0.05 
                          and p <  0.003 for FDR = 0.01 
Significance of  
X²        xx : FDR = 0.01    x : FDR = 0.05 
Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05 
-------------------------------------------------------------------------------------------- 
 

Comments: 
 
If more than one item 
have DIF relative to the 
same DIF source, 
DIGRAM tests whether 
items are conditionally 
independent given both 
the total score and all 
other DIF items, and 
concludes that the 
evidence of DIF was 
spurious if conditional 
independence is accepted. 
 
Figure 2.4.4 suggested 
that K was a source of 
DIF for items B and C. 
However, it turns out, 
that K and B are condit-
ionally independent given 
the score and B. For this 
reason, the original 
evidence of DIF is 
regarded as spurious. 
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                Figure 2.4.9 Analysis of associations between the score and the exogenous variables

  +-------------------------------------------------------------+ 
  |                                                             | 
  | Analysis of the effects of exogenous variables on the score | 
  |                                                             | 
  +-------------------------------------------------------------+ 
 
 
The raw score will be used during the analysis 
 
 
2 variables with a marginal effect on the score: K L  
 
-------------------------------------------------------------------------------------------- 
                         p-values                 p-values (2-sided) 
Hypothesis       X²  df asymp exact               Gamma asymp exact               nsim 
-------------------------------------------------------------------------------------------- 
#&K            22.0  16 0.142 0.142 (0.116-0.173) -0.23 0.000 0.000 (0.000-0.007) 1000     0    -
-  
#&L           194.7  48 0.000 0.000 (0.000-0.007) -0.48 0.000 0.000 (0.000-0.007) 1000     0 xx -
-  
#&K|L          56.7  50 0.240 0.195 (0.165-0.229) -0.23 0.000 0.000 (0.000-0.007) 1000     0    -
-  
#&L|K         237.7  96 0.000 0.000 (0.000-0.007) -0.48 0.000 0.000 (0.000-0.007) 1000     0 xx -
-  
-------------------------------------------------------------------------------------------- 
Benjamini Hochberg rejects if p <  0.038 for FDR = 0.05 
                          and p <  0.008 for FDR = 0.01 
Significance of  
X²        xx : FDR = 0.01    x : FDR = 0.05 
Gamma  ++/-- : FDR = 0.01  +/- : FDR = 0.05 
-------------------------------------------------------------------------------------------- 

 

Comments: 
 
This is the same two-step 
procedure that was used, 
when exogenous variables 
were selected. In the first 
step, we look at the marginal 
association between the 
score and the exogenous 
variables. 
 
In the second step, DIGRAM 
tests conditional independ-
ence between the score and 
an exogenous variable given 
all the variables that were 
marginally associated with 
the score and eliminates 
exogenous variables one at a 
time in a stepwise manner. 
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2.4.3 Model search 

Item screening disclosed strong evidence of local dependence and DIF and defined a GLLRM with 

four pairs of locally response dependent items and two items with DIF relative to K. However, the 

purpose of GLLRMs defined by item screening is only to serve as the starting point for a more 

careful search for a GLLRM. We expect it to be close to an adequate model (and often is very 

close), but it will probably not be the final model.  

The analysis following the definition of the initial model is a standard log-linear modeling exercise, 

except for two reasons. 

1. It is technically more complicated than a routine log-linear analysis, because we will be 

dealing with a high-dimensional log-linear model that describe the responses of items 

conditionally given the total score on all items.  

2. The analysis in DIGRAM is never automatic. It is stepwise model search, but it is up to 

the user to decide what happens after each step. To help you make this decision, 

DIGRAM provides information on the significance of test statistics, together with 

estimates of parameters and the measures of partial associations obtained during 

screening. But you must never forget subject matter considerations and content analyses 

of items and never decide what to change without thinking about the meaningfulness of 

the local dependence and the DIF represented by the interaction terms. 

During the search for an adequate GLLRM, Kelderman’s conditional likelihood ratio tests provide 

evidence of local dependence and or DIF. These tests are obtainable in four different ways by 

selection of options in the GRM dialog box Figure 2.1.5. 

1. Select “Reduce model” to test whether you need all the terms in the new model. 

2. Select “Check local independence” to test the missing model terms representing local 

dependence.  

3. Select “Check missing DIF” to test the missing DIF terms in the model. 

4. Add interaction terms of interest to the “Test model terms” field. “AB BC” will give 

you test results relating to the local dependence of A&B and of B&C.  A ‘*’ in an 

interaction term is a wildcard referring to all variables, a ‘+’ after a variable refers to the 

existing interactions with the variable, and a ‘-‘ after a variable refer to the missing 

relationships. “B*” in the “Test model terms” will give you test results for all 
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interactions including B, while “B-“ will only calculate tests relative to variables that is 

independent of B according to the model. If X is an exogenous variable then “X+” tests 

DIF relative to X the items that the model believes function differently relative to X. 

Finally, if X is an exogenous variable, “XX” calculates Andersen’s global CLR test of 

DIF relative to X. 

 
The fourth option may appear a little more complicated, than the first three, but it is not really that 

complicated. Try it out. It will save you a lot of time when you have learned to use it. 

Figure 2.4.10 presents the tests of the models claims of local dependence and DIF. They confirm 

the claims of local dependence and DIF.  

 

 

 

 

 

 

 

 

Figure 2.4.10 Confirmatory tests of local dependence and DIF. The Gamma coefficients are 
the standardized gamma coefficient calculated during estimation of the item parameters.  

We accept the (BC, DE, GH, HI, CK) model and proceed to tests of local independence and no DIF. 

Figure 2.4.11 presents the results of these tests. To help understanding what the evidence of LD and 

DIF implies, DIGRAM prints the weighted partial gamma coefficient obtained during item 

screening. 

  

  +---------------------------+ 
  |                           | 
  | Tests of local dependence | 
  |                           | 
  +---------------------------+ 
 
Standardized gamma coefficients will be reported. 
 
BC: Mod.act & Liftgroc  lr =  77.66 df =  4 p = 0.0000 Gamma =  0.77 
DE: Stair2+ & Stair1    lr =  55.05 df =  4 p = 0.0000 Gamma =  0.72 
GH: Walk_1m & Walk_2+b  lr =  22.18 df =  4 p = 0.0002 Gamma =  0.52 
HI: Walk_2+b & Walk_1bl lr =  65.94 df =  4 p = 0.0000 Gamma =  0.92 
 
  +--------------+ 
  |              | 
  | Tests of DIF | 
  |              | 
  +--------------+ 
 
Standardized gamma coefficients will be reported. 
 
CK: Liftgroc & SEX      lr =  28.53 df =  2 p = 0.0000 gamma = -0.66 
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Figure 2.4.11 Checking local independence and missing DIF 

 
Since there is evidence of local dependence between E&I, E&H, D&I and G&I and DIF of I 

relative to L. Since negative local dependence makes little sense, we only add EI, EH and IL terms 

to the model and test again for local dependence and DIF. The evidence of local dependence local 

independence between E&I is significant but weak (p=0.016) for which reason we eliminate the EI 

interaction from the model.  

Check assumptions of local independence 
Gamma indicators of local dependence will be reported for significant test 
results 
 
Test results will only be shown if p <= 0.05. 
Select extended output if you want to see all testresults. 
 
Significant test results: 
 
B & H:   lr =   10.67  df =   4  p = 0.0306  WPG gamma =  -0.18 
C & E:   lr =   10.31  df =   4  p = 0.0354  WPG gamma =  -0.15 
D & F:   lr =   10.91  df =   4  p = 0.0276  WPG gamma =  -0.12 
D & I:   lr =   20.80  df =   4  p = 0.0003  WPG gamma =  -0.58 
E & H:   lr =   28.99  df =   4  p = 0.0000  WPG gamma =   0.22 
E & I:   lr =   26.04  df =   4  p = 0.0000  WPG gamma =   0.73 
G & I:   lr =   37.07  df =   4  p = 0.0000  WPG gamma =  -0.12 
 
               ---                
 
Check assumptions of no DIF 
Gamma coefficients will be reported for significant test results 
 
 
Test results will only be shown if p <= 0.05. 
Select extended output if you want to see all testresults. 
 
Significant test results: 
 
G & L:   lr =   14.10  df =   6  p = 0.0286 gamma =  -0.00 
I & L:   lr =   26.05  df =   6  p = 0.0002 gamma =  -0.14 
 
Benjamini & Hochberg rejects at 0.00641 
 
Suggested additions to the model: 
 
Positive LD:  EH EI 
 
EH  Gamma =0.22  p =0.000    Stair1 & Walk_2+b 
EI  Gamma =0.73  p =0.000    Stair1 & Walk_1bl 
 
Negative LD:  DI GI 
 
DI  Gamma =-0.58  p =0.000    Stair2+ & Walk_1bl 
GI  Gamma =-0.12  p =0.000    Walk_1m & Walk_1bl 
 
DIF:          IL 
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Proceeding in this way does not provide additional evidence of local dependence and DIF. However 

before we accept the (BC DE EH GH HI CK IL) model, we need tests of homogeneity and 

invariance and we need tests of item fit. Figures 2.4.2 and 2.4.13 presents the results. 

 
 

 

 

 
Figure 2.4.12 Test of homogeneity and invariance of the (BC DE EH GH HI CK IL) model 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.13 Tests of item fit for the (BC DE EH GH HI CK IL) model 

 
And that is all. Stepwise model search may be an unusual technique if you are used to IRT and 

Rasch analyses and have little experience with multivariate statistics. Learning to use and appreciate 

methods for model search for GLLRMs may therefore take longer than going through the first 

  +-----------------------------+ 
  |                             | 
  | Item restscore association  | 
  |                             | 
  +-----------------------------+ 
 
                   Item-restscore gamma 
Item           observed expected    sd      p    
------------------------------------------------ 
B -  Mod.act    0.936    0.922    0.011  0.22980    
C - Liftgroc    0.913    0.922    0.012  0.45696    
D -  Stair2+    0.892    0.900    0.013  0.50717    
E -   Stair1    0.964    0.948    0.011  0.13027    
F -  Bending    0.855    0.869    0.016  0.39494    
G -  Walk_1m    0.905    0.896    0.015  0.56171    
H - Walk_2+b    0.971    0.969    0.008  0.83318    
I - Walk_1bl    0.959    0.960    0.011  0.92430    
------------------------------------------------ 
 
Critical levels adjusted by the Benjamini-Hochberg procedure: 
    * < 5 % FDR, ** < 1 % FDR, *** = FDR < 0.1 % FDR 
 
  +----------------------------------------+ 
  |                                        | 
  | Component-restscore gamma coefficients | 
  |                                        | 
  +----------------------------------------+ 
 
                    Gamma 
Component      observed expected    sd      p    
------------------------------------------------ 
    BC          0.884    0.881    0.014   0.8739 
 DEGHI          0.888    0.881    0.013   0.6061 

             CLR   df   p     
---------------------------- 
scoregroups   26.4  42 0.971 
K:      SEX   44.6  38 0.215 
L:      AGE  105.6 102 0.383 
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DIGRAM tours.  Fortunately, things simplify after model search when model search is over. After 

model search, we have to calculate over-all fit statistics, item fit statistics, person estimates, and 

assess test information and the targeting of the items to the study population and we do it in exactly 

the same way as we did for the Rasch model in sections 2.1 and 2.2 and for the GLLRM in Section 

2.3. 

 
2.4.4 The PF3 model 

Figure 2.4.14 shows the IRT graph of the model defined by model search. Local dependence and 

DIF of C relative to K is extremely strong. The only thing to be concerned about is the DIF of item I 

relative to L. In terms of significance, the evidence supporting these claims is strong, but the partial 

correlation is close to zero. For this reason, we focus on this interaction when we present to 

additional ways to test the fit of a GLRM to data.  

 

Figure 2.4.14 IRT graph of PF3 model after model search.  The coefficients attached to edges 
are standardized gamma coefficients. 
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2.4.5 Checking the global Markov properties35. 

During item screening, the tests for local dependence and DIF are test of the global Markov 

properties of conventional Rasch models. GLLRMs also has global Markov properties that can be 

tested. To do this, you have to replace the current model with the new model that you have defined 

by clicking the “Change model” button and return to DIGRAM’s main form.  

 
Invoke the “CHECK I” command to test the global Markov properties of the current model. Output 

from this procedure is extremely extensive, because DIGRAM produces details on both the Markov 

properties and the tests of the hypotheses, but DIGRAM provides summaries at the end.  

 
The summary consists of two parts. The first with test results relating to the local and DIF within 

the current model. The second with test result relating to the model’s claims of local independence 

and no DIF. Figures 2.4.15 and 2.4.16 shows these results for the model defined by item screening 

and model search 

Figure 2.4.15 tests the global Markov properties of all the claims of local dependence and DIF in 

the model defined by item screening. All the tests confirm the finding of the item screening except 

the DIF of I relative to age, where the partial γ coefficient is insignificant. This result indicates that 

the conditional association between item I and Age is not monotonic. The partial gamma coefficient 

provides tests of monotonic relationships between ordinal categorical variables, whereas the CLR 

test of no interaction in log-linear models are tests of association between nominal variables with 

power against non-monotonic associations. For this reason, we do not accept the hypothesis of no 

DIF, but conclude that the IL association it is not a simple monotonic relationship.  

Figure 2.4.16 tests the global Markov properties of all the claims of local independence and no DIF 

in the current model. There is no evidence of missing dependence or DIF in the (BC DE EH GH HI 

CK IL) model.  

 
  

                                                 
35 Consult Kreiner & Christensen (2011a) before you try this to be sure that you understand what goes on. 
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Figure 2.4.15. Test of local dependence and DIF in the (BC DE EH GH HI CK IL) model 

 

 

  

  +------------------------+ 
  |                        | 
  | Check of LD and/or DIF | 
  |                        | 
  +------------------------+ 
 
 
p-values are two-sided and exact(Nsim = 400) 
 
 Tests of local independence - the item component of the row item has been 
subtracted from the score 
 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
B  Mod.act Gamma           0.720                                           
             p             0.000                                           
 
C Liftgroc Gamma    0.829                                                  
             p      0.000                                                  
 
D  Stair2+ Gamma                         0.442                             
             p                           0.070                             
 
E   Stair1 Gamma                  0.623                       0.576        
             p                    0.005                       0.040        
 
F  Bending Gamma                                                           
             p                                                             
 
G  Walk_1m Gamma                                              0.735        
             p                                                0.000        
 
H Walk_2+b Gamma                         0.537         0.465         0.728 
             p                           0.000         0.005         0.010 
 
I Walk_1bl Gamma                                              0.920        
             p                                                0.000        
 
 
        Test of no DIF 
 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
K      SEX Gamma          -0.608                                           
             p             0.000                                           
 
L      AGE Gamma                                                    -0.114 
             p                                                       0.679 
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Figure 2.4.16. Test of local dependence and DIF in the (BC DE EH GH HI CK IL) model 

 
 

 

  

  +------------------------+ 
  |                        | 
  | Check of LI and no DIF | 
  |                        | 
  +------------------------+ 
 
 
p-values are two-sided and exact(Nsim = 400) 
 
 Tests of local independence - the item component of the row item has been 
subtracted from the score 
 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
B  Mod.act Gamma                  0.189  0.167  0.130 -0.017  0.060 -0.429 
             p                    0.345  0.762  0.430  1.000  0.867  0.524 
 
C Liftgroc Gamma                  0.185  0.485 -0.119 -0.127 -0.008  0.143 
             p                    0.286  0.040  0.514  0.495  0.976  0.810 
 
D  Stair2+ Gamma    0.175 -0.028               -0.082    no     no     no  
             p      0.315  0.952                0.571   test   test   test 
 
E   Stair1 Gamma   -0.107 -0.078                0.099    no            no  
             p      0.667  0.810                0.560   test          test 
 
F  Bending Gamma    0.350 -0.043  0.034  0.136         0.107  0.023 -0.297 
             p      0.071  0.762  0.857  0.476         0.571  0.952  0.259 
 
G  Walk_1m Gamma    0.395 -0.252    no     no  -0.096                  no  
             p      0.023  0.102   test   test  0.571                 test 
 
H Walk_2+b Gamma    0.445 -0.042    no         -0.290                      
             p      0.040  0.905   test         0.080                      
 
I Walk_1bl Gamma    0.147  0.101    no     no  -0.182    no                
             p      0.714  0.714   test   test  0.381   test               
 
 
        Test of no DIF 
 
                     B      C      D      E      F      G      H      I    
-------------------------------------------------------------------------- 
K      SEX Gamma   -0.388         0.083 -0.100  0.080  0.041 -0.125  0.333 
             p      0.049         0.617  0.666  0.617  0.829  0.645  0.215 
 
L      AGE Gamma   -0.455 -0.078 -0.500 -0.667  0.333  0.200  0.231        
             p      0.392  0.511  0.083  0.248  0.494  0.610  0.620        
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2.4.6 Analysis of person fit 

The tests of the global Markov properties of the (BC DE EH GH HI CK IL) model disclosed issues 

concerning the DIF of item I. One way to address such issues is to analysis of person fit to find out 

that there is a large proportion of persons with responses that disagree with the current GLLRM and 

because of improbable responses to item I. 

We use the PERsonfit command to calculate person fits under the current GLLRM. If you invoke 

the command without parameters, DIGRAM calculates the conditional probability of the complete 

vector of responses given the total score over all items and use this probability as the fit statistic. To 

find out whether this probability provides significant evidence against fit, DIGRAM finds all 

response vectors with the same score that are as improbable as the observed responses. The sum of 

the probabilities of the observed and more improbable responses is the p-value. In this sense, the 

test is similar to Fischer’s exact test in two-by-two tables. 

The analysis is a two-step procedure. In the first step, DIGRAM calculates the conditional 

probabilities of all response patterns for the different combinations of outcomes on DIF sources and 

saves the result on a text file called “Responsepatterns.txt”36.  We will not show this file here, but 

take a look at if you try this procedure to make sure that you know what goes on. At the end of this 

step, DIGRAM prints tables with the most probable response patterns and the expected item scores 

for each combination of outcomes on DIF sources 

Figures 2.4.17 and 24.18.shows the results for women aged 60-69 years of age. If the total score 

over all items is equal to seven, the most probable response pattern is (1 1 1 1 1 0 1 1) and the 

probability of this pattern 0.124. If the total score is equal to 13, the most probable response pattern 

is (1 1 1 2 2 2 2 2) and the probability is 0.199. The table with expected item scores include the 

unweighted and weighted (by the distribution of the scores) averages of the expected item scores. 

From this point of view, the physical activity described by item I is easier than the other activities 

described by the PF items. During the attempt to disclose evidence against person fit we will focus 

on the frequencies where limitations are worse for item I than for the other items. 

  

                                                 
36 DIGRAM warns you that it will have to calculate probabilities for 19,683 response patterns for each combination of 
outcomes on sources of DIF.   
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Figure 2.4.17 Overview of the most probable response patterns for females, aged 60-69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.18 Overview of the expected response patterns for females, aged 60-69 

K:       SEX = Female 
L:       AGE = 60 - 69 
 
* Max probability patterns * 
 
 0 1.0000000   pattern =  0 0 0 0 0 0 0 0 
 1 0.5150583   pattern =  0 0 0 0 0 0 0 1 
 2 0.2150181   pattern =  0 0 0 0 1 0 0 1 
 3 0.3981247   pattern =  0 0 0 1 0 0 1 1 
 4 0.2535832   pattern =  0 0 0 1 1 0 1 1 
 5 0.1126207   pattern =  0 0 1 1 1 0 1 1 
 6 0.1499850   pattern =  1 1 0 1 1 0 1 1 
 7 0.1243517   pattern =  1 1 1 1 1 0 1 1 
 8 0.1300468   pattern =  1 1 1 1 1 1 1 1 
 9 0.0727632   pattern =  1 1 1 1 1 1 1 2 
10 0.0971563   pattern =  1 1 1 1 1 1 2 2 
11 0.2081263   pattern =  1 1 1 2 1 1 2 2 
12 0.2649026   pattern =  1 1 1 2 1 2 2 2 
13 0.1992963   pattern =  1 1 1 2 2 2 2 2 
14 0.2027962   pattern =  2 2 1 2 1 2 2 2 
15 0.3433374   pattern =  2 2 1 2 2 2 2 2 
16 1.0000000   pattern =  2 2 2 2 2 2 2 2 
 

Expected item responses 
 
   score  B    C    D    E    F    G    H    I   
------------------------------------------------ 
     0   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
     1   0.04 0.05 0.02 0.11 0.21 0.03 0.03 0.52 
     2   0.12 0.12 0.06 0.28 0.35 0.07 0.27 0.72 
     3   0.15 0.15 0.10 0.64 0.32 0.11 0.64 0.89 
     4   0.21 0.21 0.23 0.84 0.49 0.22 0.80 1.01 
     5   0.37 0.38 0.36 0.94 0.62 0.34 0.88 1.11 
     6   0.59 0.59 0.46 1.01 0.74 0.45 0.95 1.20 
     7   0.76 0.76 0.59 1.08 0.86 0.60 1.03 1.32 
     8   0.86 0.86 0.72 1.17 0.97 0.79 1.16 1.47 
     9   0.92 0.92 0.82 1.29 1.03 0.98 1.38 1.65 
    10   0.98 0.98 0.93 1.45 1.06 1.16 1.64 1.81 
    11   1.06 1.06 1.06 1.64 1.12 1.33 1.83 1.90 
    12   1.18 1.17 1.20 1.80 1.24 1.53 1.93 1.95 
    13   1.36 1.36 1.37 1.89 1.41 1.67 1.97 1.97 
    14   1.63 1.64 1.51 1.94 1.54 1.77 1.99 1.99 
    15   1.88 1.89 1.66 1.99 1.71 1.88 2.00 1.99 
    16   2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
 
 
Average  0.83 0.83 0.77 1.18 0.92 0.88 1.21 1.38 
Weighted 1.77 1.77 1.73 1.88 1.76 1.80 1.90 1.92 
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During the second step, DIGRAM calculates the conditional probability for all persons, assess the 

significance of the response pattern using the exact test proposed by Martin-Löf (1977)37, and prints 

all response patterns that are significant at a 5 % level. The results can be seen in Figure 2.4.20. 

 
DIGRAM attempts to test person fit at a 5 % level, but the distribution of the conditional 

probabilities in each score group is discrete. So that we cannot define tests with exactly 5 % critical 

levels. Instead, the following table shows the critical level that we have to use. However, they are 

close to 5 % in many cases because of the large number of different patterns within score groups. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.19 Overview of critical levels in different score groups for tests of person fit of 
women aged 60-69  

 
Out of 69 women aged 60-69, the analysis disclosed evidence of departure from the GLLRM in five 

cases. Figure 2.4.21 only expects 3.1 cases, but the difference is not significant.  

Item scores of item G, H and I should not be decreasing. However, in three of the five cases of 

apparent person misfit, responses to these three items were inconsistent. One possibility is that 

respondents must have misunderstood the question. Another is that it is data error.  

  

                                                 
37 The exact test uses the probability as a test statistic arguing that the smaller the probability the more significant it is. 
The p-value of the exact test is equal to the sum of probabilities that are smaller than or equal to the probability of the 
observed pattern 

The critical levels: 
 
      number of  critical 
Score patterns     size 
--------------------------- 
  1        8     0.0195 
  2       36     0.0429 
  3      112     0.0479 
  4      266     0.0489 
  5      504     0.0493 
  6      784     0.0499 
  7     1016     0.0498 
  8     1107     0.0499 
  9     1016     0.0499 
 10      784     0.0499 
 11      504     0.0499 
 12      266     0.0486 
 13      112     0.0497 
 14       36     0.0496 
 15        8     0.0216 
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Figure 2.4.20 Overview of women aged 60-69 with improbable responses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.21 Expected numbers of significant results 

 

In cases with evidence against person fit, the problem is whether this is genuine evidence of person 

misfit or whether it is the kind of type I errors that the random machinery of the GLLRM has to 

produce. DIGRAM therefore count the total number and calculate the expected number of persons 

with evidence against person fit in groups defined by outcomes on the exogenous variables and 

  +-------------------------+ 
  |                         | 
  | Review of person misfit | 
  |                         | 
  +-------------------------+ 
 
SEX = Female 
AGE = 60 - 69 
 
  K  L    B C D E F G H I score  Prob  count     p       size 
 
  2  4    1 1 1 1 2 2 1 0   9   0.00025    1    0.030    0.050 
  2  4    1 2 2 2 0 0 1 1   9   0.00036    1    0.044    0.050 
  2  4    0 0 2 2 2 2 0 2  10   0.00009    1    0.009    0.050 
  2  4    1 1 2 0 2 2 1 1  10   0.00021    1    0.021    0.050 
  2  4    2 1 1 1 1 2 2 1  11   0.00071    1    0.049    0.050 
 

Expected number of significant cases 
 
Score Count   Pcrit Expected Significant 
---------------------------------------- 
   1      3  0.0195     0.06       0 
   2      1  0.0429     0.04       0 
   3      1  0.0479     0.05       0 
   4      2  0.0489     0.10       0 
   5      3  0.0493     0.15       0 
   6      1  0.0499     0.05       0 
   7      4  0.0498     0.20       0 
   8      2  0.0499     0.10       0 
   9      6  0.0499     0.30       2 
  10      9  0.0499     0.45       2 
  11      5  0.0499     0.25       1 
  12      6  0.0486     0.29       0 
  13      8  0.0497     0.40       0 
  14      8  0.0496     0.40       0 
  15     10  0.0216     0.22       0 
 
69 persons included 
 
Observed =    5 
Expected =    3.04 
      SD =    1.70 
       p =   0.2509 
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finally summarize the results for all groups. Out of 319 persons, we expect to find 13 with 

responses that disagree with the GLLRM. Since we only find 9, we claim that tests of person fit 

provided additional evidence supporting our claim that the items fit the GLLRM.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.4.22 Summary of persons with improbable responses 

Since we were concerned with item I and since this item belong to an item component defined by 

D,E,G,H,I we want to examine whether item I provide problems within this component. To assess 

this, we ask for a test of person fit within this component defined by the conditional probabilities of 

items given the component score. To calculate these tests, we invoke a “PER DEGHI” command.  

  +------------------------------------------------------+ 
  |                                                      | 
  | Summary of number of significant tests of person fit | 
  |                                                      | 
  +------------------------------------------------------+ 
 
 
  +---------+ 
  |         | 
  | K - SEX | 
  |         | 
  +---------+ 
 
     SEX      n   Obs   exp 
----------------------------------------------- 
    Male    122    3    5.2  p =  0.3263 
  Female    194    6    8.0  p =  0.4795 
 
  +---------+ 
  |         | 
  | L - AGE | 
  |         | 
  +---------+ 
 
     AGE      n   Obs   exp 
----------------------------------------------- 
 16 - 29     45    1    1.9  p =  0.5056 
 30 - 44     59    1    2.1  p =  0.4372 
 45 - 59     96    0    4.0  p =  0.0413 
 60 - 69    116    7    5.1  p =  0.4031 
 
316 persons included 
 
Observed =     9    2.8% 
Expected =  13.14   4.2% 
 
SD =   3.54   z =  -1.1689   p =   0.2425 
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Figures 2.4.23 and 2.4.24 summarize the results. Evidence of person misfit is found, but not more 

than we would expect for random reasons.  

 

 

 

 

 

 

 

 

 

Figure 2.4.23 Persons with improbable responses on items D, E, G, H and I 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4.23 Summary of tests of person fit for items D, E, G, H and I 

  +--------------------------------------+ 
  |                                      | 
  | Person review of subscores D+E+G+H+I | 
  |                                      | 
  +--------------------------------------+ 
 
Significance is assessed separately for subset patterns and for the subset score 
                                                       subscore 
  K  L    D E G H I rest score  Prob     p    subscore     p   count 
 
  2  2    0 2 2 2 2   6   14  0.00456 0.02630     8    0.15065   1 
  2  4    1 1 2 1 0   4    9  0.00045 0.01284     5    0.27697   1 
  2  1    2 2 0 1 2   5   12  0.00194 0.02596     7    0.11995   1 
  2  1    1 1 0 1 2   6   11  0.00292 0.04482     5    0.00980   1 
  1  3    1 2 1 2 1   6   13  0.00349 0.02383     7    0.09042   1 
  2  2    2 2 1 0 0   0    5  0.00137 0.02009     5    0.03521   1 
  1  4    2 1 2 2 1   6   14  0.00020 0.00020     8    0.20627   1 
  2  4    2 2 2 0 2   2   10  0.00081 0.01491     8    0.30537   1 
  1  1    1 0 1 2 2   2    8  0.00124 0.04275     6    0.28913   1 
  2  2    2 1 2 0 0   1    6  0.00029 0.00681     5    0.11406   1 
  1  3    1 1 2 1 0   2    7  0.00074 0.02521     5    0.31253   1 
  1  4    1 1 2 1 0   4    9  0.00067 0.02017     5    0.48292   1 
  2  4    2 0 2 1 1   4   10  0.00039 0.00638     6    0.30233   1 
  2  3    1 2 2 1 2   5   13  0.00433 0.03984     8    0.28650   1 
  1  4    2 1 2 1 1   6   13  0.00053 0.00319     7    0.08882   1 
 

score observed expected 
----------------------- 
  1        0     0.19 
  2        0     0.09 
  3        0     0.34 
  4        0     0.25 
  5        1     0.45 
  6        1     0.30 
  7        1     0.35 
  8        1     0.70 
  9        2     0.50 
 10        2     0.89 
 11        1     0.93 
 12        1     1.54 
 13        3     1.75 
 14        2     2.61 
 15        0     2.04 
 
total     15    12.90 
  %     7.18     6.17 
 
z =  0.603  p =  0.54659 
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2.4.7 Measurement by the PF scale 

To assess and describe measurement by the PF scale we have to look at the estimates of item and 

person parameters and describe the item and test information and the targeting of persons from the 

study population. 

 
2.4.7.1 Information on item components. 

We do have estimates of the item effects of the separate items, but there is DIF and items are locally 

dependent. For this reason, it is better to focus on the item components and the super items defined 

by the component scores. 

DIGRAM has saved all the parameters of the GLLRM. If you invoke the COMPinfo command, it 

will use these results to provide the information you need. 

The first is an overview of the components. 
 

 

 

 

 

 

 

       
 

 

Figure 2.4.22 Overview of item components in the current model.  

  +----------------+ 
  |                | 
  | Component info | 
  |                | 
  +----------------+ 
 
                max         
component size score   Items 
------------------------------ 
    1       2     4     B C 
    2       5    10     D E G H I 
    3       1     2     F 
 
2 multi item components:   1  2 
 
 
Component DIF 
 
Component 1   1 DIF sources:  K 
Component 2   1 DIF sources:  L 
 



 145 

The next is information on the separate components. The information is extensive, so we only show 

the most important part: information on locations, midpoints and targeting and the PCM thresholds 

of the component scores. If there is DIF, we show the result for groups defined by DIF sources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.23 Information on the B+C component score (output has been edited) 

The physical activities defined by items B and C are more challenging for women than for men. 

PCM thresholds are disordered because of local dependence. The disorder is more pronounce for 

women than for men. It is for this reason that B+C is more informative for women than for men at 

the component targets.  

Figure 2.4.24 provides information on the DEGHI component for different age groups. The effect 

of the DIF of item I (Walking on block) relative to age is that the physical activities appears to be 

more challenging for the 30-45 year population. This makes less than sense. Looking at it from this 

point of view we have to conclude that the evidence of DIF of item I has to be a type one error. We 

therefore eliminate this interaction from the model, re-estimate the parameters and assess the 

measurement issues and targeting under the assumption that Sex is the only source of DIF for the 

PF scale. 

 

  +--------------------------------+ 
  |                                | 
  | Info on component record 1: BC | 
  |                                | 
  +--------------------------------+ 
 
Source of DIF:   K = 1 (men) 
 
Location -0.915   Midpoint -0.895    Target -0.144   TargetInfo   0.866 
 
*** PCM thresholds *** 
 
 -2.000 -2.028  0.292  0.075 
 
------------------------------------------------------ 
 
Source of DIF:   K = 2 (women) 
 
Location  -0.073  Midpoint -0.094    Target  -0.639   TargetInfo   1.000 
 
 
*** PCM thresholds *** 
 
 -0.518 -1.478  1.188  0.514 
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Figure 2.4.24 Information on the D+E+G+H+I component score (output has been edited) 

 

2.4.7.2 Person parameters 

If item parameters have been estimated, we may obtain the WML estimates by invoking the 

WMLtabs commando. Figures 2.4.25 shows the results. 

  

  +-----------------------------------+ 
  |                                   | 
  | Info on component record 3: DEGHI | 
  |                                   | 
  +-----------------------------------+ 
 
Source of DIF:   L = 1 (16-29) 
 
Location -0.705  Midpoint -0.803  Target -0.708  TargetInfo 3.423 
 
*** PCM thresholds *** 
 
 -1.479 -1.882 -1.634 -1.327 -0.896 -0.499 -0.401 -0.331  0.123  1.281 
 
------------------------------------------------------ 
 
Source of DIF:   L = 2 (30-44) 
 
Location -0.294  Midpoint -0.172  Target 0.036    TargetInfo 4.934 
 
*** PCM thresholds *** 
 
 -1.311 -1.756 -1.204 -0.331  0.071  0.327  0.048 -0.230  0.151  1.291 
 
------------------------------------------------------ 
 
Source of DIF:   L = 3 (45-59) 
 
Location -0.746  Midpoint -0.620  Target -0.222   TargetInfo 3.411 
 
*** PCM thresholds *** 
 
 -2.429 -1.884 -2.288 -1.264 -0.511 -0.133 -0.166 -0.236 0.160 1.295 
 
------------------------------------------------------ 
 
Source of DIF:   L = 4 (60-69) 
 
Location -0.787  Midpoint -0.654  Target -0.255 TargetInfo 3.364 
 
*** PCM thresholds *** 
 
 -2.606 -1.906 -2.328 -1.298 -0.550 -0.177 -0.201 -0.252  0.154  1.292 
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Figure 2.4.25 Estimation of person parameters under the (BC DE EH GH HI CK) model 

 

 

  +----------------------------+ 
  |                            | 
  | WML estimates.  SEX = Male | 
  |                            | 
  +----------------------------+ 
 
459 persons 
 
Score Count    pct cumulated    WML    bias    sem 
-------------------------------------------------- 
  0       4  0.009   0.009    -3.631  0.431  0.529 
  1       1  0.002   0.011    -2.746  0.062  0.630 
  2       1  0.002   0.013    -2.334  0.009  0.625 
  3       3  0.007   0.020    -2.031  0.006  0.601 
  4       1  0.002   0.022    -1.758  0.012  0.573 
  5       4  0.009   0.031    -1.475  0.014  0.545 
  6       2  0.004   0.035    -1.156  0.005  0.516 
  7       2  0.004   0.039    -0.844 -0.009  0.494 
  8       6  0.013   0.052    -0.601 -0.014  0.484 
  9       2  0.004   0.057    -0.409 -0.010  0.484 
 10       4  0.009   0.065    -0.236 -0.002  0.491 
 11       6  0.013   0.078    -0.061  0.007  0.508 
 12      12  0.026   0.105     0.135  0.014  0.539 
 13      17  0.037   0.142     0.390  0.014  0.596 
 14      23  0.050   0.192     0.769 -0.001  0.691 
 15      38  0.083   0.275     1.384 -0.066  0.792 
 16     333  0.725   1.000     2.638 -0.513  0.686 
 
Test midpoint =  -0.657 
Test target   =  -0.284   Info at target =   4.789 
 

  +------------------------------+ 
  |                              | 
  | WML estimates.  SEX = Female | 
  |                              | 
  +------------------------------+ 
 
509 persons 
 
Score Count    pct cumulated    WML    bias    sem 
-------------------------------------------------- 
  0       4  0.008   0.008    -3.289  0.410  0.492 
  1       3  0.006   0.014    -2.496  0.072  0.602 
  2       1  0.002   0.016    -2.112  0.020  0.613 
  3       4  0.008   0.024    -1.805  0.013  0.592 
  4       4  0.008   0.031    -1.508  0.013  0.558 
  5       5  0.010   0.041    -1.199  0.006  0.522 
  6       4  0.008   0.049    -0.905 -0.005  0.494 
  7       5  0.010   0.059    -0.662 -0.011  0.479 
  8       8  0.016   0.075    -0.465 -0.009  0.474 
  9       8  0.016   0.090    -0.291 -0.003  0.476 
 10      14  0.028   0.118    -0.120  0.005  0.485 
 11      13  0.026   0.143     0.067  0.010  0.505 
 12      20  0.039   0.183     0.297  0.010  0.542 
 13      18  0.035   0.218     0.615  0.002  0.610 
 14      36  0.071   0.289     1.042 -0.015  0.700 
 15      51  0.100   0.389     1.604 -0.071  0.751 
 16     311  0.611   1.000     2.693 -0.478  0.624 
 
Test midpoint =  -0.496 
Test target   =  -0.295   Info at target =   4.903 
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Using the WML commando is often useful because it provide the WML estimates together with the 

distributions of persons. However, if you need more than that, e.g. assessment of the degree to 

which person scores from different groups defined by DIF sources can be compared, you have to go 

through the complete rigmarole of estimating person parameters together with estimation of item 

parameters.  

Figure 2.4.26 show the DIF equated scores that you have to use if you want to compare scores by 

women with scores by men. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                     (a)                                                               (b) 

Figure 2.4.25 ML38 estimates (a) and DIF equated scores (b) 

under the (BC DE EH GH HI CK) model 

 

To calculate DIF equated scores, we find the estimate of the person parameters of a woman, and 

calculate the expected score if she had been a man. A women with a score equal to 9 has a ML 

estimate equal to -0.291. Had this person been a man with this person value, the expected score 

would have been 9.69 instead of 9. 

                                                 
38 We use ML estimates for this purpose instead of WML estimates, because we know that ML estimates convert to 
unbiased estimates of the score over all items. 

Sources of DIF: 
K - SEX: 1 = Male 2 = Female  
 
           K      K   
score      1      2   
------------------------ 
    1   -2.746 -2.496 
    2   -2.334 -2.112 
    3   -2.031 -1.805 
    4   -1.758 -1.508 
    5   -1.475 -1.199 
    6   -1.156 -0.905 
    7   -0.844 -0.662 
    8   -0.601 -0.465 
    9   -0.409 -0.291 
   10   -0.236 -0.120 
   11   -0.061  0.067 
   12    0.135  0.297 
   13    0.390  0.615 
   14    0.769  1.042 
   15    1.384  1.604 
 

DIF sources: 
K - SEX: 1 = Male 2 = Female  
 
             K      K 
score        1      2 
--------------------- 
    1     1.00   1.34 
    2     2.00   2.57 
    3     3.00   3.72 
    4     4.00   4.79 
    5     5.00   5.81 
    6     6.00   6.78 
    7     7.00   7.75 
    8     8.00   8.71 
    9     9.00   9.69 
   10    10.00  10.67 
   11    11.00  11.64 
   12    12.00  12.60 
   13    13.00  13.51 
   14    14.00  14.36 
   15    15.00  15.16 
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The need for DIF equated scores are particular important, if we want to compare the distributions of 

scores in different population, e.g. the differences of the PDF distributions of men and women or in 

different age groups. 

If there is DIF with respect to Sex, it is obvious that the differences between scores of men and 

women will be confounded. DIF equating takes care of that. An if age is related to sex if also 

follows that differences between age groups will be confounded unless you use the DIF equated 

scores. 

To see the effect of this you have to select extended output during estimation of person parameters: 

this will give you a lot of different options to choose among – some of them more important than 

others, and if you select “Compare observed and DIF equated score distributions” you will see 

the effect of using DIF equated instead of observed scores.  

 

 

 

 

 

 

 

 

 

Figure 2.4.26 Comparison of PF scores among men and women 

In Figure 2.4.26, the average observed PF score is 0.61 higher among men than among women and 

the difference is clearly significant. The difference reduce to 0.43 if we use DIF equated scores. 

This difference is still significance but a p-values of 0.023 provide much weaker evidence of 

difference than a p-value of 0.002. 

  +------------------------------------+ 
  |                                    | 
  | Score mean and sd by values of SEX | 
  |                                    | 
  +------------------------------------+ 
 
               Observed      Adjusted 
Category      Mean    se    Mean    se    Bias    n 
---------------------------------------------------- 
 1     Male  14.86   0.13  14.86   0.13   0.00   459 
 2   Female  14.25   0.14  14.43   0.14  -0.18   509 
---------------------------------------------------- 
 
 
******************************* 
* Analysis of observed scores * 
******************************* 
 
Mean =   14.6  se =   0.1  Chi =    9.6 df = 1  p =   0.002 
 
******************************* 
* Analysis of adjusted scores * 
******************************* 
 
Mean =   14.7  se =   0.1  Chi =    5.1 df = 1  p =   0.023 
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Figure 2.4.17 show the results for age .The differences are smaller if we use the adjusted score, but 

analysis by adjusted scores agree that the effect of age on physical functioning is highly significant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.26 Comparison of PF scores in different age groups 

 2.4.7.3 Targeting 

Since PF scores depend on both age and sex and because Sex is a DIF source, we have to assess test 

information and targeting in different age-and-sex groups. Figures 2.4.27 – 2.4.29 summarize the 

results. 

Analysis of targeting provide a bleak picture of the PF scale. It is out of target providing little test 

information and imprecise estimates of person parameters. It is better among 60-69 years olds and 

may be in target for a much older population, but it is a poor measure of physical functioning for 

our study population. 

  

  +------------------------------------+ 
  |                                    | 
  | Score mean and sd by values of AGE | 
  |                                    | 
  +------------------------------------+ 
 
This is not a DIF source 
 
               Observed      Adjusted 
Category      Mean    se    Mean    se    Bias    n 
---------------------------------------------------- 
 1  16 - 29  15.46   0.10  15.51   0.10  -0.04   244 
 2  30 - 44  15.43   0.10  15.48   0.10  -0.04   288 
 3  45 - 59  14.19   0.21  14.31   0.20  -0.12   243 
 4  60 - 69  12.48   0.32  12.67   0.31  -0.19   193 
---------------------------------------------------- 
 
 
******************************* 
* Analysis of observed scores * 
******************************* 
 
Mean =   15.2  se =   0.1  Chi =  108.8 df = 3  p =   0.000 
 
******************************* 
* Analysis of adjusted scores * 
******************************* 
 
Mean =   15.3  se =   0.1  Chi =  104.5 df = 3  p =   0.000 
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Figure 2.4.26 Targeting and test information 

 

  +--------------------------------+ 
  |                                | 
  | Targeting and test information | 
  |                                | 
  +--------------------------------+ 
                                     theta        test info    target      RMSE(WML)    target 
      SEX      AGE  Target   n   Mean    sd     Mean     max   index     Mean     min   index     PSI 
------------------------------------------------------------------------------------------------------- 
     Male  16 - 29  -0.28  122   4.97   2.55   0.358   4.789   0.075    2.819   0.457   0.162   9.816 
   Female  16 - 29  -0.29  122   3.66   1.62   0.498   4.903   0.102    1.595   0.452   0.283   4.464 
     Male  30 - 44  -0.28  134   4.03   1.60   0.313   4.789   0.065    1.884   0.457   0.243   5.912 
   Female  30 - 44  -0.29  154   4.24   2.37   0.548   4.903   0.112    2.202   0.452   0.205   6.333 
     Male  45 - 59  -0.28  117   3.63   2.85   0.799   4.789   0.167    2.070   0.457   0.221   4.585 
   Female  45 - 59  -0.29  126   2.23   1.88   1.354   4.903   0.276    1.053   0.452   0.429   2.081 
     Male  60 - 69  -0.28   86   1.74   2.14   1.545   4.789   0.323    1.036   0.457   0.441   1.900 
   Female  60 - 69  -0.29  107   1.08   1.88   2.087   4.903   0.426    0.781   0.452   0.578   1.473 
 
  +---------------------------------+ 
  |                                 | 
  | targeting and test info summary | 
  |                                 | 
  +---------------------------------+ 
 
          Target   Theta    Info    max     n 
------------------------------------------------ 
Over all   -0.285   3.323   0.879  4.849   968 
------------------------------------------------ 
 
     SEX  Target   Theta    Info    max     n   
------------------------------------------------ 
    Male   -0.280   3.749   0.680  4.789   459 
  Female   -0.290   2.939   1.059  4.903   509 
------------------------------------------------ 
 
     AGE  Target   Theta    Info    max     n   
------------------------------------------------ 
 16 - 29   -0.285   4.315   0.428  4.846   244 
 30 - 44   -0.285   4.142   0.439  4.850   288 
 45 - 59   -0.285   2.904   1.087  4.848   243 
 60 - 69   -0.286   1.374   1.845  4.852   193 
------------------------------------------------ 
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Figure 2.4.27 True score estimation and targeting summary 

 

  

  +---------------------------------------+ 
  |                                       | 
  | True score estimation and reliability | 
  |                                       | 
  +---------------------------------------+ 
 
                                    Score                 separation  no sep.   
      SEX      AGE  Target   n   Mean    sd   reliability     prob     prob   Target SEM(TS) Mean SEM(TS) 
---------------------------------------------------------------------------------------------------------- 
     Male  16 - 29   9.71  122  15.51   1.73      0.867      0.293    0.684       2.19         0.39 
   Female  16 - 29   8.98  122  15.42   1.39      0.716      0.400    0.540       2.21         0.56 
     Male  30 - 44   9.71  134  15.66   0.95      0.623      0.310    0.637       2.19         0.44 
   Female  30 - 44   8.98  154  15.23   2.17      0.879      0.402    0.564       2.21         0.52 
     Male  45 - 59   9.71  117  14.52   3.33      0.925      0.507    0.457       2.19         0.65 
   Female  45 - 59   8.98  126  13.89   3.29      0.876      0.671    0.252       2.21         0.99 
     Male  60 - 69   9.71   86  13.14   4.08      0.909      0.722    0.211       2.19         1.06 
   Female  60 - 69   8.98  107  11.94   4.56      0.893      0.805    0.123       2.21         1.31 
 
Weighted means:  Reliability = 0.83   Person separation = 0.50 

  +-------------------+ 
  |                   | 
  | Targeting summary | 
  |                   | 
  +-------------------+ 
 
                                  Target               Population average 
      SEX      AGE    n  Theta   SEM   TS    SEM    Theta   SEM    TS   SEM  reliability 
---------------------------------------------------------------------------------------- 
     Male  16 - 29  122  -0.28  0.46   9.71  2.19    4.97  2.82 15.51  0.39     0.87 
   Female  16 - 29  122  -0.29  0.45   8.98  2.21    3.66  1.60 15.42  0.56     0.72 
     Male  30 - 44  134  -0.28  0.46   9.71  2.19    4.03  1.88 15.66  0.44     0.62 
   Female  30 - 44  154  -0.29  0.45   8.98  2.21    4.24  2.20 15.23  0.52     0.88 
     Male  45 - 59  117  -0.28  0.46   9.71  2.19    3.63  2.07 14.52  0.65     0.92 
   Female  45 - 59  126  -0.29  0.45   8.98  2.21    2.23  1.05 13.89  0.99     0.88 
     Male  60 - 69   86  -0.28  0.46   9.71  2.19    1.74  1.04 13.14  1.06     0.91 
   Female  60 - 69  107  -0.29  0.45   8.98  2.21    1.08  0.78 11.94  1.31     0.89 
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