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Preface

This thesis has been submitted to the Graduate School of Health and Medical Sci-
ences, University of Copenhagen. The work included was carried out at the Section
of Biostatistics between January 2017 and December 2019. Four months were spent
visiting Professor Mark van der Laan at the University of California, Berkeley, during
Spring 2018. The project was funded by Danmarks Frie Forskningsfond (DFF).

The thesis includes four manuscripts that develop methods for causal effect estimation
in observational longitudinal studies where data are collected over time. The work
is the product of collaborations with my supervisors Thomas Gerds, Claus Ekstrøm
and Mark van der Laan, and with Lars Kessing who provided the application that
served as motivation for much of the work. Two main directions have been taken in
the manuscripts; targeted minimum loss-based estimation (TMLE) and random for-
est methodology. I refer to the proposed methods collectively as ‘targeted’ estimation
methods. The introductory part of the thesis seeks to provide the reader a general
background for the topics of the manuscripts, and for the methodological direction
taken.

The problems considered in this thesis are not easy ones, and many questions remain
open. I am very thankful to have had three years to immerse myself in this area, and
I plan to continue my future research on the same problems.
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Summary

This thesis develops statistical methodology for causal inference based on observa-
tional longitudinal data. Such data, that consist of repeated observations over a
period of time, are common in medical research. Often we are interested in the esti-
mation of a treatment effect on an outcome of interest, however, the non-experimental
nature of the data gives rise to complex confounding patterns which must be ac-
counted for in the statistical analysis.

During the three PhD years, the work developed into two related, but distinct, di-
rections:

• Targeted minimum loss-based estimation, abbreviated TMLE; Manuscript I.
• Random forest methodology; Manuscripts II–IV.

The common basis is that learning from the data is 1) guided by semiparametric
and nonparametric models to account for realistic complexity of the underlying data-
generating mechanism, and 2) targeted towards low-dimensional statistical parame-
ters with a causal interpretation under additional assumptions.

Chapter 1 motivates the research by considering a particular application from the
Danish registries. Chapters 2–7 are intended to introduce the reader to relevant statis-
tical topics as a background for the manuscripts. Chapter 8 summarizes Manuscripts
I–IV. Chapter 9 discusses the proposed methodology and considers extensions and
future directions.

Manuscript I is the main theoretical contribution of the thesis. It proposes an exten-
sion of the existing TMLE methodology to the continuous-time setting where changes
in both covariates, treatment and outcome can happen on an arbitrarily fine time-
scale. The manuscript presents an efficiency theorem for the estimation problem and
shows theoretically how an efficient estimator is constructed.

Manuscript II is a review of random forest algorithms for survival analysis, and
Manuscript III and Manuscript IV are concerned with the adaptation of the ge-
neralized random forest methodology to the survival and competing risks setting.
Manuscript IV is mostly focused on setting up a causal search machinery for variable
importance analysis and takes an inverse weighting approach to target different pa-
rameters, while Manuscript III revises the tree building process itself for the analysis
of time-to-event outcomes.
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Resumé

Denne afhandling udvikler statistisk metode til kausal inferens for observationel longi-
tudinal data. Sådanne data, der består af gentagne observationer over tid, forekom-
mer ofte i medicinsk forskning. Vi er ofte interesseret i at estimere behandlingseffekter
på et interesseoutcome, imidlertid giver den ikke-eksperimentielle natur anledning til
komplekse konfoundingmønstre, som skal håndteres i den statistiske analyse.

I løbet af de tre år har PhD-arbejdet forgrenet sig i to relaterede, men forskellige,
retninger:

• Targeted minimum loss based estimation, forkortet TMLE; Manuskript I.
• Random forest; Manuskript II–IV.

Den fælles basis består i, at læringen fra data er 1) guidet af semiparametriske og
ikke-parametriske metoder for at tage højde for realistisk kompleksitet af den under-
liggende data-genererende mekanisme og 2) målrettet mod lavdimensionale statistiske
parameter, der kan tilskrives en kausal fortolkning under supplerende antagelser.

Kapitel 1 motiverer forskningen ved at betragte en bestemt anvendelse fra de danske
registre. Kapitel 2 til 7 har til hensigt at introducere læseren til relevant statistiske
emner som baggrund for manuskripterne. Kapitel 8 opsummerer manuskripterne.
Kapitel 9 diskuterer metoderne og gennemgår udvidelser og fremtidige retninger.

Manuskript I udgør det primære teoretiske bidrag i afhandlingen. Manuskriptet fore-
slår en udvidelse af existerende TMLE-metodik til kontinuert tid, hvor ændringer i
kovariater, behandling og outcome kan ske på en arbitrært fin tidsskala. Manuskriptet
præsenterer et teorem for efficient estimation og viser teoretisk, hvordan en efficient
estimator kan konstrueres.

Manuskript II er en gennemgang af random forest-algoritmer til overlevelsesanalyse,
og Manuskript III og Manuskript IV handler om en tilpasning af generalized random
forest til overlevelsesanalyse og competing risks analyse. Manuskript IV er primært
fokuseret på at konstruere en kausal søgealgoritme og foreslår sandsynlighedsvægtning
for at målrette forskellige parametre, mens Manuskript III reviderer selve trækon-
struktionen for at imødekomme analysen af overlevelsesdata.
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Chapter 1.

Introduction and overview

This thesis develops statistical methodology for causal inference based on observa-
tional longitudinal data. The present chapter provides an overall introduction. Sec-
tion 1.1 describes the application that served as motivation for much of the work.
Section 1.2 gives an overview of the thesis, including the introductory chapters and
the contributions of the manuscripts. Section 1.3 gives a short account of the statis-
tical framework that we work within.

1.1 Motivation

Data from Danish nation-wide population-based registries provide time and subject-
specific information about purchases of all prescribed drugs, hospital admission and
deaths. We are interested in drug repurposing, that is, the study of drugs already in
clinical use and their potential use for treating other diseases than they were deve-
loped for. Our question is if we can identify drugs with unintended protecting effects
against onset (recorded as a hospital admission) of depression and bipolar disorder.
We find that two aspects are particularly important to consider when approaching
this problem. We return to both repeatedly throughout the thesis.

First, the data are observational in nature and we should distinguish between asso-
ciational and causal effects. We do not want to detect drug effects, or lack of same,
that comes from confounding by indication. Think of the following example: A pa-
tient gets treated with aspirin due to severe headache. The same headache may cause
depression for the patient. If we simply describe the association between depression
and aspirin intake, it may appear that aspirin causes depression. Clearly, this is not
the conclusion we want to make. Our questions are causal in nature and we ask if as-
pirin has a causal effect on depression, not if aspirin is a good predictor of depression.

Second, the effect of a drug treatment must be summarized by some parameter. Sta-
tistical inference deals with learning about such parameters based on a model for the
distribution of the observed data. One may, for example, specify a parametric regres-
sion model for the underlying distribution. When the regression model is correctly
specified, estimators based hereon are often consistent and asymptotically efficient.
However, model misspecification may introduce severe asymptotic bias, and, more-
over, when the model is revised in order to meet the assumptions the subsequent
inference ignores that the model was actually data-adaptively selected and is thus in-
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valid. In contrast, semiparametric models provide a much more flexible approach to
learning from the data. Still, it would be a big misunderstanding to think that we can
simply apply machine learning methods blindly to data. Parameter interpretability
and statistical inference remain key to provide useful statistical methodology.

In the next section we briefly describe the analysis of the considered problem as we
implemented and carried it out in Kessing et al. (2019a,b) (see Table 1.1). This
is used to further motivate the direction taken in the thesis work. In both papers
(Kessing et al., 2019a,b) the focus was on six drugs of interest that were a priori
hypothesized to be associated with depression and/or bipolar disorder.

1.1.1 A Poisson regression approach

Data are obtained by linking Danish population-based registers using the unique
personal identification number, which is assigned to all persons living in Denmark. In
the considered study, data are available in a fixed calendar period [0, τ ] and include
daily information on prescribed medical purchases and hospital admissions. The
exposure to a specific drug of interest for a given subject at time t, A(t), is summarized
as a grouping of the number of purchases made so far (in the considered time period)
of that drug. We may choose to collect hospital admissions with other diagnoses
than depression as well as purchases of other drugs in a time-varying covariate L(t).
Moreover, we denote by L0 a vector of baseline covariates, including information
such as sex and socioeconomic status. The subjects are included from the beginning
of the registry (time t = 0) and followed until event of interest (first admission with
depression), date of death or end of study (time t = τ). Poisson regression can be used
to fit a Cox regression model (Cox, 1972) with a piecewise constant baseline hazard
rate. To apply Poisson regression to our data for analyzing associations between
prescription history of purchases of the drug and hospital admission with the disease,
we assume a piecewise constant hazard for our event of interest and postulate the
following regression model:

λ(t |A(t), L(t)) =
K∑

k=1

θk 1{t ∈ (tk−1, tk]} eγA(t)+β>L(t)+α>L0 . (1.1)

In this model, γ ∈ R represents the effect of the treatment and θk ≥ 0 the baseline
hazard rate in the kth time interval where ∪Kk=1(tk−1, tk] = (0, τ ]. When all the
observed covariates are categorical, the parameters (γ, β, α) can be estimated by
maximum likelihood using standard software, and, notably, the data is only needed
in aggregated form with event counts for all possible combinations of covariate levels.
The reason is that the likelihood for the model (1.1) is proportional to a Poisson
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Kessing et al. (2019a) New drug candidates for
bipolar disorder – a
nation-wide
population-based study

Published in Bipolar
disorders, 2019

Kessing et al. (2019b) New drug candidates for
depression – a nation-wide
population-based study

Published in Acta
Psychiatrica Scandinavica,
2019

Table 1.1: Main co-authored publications.

likelihood. Indeed, we can write the likelihood for (1.1) as follows,

Ln(γ, β, α) =
K∏

k=1

J∏

j=1

(
θk exp(γa+ β>̀ (j) + α>̀ 0(j))

)Dk(j)

exp
(
− θk exp(γa+ β>̀ (j) + α>̀ 0(j))Rk(j)

)
,

where Dk(j) is the total number of events observed in the time interval (tk−1, tk]
and Rk(j) is the total observed risk time in (tk−1, tk], both among subjects with
(A,Li(t), L0,i(t)) = (a, `(j), `0(j)) with (`(j), `0(j))Jj=1 denoting distinct combinations
of values of observed covariates. In practice we fit a Poisson regression model with
event counts Dk(j), mean γA(t) + β>L(t) + α>L0 and offset logRk(j).

From association to causation

Poisson regression provides an efficient algorithm for estimation of and inference for
associational effects of the treatment on the hazard scale. Now, what if we want
to move from the Poisson regression to a causal interpretation? We point out the
following issues that arise in this regard.

Model (mis)specification. Covariates and their different functional forms included
in (1.1) can be chosen in many different ways corresponding to very different
interpretations of the resulting estimand γ. As for example shown by Grøn
et al. (2016), estimation based on a misspecified Poisson regression may reverse
the sign of the effect estimates.

Time-dependent confounding. What time-varying covariates L(t) should be included
in (1.1)? We could choose L(t) as the collection of purchases of other drugs and
hospitalizations with other diseases. The problem is that we condition on L(t)
at any given time t, which means that we disregard any earlier treatment effect
that was mediated through L(t). We formalize the concept of time-dependent
confounding in Chapter 2.
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Parameter interpretation. In model (1.1), γ represents the treatment effect on the
hazard scale. The interpretation is that it is the average over time of the log
hazard ratio of increasing the number of prescribed purchases of the drug of
interest, controlling for the included covariates at any time. Either we include
time-varying covariates, but then we may block some of the effect, or we do
not include them and fail to adjust properly for confounding by indication.
Furthermore, the hazard is defined conditional on survival that may be affected
by treatment. This means that the hazard ratio generally cannot be ascribed a
causal interpretation if there is a treatment effect on survival (Hernán, 2010).
In any case, it is hard to argue that the parameter γ represents anything but
an associational effect.

1.2 Overview of thesis

In this thesis we take a different approach to the motivating problem from Section
1.1. Our overall aims are 1) to avoid the use of parametric techniques and concern
ourselves with semiparametric and nonparametric statistical models and the incor-
poration of machine learning methods, and 2) to target low-dimensional statistical
parameters with a clear interpretation representing our research question of interest.
The general line of thought we take is due to important work by Robins (1986); Gill
and Robins (2001); van der Laan and Robins (2003); van der Laan and Rubin (2006)
among others.

The thesis contains four manuscripts with the common aim of developing causal esti-
mation methods for observational longitudinal data like encountered in the motivating
problem from Section 1.1. The first manuscript is concerned with a novel continuous-
time generalization of targeted minimum loss based estimation (TMLE) (van der
Laan and Rose, 2011, 2018) and constitutes the main theoretical contribution of the
thesis:
Manuscript I. Continuous-time targeted minimum-loss based estimation of inter-

vention-specific mean outcomes.
The three other manuscripts contain work concerned with random forest methodology
(Breiman, 2001; Athey et al., 2019) for event history analysis:
Manuscript II. Random forests for survival analysis.
Manuscript III. Application of generalized random forests for survival analysis.
Manuscript IV. Average treatment effects with generalized random forests for sur-

vival and competing risks analysis.

The manuscripts focus on different aspects of complications due to right-censoring,
competing risks and time-dependent confounding. The common basis is that obser-
vations are given at random times in some bounded time interval [0, τ ]. Table 1.2
gives an overview of the publication status of each manuscript.
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Manuscript I In revision for the Annals of Statistics (revision due May 2020)

Manuscript II Published in Wiley StatsRef: Statistics Reference Online (2018)

Manuscript III Published in Proceedings of the 21st European Young
Statisticians Meeting (2019)

Manuscript IV In preparation

Table 1.2: Publication status for the manuscripts included in this thesis.

The thesis consists of nine chapters followed by the manuscripts. Chapters 2–7 present
an introduction to the topics of the manuscripts, reviewing established ideas and re-
sults from the literature to cover and relate the material. Some key references are
Robins (1986); Andersen et al. (1993); Bickel et al. (1993); van der Vaart (2000);
van der Laan and Robins (2003); van der Laan and Rose (2011, 2018); Wager and
Athey (2018); Athey et al. (2019). Specifically, Chapters 2, 3, 4 and 7 seek to provide
a general background for the work and the methodological direction taken, using dif-
ferent examples and data structures. Chapters 5 and 6, on the other hand, give an
overview of concepts relevant for moving on to present the work of the manuscripts.
Table 1.3 outlines the overall structure of the thesis.

As a reading guide we also note the following:
• A background for Manuscript I is provided by Chapters 2–6.
• A background for Manuscript II is provided by Chapters 5 and 7.
• A background for Manuscript III is provided by Chapters 2, 3 and 5–7.
• A background for Manuscript IV is provided by Chapters 2 and 5–7.

Chapter 8 summarizes the manuscripts. Chapter 9 discusses the thesis work and
suggests directions for future work.

1.3 Targeted causal estimation

In this thesis we consider learning methods that are all targeted towards a particular
parameter, the target parameter, that represents our research question of interest.
Throughout, we assume that observations O1, . . . , On

iid∼ P0 are given, where P0 be-
longs to some statistical modelM imposing as few restrictions as possible. We define
the target parameter Ψ as a mapping from the modelM to the real line.

Our approach for defining the target parameter follows Robins (1986, 1987). As we
detail in Chapter 2, we introduce counterfactual variables to represent the outcome
under hypothetical experiments and relate the counterfactuals to the observed data
by structural assumptions. Often the distribution of the counterfactuals can be iden-
tified in the following way. We specify a statistical model for the data-generating
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Chapter 2 Chapter 2 introduces counterfactuals, and
characterizes time-dependent confounding and
time-varying treatment regimes using a discrete
longitudinal data setting.

Chapters 3, 4, 7 Chapters 3, 4 and 7 review central concepts from
semiparametric efficiency theory, targeted minimum
loss based estimation (TMLE) and random forests
(particularly, generalized random forests) using a
simple example without time (referred to as our
‘running example’ or Example 1).

Chapters 5, 6 Chapters 5 and 6 give an overview of concepts
relevant for moving on to the manuscripts. Chapter 5
reviews counting processes for modeling events
happening randomly in time. Sections 5.1.1–5.1.2
introduce censoring and competing risks. Chapter 6
collects some aspects of causal survival analysis.

Manuscript I Manuscript I applies TMLE methodology to estimate
treatment effects in a continuous-time longitudinal
data setting with time-dependent covariates and
time-dependent treatment strategies.

Manuscripts II–IV Manuscript II reviews existing random forest
algorithms for survival analysis. Manuscripts III and
IV apply generalized random forest methodology for
treatment effect estimation in right-censored and
competing risks settings (in continuous time) with
baseline covariates and baseline treatment.
Manuscript IV implements a causal search algorithm
for the motivating problem from Section 1.1.

Table 1.3: Overview of chapters, manuscripts and considered data structures.

distribution P0 as,

M = {P = PQ,G : Q ∈ Q, G ∈ G},

so that any P ∈ M is factorized into a part Q = Q(P ), on which our target pa-
rameter depends, and a part G = G(P ) that represents the remaining factors of the
distribution. We also write, with some abuse of notation, Ψ(P ) = Ψ(Q). The target
parameter Ψ is now defined as a mapping of P = PQ,G through PQ,G∗ , given from



1.3. Targeted causal estimation 7

PQ,G by substituting an intervention G∗ for G. Under causal assumptions, PQ,G∗ can
be interpreted as a distribution of counterfactual variables. The target parameter is
a statistical quantity, but can now be ascribed a particular (causal) interpretation
under a set of assumptions.

Estimating ψ0 = Ψ(P0) based on the observed data O1, . . . , On involves estimation of
Q0 = Q(P0), which is some possibly infinite-dimensional quantity such as a collection
of conditional expectations and (or) densities. To make sure to capture realistic
complexity of Q0, we should employ as flexible methods as possible (Bang and Robins,
2005; van der Laan and Rose, 2011). One attractive idea is to estimate Q0 in a
‘targeted way’, by focusing the estimation of Q0 towards optimal estimation of ψ0.





Chapter 2.

Causal effects

The questions we are interested in are often not associational but rather causal in
nature. Causal questions are about what would have happened in a system if it had
been subjected to a particular change. For example, for our motivating problem in-
troduced in Chapter 1: What would have happened if, contrary to fact, all patients
had been treated with drug X compared to if no one had been treated with drug X?

The change corresponds to an intervention on parts of the data-generating system.
We are interested in the behavior of the rest of the system under interventions. A
causal model tells us how probabilities change as a result of such external inter-
ventions, and causal questions are conveniently framed in terms of counterfactuals
(Rubin, 1974; Neyman, 1923; Robins, 1986, 1987) or structural causal models (SCMs)
and causal graphs (Pearl, 1995, 2009; Spirtes et al., 2000). In this chapter we formu-
late causal questions and define causal parameters in terms of counterfactuals. The
counterfactuals may be identifiable from the data simply as a consequence of study
design, but otherwise we need to set up distributional assumptions that allow us to
express the counterfactuals from what we actually observe, the factuals.

Counterfactuals allow us to define what it means for a variable to have a causal effect
on another variable. Counterfactuals represent the ideal interventions: If we wanted
to say something about whether a drug worked on a particular patient, we would
want to see what happened in the two different scenarios where the patient 1) took
the drug and 2) did not take the drug. In reality, however, the patient either took
the drug or did not. Counterfactual outcomes are defined as the outcome under the
two scenarios, one where the patient took the drug and one where the patient did
not. We say there is a causal effect if there is a difference between, for example, the
expected values of the two counterfactual outcomes.

To more formally introduce relevant concepts we consider in this chapter a general
longitudinal data setting in which subjects of a population are all measured at equally
spaced (clinical) visits such as regular doctor follow-up visits (Robins, 1986, 1987;
Daniel et al., 2013; Robins, 1989; Robins et al., 1992, 2000; Bang and Robins, 2005;
Stitelman et al., 2011; Petersen et al., 2014; Robins and Hernán, 2008; van der Laan
and Rose, 2011, 2018). The aim of our presentation is both to introduce notation for
a particular setting, and also to exemplify a more general practice:
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1. Clearly define interventions and causal parameters of interest.

2. Establish conditions under which we can identify the causal parameter from the
observed data.

Indeed, once we have completed 1. and 2., we have in our hands a plain statistical
estimation problem. Later chapters will deal with estimation in such problems. It is a
key message that this allows us to keep statistical and causal concepts separate: The
statistical estimation problem starts with the estimation of the parameter; causality
follows under 1. and 2. above.

2.1 Experimental and observational data

We usually make the distinction between experimental data and observational data.
In experimental data, we make sure that data are generated such as to enable direct
estimation of causal parameters. An example is a randomized controlled trial (RCT)
that we could imagine: A randomized trial is initiated at a point in calendar time
where subjects of a population are randomized to be either exposed or not exposed
to a certain drug. The randomization implies that the causal effect of the drug can
be estimated directly: The expected risk of onset of disease for the exposed group
can be compared to the expected risk of onset of disease for the unexposed group.
In observational data, on the other hand, subjects are treated for a reason. If we
compute the expected risk of onset of disease for the exposed group compared to
the unexposed group, the difference may not be due to the treatment of interest but
rather due to various confounders, that is, other factors that predict both treatment
and outcome of interest. We return to this in Section 2.2.1.

RCTs are often considered the golden standard, but may not always be feasible. We
cannot randomize people to be obese, to have a higher education, or to smoke. In the
motivating example from Chapter 1 we would not be able to conduct a randomized
trial for all drugs on the market. Moreover, causal effects found in randomized trials
may not generalize to the general population: Trial participants are, on average,
healthier than typical patients for whom prescriptions are routinely written. Hence, it
is generally of great interest to turn to observational data for causal effect estimation.
The counterfactual framework allows us to define the RCT we would have liked to
have conducted but did not, and tells us what we need to deal with to analyze the
effect of interest.

2.2 Interventions, counterfactuals and the g-computation formula

We assume the subject-level observed data to be given as a temporally ordered vector
O consisting of a time series of measurements of a treatment variable A over K + 1
time points, A = (A0, . . . , AK), and a time series of covariate measurements over
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K + 2 time points, L = (L0, . . . , LK+1). We let the outcome of interest be LK+1,
which we denote by Y and assume it to be real-valued or binary. (By doing so we
note that Y = LK+1 does not have the same dimension as Lk). We use upper case
letters to denote random variables,

O = (L0, A0, L1, A1, . . . , LK , AK , LK+1 = Y ),

with values in a space O, and lower case letters to denote realizations of the same
variables o = (`0, a1, `1, a1, . . . , `K , aK , `K+1 = y). We use overbars to denote the
history of a variable up to a particular time-point k, for instance Āk = (A0, . . . , Ak).
For k = 0, 1, . . . , K, we assume that Ak takes value in a finite set A and that Lk
takes values in a subset of Rp. Let Ak = Ak+1 denote the product space where the
vector Āk takes its value. We follow Robins (1986, 1987) and rely on the counter-
factual outcome framework (Rubin, 1974; Neyman, 1923) to formalize the notion of
interventions and causal effects.

Counterfactuals. In the observed data, any individual follows a particular treatment
regime ĀK along which covariate variables L̄K and lastly outcome Y = LK+1 are
observed. Additional to the factual variables, the observed variables, we hypothesize
existence of counterfactual variables L̄āKK+1: The variables that would have been ob-
served, had this individual, possibly contrary to fact, been treated with āK ∈ AK
rather than the observed ĀK . In particular, Y āK = LāKK+1 is the counterfactual out-
come that would have been observed in this hypothetical treatment scenario.

Causal effects. The causal effect of A on Y can now be framed in terms of contrasts
between Y āK for different treatment regimes āK ∈ AK . For example, if the distribu-
tion of Y ā1K equals the distribution of Y ā2K for all ā1

K , ā
2
K ∈ AK we say that there is

no causal effect of A on Y . On the other hand, to conclude a causal effect we must be
clear about what treatment regimes āK ∈ AK we are interested in and how we sum-
marize the effect of a regime. For example, we may focus on two particular regimes
ā1
K , ā

2
K ∈ AK and measure the causal effect as the contrast E[Y ā1K ] − E[Y ā2K ]. One

particular example is the expected difference between the outcome Y āK when treated
according to the regime āK and the outcome Y 0̄K when never treated, defining,

ψ = E[Y āK ]− E[Y 0̄K ]. (2.1)

If ψ 6= 0 we say that there is a causal effect of regime āK , compared to never treated,
on the outcome Y .

Example 1. (Running example.) Consider the special case K = 0 with O =
(L,A, Y ). Let L ∈ Rp, A ∈ {0, 1} and Y ∈ {0, 1}. Then there are two counter-
factual outcomes, Y 1 and Y 0, the outcomes that would have been observed had the
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subject been treated and not treated with A, respectively. A causal parameter can now
be defined as,

ψ = E[Y 1]− E[Y 0], (2.2)

generally referred to as the average treatment effect (ATE). Other contrasts could also
be of interest, such as risk ratios or odds ratios.  

Observed distribution. We denote the distribution of the observed data O by P0 and
assume that P0 ∈ M. Let p denote the density (with respect to an appropriate
dominating measure) of P ∈M. The density p factorizes according to the time order
of the observations,

p(O) =
K∏

k=0

gk(Ak | L̄k, Āk−1)
K+1∏

k=0

qk(Lk | L̄k−1, Āk−1), (2.3)

using the notation gk for the conditional density of Ak given the variables preceding
it and qk for the conditional density of Lk given the variables preceding it. We
parametrize p accordingly,

p = pq,g = gq. (2.4)

Note that, in the above, A−1, L−1 by convention are the empty set.

Counterfactual distribution. Associated with each regime āK ∈ AK there is a distri-
bution P āK with density pāK representing the distribution of data had the subject,
possibly contrary to fact, been treated according to that treatment regime. We re-
fer to P āK as the counterfactual distribution or the postinterventional distribution.
Quite generally, we define causal parameters in terms of characteristics of P āK for
various āK ∈ AK , for example as in (2.1). The following provides conditions under
which we can identify the counterfactual distribution P āK , and by that the causal
parameter, from the observed data for a given treatment regime āK ∈ AK . We also
refer to Gill and Robins (2001) or Hernán and Robins (2020, Chapter 19).

(A1) (Consistency). Y āK = L̄āKK+1 is observed for those subjects who followed āK in
the observed data. Specifically, Y āK = Y if ĀK = āK . This assumption entails
that one subject’s counterfactual outcome does not depend on the treatment
received by others, and that there is only one way to administrate the treatment.

(A2) (Sequential randomization). Conditional on the covariate and treatment his-
tory, the treatment is independent of the counterfactual outcome,

Ak ⊥⊥ Y āK | (L̄k, Āk−1),
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for all āK ∈ AK and all k = 0, . . . , K. This is also called no unmeasured
confounding, exchangeability or ignorability.

(A3) (Sequential positivity). The intervention that we impose on the treatment
regime must have support in the data,

sup
O∈O

K∏

k=0

1{Ak = ak}
gk(Ak | L̄k, Āk−1)

<∞ a.s.,

i.e., the treatment regime that we wish to measure the effect of must have been
followed with a nonzero probability in the factual data.

Under (A1)–(A3), the counterfactual density is obtained from (2.4) simply by deleting
the g-factor and replacing the conditioning sets in the q-factor by the interventional
value:

pāK (O) =
K+1∏

k=0

qk(Lk | L̄k−1, Āk−1 = āk), (2.5)

under which we can compute the expectation of Y under the intervention,

E[Y āK ] =

∫
y dP āK (o).

Formula (2.5) is due to seminal work by James Robins (Robins, 1986) and is com-
monly referred to as the g-computation formula.

Example 1. (Continued.) We assume (A1) Y = Y 1A + Y 0 (1 − A), (A2) A ⊥⊥
(Y 1, Y 0) |L, and (A3) 0 < P (A = 1 |L) < 1 a.s. We let qY (y | a, `) = P (Y = y |A =
a, L = `), for y = 0, 1, and qL(`) denote the density for the distribution of L with
respect to a dominating measure µL. Then we can rewrite (2.2) as:

ψ = E[Y A=1]− E[Y A=0]

= E
[
E[Y A=1 |A = 1, L]

]
− E

[
E
[
Y A=0 |A = 0, L]

]

= E
[
E[Y |A = 1, L]

]
− E

[
E
[
Y |A = 0, L]

]
,

or, equivalently, as

ψ =

∫ (
Q̄(1, L)− Q̄(0, L)

)
qL(`) dµL(`),

with Q̄(A,L) := E[Y |A,L]. Either way, the parameter ψ is now identifiable from the
observed data.  
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Static, dynamic and stochastic interventions. Defining g∗k(ak | ¯̀k, āk−1) = 1{Ak = ak}
we can present (2.5) on a more general form, as,

pg
∗
(O) = pq,g∗(O) =

K∏

k=0

g∗k(Ak | L̄k, Āk−1)
K+1∏

k=0

qk(Lk | L̄k−1, Āk−1). (2.6)

Setting Āk to a fixed value āk is an example of a static intervention. More generally
we can define interventions in terms of other choices of a density g∗k(Ak | L̄k, Āk−1)
for the intervention variable Ak, often referred to as stochastic interventions (Robins
et al., 2004; Dawid and Didelez, 2010; Muñoz and van der Laan, 2012). This includes
static interventions (on the form g∗k(Ak | L̄k, Āk−1) = 1{Ak = ak}) and dynamic in-
terventions (Chakraborty and Moodie, 2013) (where g∗k(Ak | L̄k, Āk−1) = dk(L̄k) is a
fixed rule applied to the observed history) as special cases. We still refer to (2.6) as
the g-computation formula. Let Og∗ = (Lg

∗
0 , A

g∗
0 , L

g∗
1 , A

g∗
1 , . . . , L

g∗
K+1 = Y g∗) denote

the counterfactual variables generated in a hypothetical world where the stochastic
regime g∗ is assigned rather than g. Under the assumptions that,1

Y g∗ = Y if ĀK = Āg
∗
K , (A1*)

Ak ⊥⊥ Y g∗ | (L̄k, Āk−1) ∀ k = 0, . . . , K, (A2*)

sup
o∈O

K∏

k=0

g∗k(Ak | L̄k, Āk−1)

gk(Ak | L̄k, Āk−1)
<∞ a.s., (A3*)

the distribution P g∗ = Pq,g∗ of Og∗ is characterized by the density pg∗ given by the
g-computation formula (2.6) (Gill and Robins, 2001). The causal parameter can now
be defined as a contrast under counterfactual distributions Pq,g∗ with g∗ varying over
a set of interventions (static, dynamic, stochastic).

2.2.1 Confounding and time-dependent confounding

We consider again our motivating problem from Chapter 1 and let L represent hos-
pital admissions (other than depression), A purchases of a particular drug of interest
and Y a final outcome of interest. In the following we make use of directed acyclic
graphs (DAGs)2 (Pearl, 1995, 2009) to display various causal assumptions.

1We note that the consistency assumption becomes a bit more involved for stochastic interven-
tions. We have tried to give a short account here but otherwise refer to Gill and Robins (2001,
Assumption A1**).

2DAGs are useful for displaying conditional independencies, with nodes denoting variables and
arrows between nodes representing the assumed direction of a causal influence. For a DAG to be
causal we need to include both observed and unobserved variables such that if any observed variables
share a cause, that cause is represented as an unobserved variable on the graph. Conditional
independencies are identified if they are d-separated by a set of nodes in the graph, see Pearl (2009,
Definition 1.2.3).
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A

L

Y

(a) Randomized treatment.

A

L

Y

(b) Time-fixed confounding.

Figure 2.1: Single time-point setting.

Time-fixed confounding. Assume that K = 0. Then we are in the simple setting
with O = (L,A, Y ) (Example 1) that includes only baseline confounding followed by
a single treatment decision. In Figure 2.1 we display these three variables as nodes
in a DAG. In Figure 2.1a there is no arrow from L to A which means that L is not a
cause of A and thus not a confounder: We have that Y a ⊥⊥ A. In Figure 2.1b, L is a
confounder for the effect of A on Y . In this case we have that Y ⊥⊥ Aa |L.

Time-dependent confounding that is not affected by treatment. For simplicity we
consider K = 1, so that O = (L0, A0, L1, A1, L2 = Y ). In Figure 2.2b we display
the variables as nodes and include arrows where we allow a direct causal effect. In
this case we allow for time-varying confounding on the treatment decisions at the two
time-points, but we assume that baseline treatment A0 does not affect the subsequent
covariate L1. We then have Y ⊥⊥ A0 |L0 and Y ⊥⊥ A1 | (L0, L1), and controlling for
(L0, L1) allows identifiability of the effect of (A0, A1) on Y . Our data from Chapter
1 would fit into this setting if it was certain that hospital admissions do not to affect
later treatment decisions.

Time-dependent confounding that is also affected by treatment. We consider again
O = (L0, A0, L1, A1, L2 = Y ). In Figure 2.2c we display the same graph as in Figure
2.2b, however, we also include the arrow A0 → L1. In this case, we allow for time-
varying confounding on the treatment decisions at the two time-points and we also
allow for treatment to have an effect on later covariates. Then we have Y ⊥⊥ A0 |L0

and Y ⊥⊥ A1 | (L0, A0, L1), but we do not have Y ⊥⊥ A1 | (L0, L1). Controlling for
(L0, L1) includes the collider L1 and does not allow identifiability of the effect of
(A0, A1) on Y . In the data setting from Chapter 1, hospital admissions are an exam-
ple of time-dependent confounding if we for instance believe that they are affected
by earlier treatment and that treatment affects later hospital admissions.

Figure 2.2a and Figure 2.2d show two other settings, one with no measured and no
unmeasured confounding (Figure 2.2a) and one with both measured and unmeasured
time-dependent confounding (Figure 2.2d). For the latter, we cannot identify the
causal parameter.
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2.3 Final comments: Target parameter

In Section 1.3 we presented our general estimation problem: Given observed data
O ∼ P0, where P0 belongs to a statistical modelM,

M = {P = PQ,G : Q ∈ Q, G ∈ G},

we are interested in the target parameter Ψ : M → R defined as a mapping of P
through PQ,G∗ with G∗ an intervention substituted for G. This is the g-computation
formula. Usually we work directly with the g-computation formula and provide the
additional causal assumptions under which it has a desired interpretation. In this
chapter we had Q = q and G = g and the g-computation formula Pq,g∗ characterized
by the density defined in (2.6). Now, for example, we may define our target parameter
as:

Ψ(P ) = EPq,g∗ [Y ] =

∫

O
Y dPq,g∗ . (2.7)

This is a statistical parameter, but, as described in Section 2.2, it can be given a
causal interpretation as the counterfactual mean outcome Ψ(P ) = E[Y g∗ ] under ad-
ditional causal identifiability assumptions.

In the next couple of chapters, we will work mostly with the setting of Example 1
where K = 0 and O = (L,A, Y ). Again we assume that O ∼ P0 where P0 belongs to
a statistical model M. In this example we target a parameter Ψ : M → R that is
defined as the following difference:

Ψ(P ) =

∫ (
Q̄(1, L)− Q̄(0, L)

)
qL(`) dµL(`), P ∈M. (2.8)

Note that Ψ(P ) only depends on P through Q = (Q̄, qL). Under the identifiability
assumptions (see Example 1, page 13), this parameter has the desired interpretation,

Ψ(P ) = E[Y 1]− E[Y 0],

but the statistical estimation problem deals directly with Ψ(P ) as defined in (2.8).

We return to the longitudinal setting again in Section 4.3. In Chapter 5 and Chapter
6 we move on to right-censored data, that gives rise to yet another layer of counter-
factual reasoning.
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A0 A1

L0 L1 Y

(a) No unmeasured or measured con-
founding for the time-varying treat-
ment.

A0 A1

L0 L1 Y

(b) Time-varying confounding that is
not affected by earlier treatment.

A0 A1

L0 L1 Y

(c) Time-dependent confounding that is
affected by earlier treatment.

A0 A1

U0 U1

L0 L1 Y

(d) Measured and unmeasured time-
dependent confounding.

Figure 2.2: A number of situations that can occur in the time-varying setting. A sequen-
tial randomized study is presented in (a). Here the counterfactual mean outcome E[Y g∗]
is simply the mean outcome among those who followed treatment regime g∗. In observa-
tional studies represented by (b) and (c), E[Y g∗] is identifiable under all strategies g∗. In
observational studies represented by (d) no counterfactual mean outcome E[Y g∗] can be
identified.





Chapter 3.

Semiparametric efficiency

In this chapter we review some fundamental results of semiparametric efficiency the-
ory (Bickel et al., 1993). We do not consider this in depth, but rather make an
informal overview based on Bickel et al. (1993); van der Vaart (2000); van der Laan
and Robins (2003); Tsiatis (2007); van der Laan and Rose (2011, Appendix A).

We consider the general estimation problem as introduced in Section 1.3 and Chapter
2. Our aim is to estimate the target parameter ψ0 = Ψ(P0) ∈ R that behaves well un-
der as few restrictions as possible on the statistical modelM for the data-generating
distribution P0. We distinguish between parametric models that can be indexed by
a finite-dimensional parameter θ ∈ Rd, for some d ∈ N, and semiparametric models
that cannot be indexed by a finite-dimensional θ ∈ Rd alone. In this terminology,
semiparametric models cover also nonparametric models that impose no parametric
assumptions on any part of the data-generating distribution. The level of restrictions
that we impose on M is generally a tradeoff between flexibility and robustness on
the one hand, and statistical inference and efficiency on the other. Nonparametric
models provide a more general and adaptive approach to learning from the data by
allowing for realistic complexity of the true underlying probability distribution P0,
but the same adaptivity makes estimation and inference a more difficult exercise.

Results from semiparametric efficiency theory gives us efficiency bounds in models
with minimal restrictions on the data-generating process. To understand the impli-
cations for our estimation problem, we need some technical tools. What does it mean
for a semiparametric estimator to be asymptotically efficient? Summarizing existing
work, we aim for an intuitive and practical understanding of the concepts in this
regard.

To start out, we present some notation. We use Pn to denote the empirical distri-
bution of the data: For f : O 7→ R, we have Pnf = 1

n

∑n
i=1 f(Oi). For general P ,

we use Pf =
∫
f dP to denote the expectation with respect to P . We further define

L2(P )-norm ‖f‖P =
√
Pf 2. Moreover, we adopt the use of stochastic o-notation:

Xn = oP (Rn) meaning R−1
n Xn

P→ 0 as n→∞.

Finally, σ(X) denotes the σ-algebra generated by the stochastic variable X.
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3.1 Asymptotically linear estimators

Generally, we are interested in estimators that are asymptotically linear. We say that
an estimator Ψ̂n of ψ0 is asymptotically linear if there exists a function φ(P ) : O → R
(indexed by P ∈M) such that,

√
n
(
Ψ̂n − ψ0

)
=
√
nPn φ(P0) + oP (1), (3.1)

where P0φ(P0) = 0 and P0φ(P0)2 < ∞. The function φ(P0) is referred to as the
influence function of the estimator Ψ̂n.

It is a simple consequence of Slutsky’s theorem and the central limit theorem that
(3.1) implies asymptotic normality,

√
n
(
Ψ̂n − ψ0

) D→ N(0, σ2
0),

with σ2
0 = P0φ(P0)2. Thus, the asymptotic distribution of an asymptotically linear

estimator, based on which we can construct confidence intervals and provide p-values
for hypothesis tests, is identified entirely through its influence function. In addition,
we can compare competing estimators for a specific parameter of interest by looking
at the variances of their influence functions.

Example 1. (Continued.) Recall that g(A |L) denotes the conditional distribution
of A given L. We may estimate our target parameter by means of inverse probability
of treatment weighting (IPTW),

ψ̂IPTW
n =

1

n

n∑

i=1

(2Ai − 1)Yi
ĝn(Ai |Li)

, (3.2)

for an estimator ĝn(A |L) of g(A |L). Suppose we know the true g. Then ψ̂IPTW
n is a

linear estimator and thereby also an asymptotically linear estimator, and we see that,

φIPTW(P )(Oi) =
1{Ai = 1} − 1{Ai = 0}

g(Ai |Li)
Yi −Ψ(P ), (3.3)

is the influence function of ψ̂IPTW
n .  

In the next section we introduce the efficient influence function, also known as the
canonical gradient, that characterizes the “best variance” and thereby efficient estima-
tion in the semiparametric model. Next we get into how we can construct estimators
that have influence function equal to the efficient influence function.
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3.2 Semiparametric efficiency

Our aim is to estimate ψ0 = Ψ(P0) for a given parameter Ψ : M→ R. For starters,
note that it is harder to estimate ψ0 for all P ∈ M than it is for some submodel
M′ ⊂ M. For smooth parametric models M′ = {Pθ : θ ∈ Rd}, classical statisti-
cal theory gives the Fisher information for estimating Ψ(Pθ). The information for
estimating Ψ(Pθ) for the semiparametric modelM is defined as the infimum of the
information of all parametric submodels (van der Vaart, 2000).

Let L2(P ) denote the Hilbert space of all functions f : O → R with Pf = 0 and
Pf 2 < ∞ endowed with inner product 〈f1, f2〉P = Pf1f2. We are interested in
a particular subspace T (P ) ⊂ L2(P ) known as the tangent space. As a technical
device, we consider smooth one-dimensional submodelsM′ = {Pε : ε ∈ R} ⊂ M (see
Figure 3.1) that are constructed such that they pass through P at ε = 0 and has
score S ∈ L2(P ) given as,

S =
d

dε

∣∣∣∣
ε=0

log dPε. (3.4)

If we consider a rich collection of such submodels we obtain a corresponding collection
of score functions. The tangent space of the modelM at P is defined as the closure
of the linear span of the collection of score functions (van der Vaart, 2000).

P

{Pε : ε ∈ R}
M

Figure 3.1: Illustration of a parametric submodel {Pε : ε ∈ R} ⊂ M.

The parameter Ψ : M → R is pathwise differentiable at P if there exists φ(P ) :
O → R such that for every score S ∈ T (P ) and submodel Pε with score S,

d

dε

∣∣∣∣
ε=0

Ψ(Pε) = Pφ(P )S. (3.5)
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Any function φ(P ) ∈ L2(P ) that fulfills (3.5) is called a gradient. The gradient that
is an element of the tangent space T (P ) is referred to as the canonical gradient. We
denote it φ∗(P ). For any φ⊥ in the orthogonal complement of the tangent space, we
have that,

P (φ∗(P ) + φ⊥)S = Pφ∗(P )S + Pφ⊥S = Pφ∗(P )S,

for all S ∈ T (P ). This implies that φ∗(P ) + φ⊥ for any φ⊥ is a gradient. In fact any
gradient can be represented as φ∗(P ) + φ⊥ for some φ⊥, and the canonical gradient
can be obtained by projecting any gradient onto the tangent space. Moreover, the
canonical gradient φ∗(P ) is the gradient that has the smallest variance of all gradients,

P (φ∗(P ) + φ⊥)2 = P (φ∗(P ))2 + P (φ⊥)2 ≥ P (φ∗(P ))2.

We formulate this as the following lemma.

Lemma 3.1 (van der Vaart (2000), Lemma 25.19). The canonical gradient φ∗(P )
defines a lower bound for estimating Ψ(P ) in the modelM in the sense that,

Pφ(P )2 ≥ Pφ∗(P )2,

for all φ(P ) ∈ L2(P ).

We restrict attention to asymptotically linear estimators that also satisfy a certain
regularity condition. One can show that the influence function of any regular and
asymptotically linear estimator equals a gradient of the pathwise derivative. Accord-
ing to Lemma 3.1 the canonical gradient is the gradient with the smallest variance.
Thus the canonical gradient characterizes the efficient estimator (see also van der
Vaart, 2000, Section 25.3).

Lemma 3.2. An estimator Ψ̂∗n is asymptotically efficient among all regular and
asymptotically linear estimators if and only if,

√
n
(
Ψ̂∗n − ψ0

)
=
√
nPnφ

∗(P0) + oP (1),

i.e., Ψ̂∗n is asymptotically linear with influence function equal to the canonical gradi-
ent.

Since an asymptotically linear estimator is asymptotically efficient if and only if its
influence function equals the canonical gradient, the canonical gradient is also natu-
rally referred to as the efficient influence function. Thus, a key part of constructing
an asymptotically efficient estimator of Ψ(P ) given the model M is to derive the
canonical gradient.
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3.2.1 A recipe for deriving the canonical gradient

Throughout, as outlined in Section 1.3, we consider modelsM = {P = PQ,G : Q ∈
Q, G ∈ G} and a target parameter Ψ : M → R that depends only on P through
the part Q = Q(P ). Let TQ(P ) denote the tangent space at P in the submodel
MQ ⊂M that assumes G to be known. We can derive the efficient influence function
by characterizing the tangent space TQ(P ) and providing the projection formula; then
the canonical gradient can be found as the projection of any other gradient of the
pathwise derivative of Ψ : MG → R at P onto TQ(P ) (van der Laan and Robins,
2003). Recall that the projection of a function φ(P ) onto a subspace T (P ) of a
Hilbert space, denoted Π(φ(P ) |T (P )), is defined by the two properties:

1. Π(φ(P ) |T (P )) ∈ T (P ),

2.
〈
Π(φ(P ) |T (P ))− φ(P ), f

〉
P

= 0 for any f ∈ T (P ).

As an initial gradient, one can use the influence function of an estimator that takes
the intervention part as known (van der Laan and Robins, 2003; van der Laan and
Rose, 2011, Appendix A.5, A.7).

Example 1. (Continued.) We have Q = (qY , qL) and G = g. We can use the
influence function φIPTW(P ) from (3.3) as an initial gradient. Following the lines
of van der Laan and Rose (2011, Appendix A.7) we note that the factorization of
the density p(o) = qY (y | a, `) g(a | `) qL(`) implies an orthogonal decomposition of the
tangent space,

TQ(P ) = TqY (P )⊕TqL(P ),

and a corresponding decomposition of the projection operator,

Π(φ(P ) |T (P )) = Π(φ(P ) |TqY (P )) + Π(φ(P ) |TqL(P )).

The projections onto TqY (P ) and TqL(P ) are characterized by,

Π(φ(P ) |TqL(P )) = E[φ(P ) |L],

Π(φ(P ) |TqY (P )) = φ(P )− E[φ(P ) |A,L].

Projecting φIPTW(P ) onto T (P ) now gives an expression for the canonical gradient,

φ∗(P )(Oi) =

(
1{Ai = 1} − 1{Ai = 0}

g(Ai |Li)

)(
Y − Q̄(Ai, Li)

)

+
(
Q̄(1, Li)− Q̄(0, Li)

)
−Ψ(P ),

(3.6)

where g(a |L) = P (A = a |L) and Q̄(A,L) = E[Y |A,L].  
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3.3 Efficient substitution estimation

Let Ψ̂n = Ψ(P̂n) be a substitution estimator based on an estimator P̂n of (relevant
parts of) P0. We say that Ψ̂n solves the efficient influence curve equation if,

Pnφ
∗(P̂n) = oP (n−1/2). (3.7)

By Lemma 3.2, the canonical gradient characterizes efficient estimation. In this
section we sketch how the asymptotic behavior of an estimator that solves the efficient
influence curve equation can be analyzed. We define the remainder term,

R2(P, P0) := Ψ(P )−Ψ(P0) + P0φ
∗(P ).

Pathwise differentiability of Ψ : M→ R implies a first-order expansion,

Ψ(P )−Ψ(P0)

= −P0φ
∗(P ) +R2(P, P0)

= (Pn − P0)(φ∗(P )− φ∗(P0)) + (Pn − P0)φ∗(P0)− Pnφ
∗(P ) +R2(P, P0).

Specifically, substituting the estimator P̂n for P in the above expression gives a de-
composition for the estimator Ψ̂n = Ψ(P̂n),

Ψ(P̂n)−Ψ(P0) = Pnφ
∗(P0)

− P0φ
∗(P0)− Pnφ

∗(P̂n)

+ (Pn − P0)(φ∗(P̂n)− φ∗(P0)) (C1)

+ R2(P̂n, P0). (C2)

If P̂n solves the efficient influence curve equation (3.7), then Pnφ∗(P̂n) = oP (n−1/2).
Furthermore, we have that P0φ

∗(P0) = 0. We now see that Ψ̂n = Ψ(P̂n) is asymptoti-
cally linear and efficient if we can construct P̂n such that (C1) and (C2) are oP (n−1/2),
since we then have,

√
n
(
Ψ̂∗n − ψ0

)
=
√
nPnφ

∗(P0) + oP (1).

Thus asymptotic linearity and efficiency Ψ̂∗n follows from Lemma 3.2. What remains
is to show that the terms in (C1) and (C2) are oP (n−1/2).

Remainder term. The last term (C2) is a remainder term for the expansion
R2(P, P0) = Ψ(P )−Ψ(P0)+P0φ

∗(P ) and must be analyzed for the particular problem
at hand. Recall that the target parameter only depends on P through Q = Q(P ).
The canonical gradient and the remainder, on the other hand, typically depend on
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both Q = Q(P ) and G = G(P ). In certain problems, the remainder R2(P, P0) can
be represented in terms of expressions like,

∫ (
H1(Q)−H1(Q0)

)(
H2(G)−H2(G0)

)
f(P, P0)dP0, (3.8)

whereH1(·), H2(·) are some functions ofQ andG, respectively. We say thatR2(P, P0),
or, equivalently, the canonical gradient, admits a double robustness structure (van der
Laan and Robins, 2003) with respect to misspecification of Q0 or G0,

P0φ
∗(P ) = Ψ(P0)−Ψ(P ), if G(P ) = G(P0) or Q(P ) = Q(P0),

see also van der Laan (2017). The double robustness property implies that if an esti-
mator P̂n = (Q̂n, Ĝn) solves the efficient influence curve equation, then Ψ̂n = Ψ(P̂n)
will be a consistent estimator of ψ0 if either Q̂n or Ĝn is a consistent estimator.

Example 1. (Continued.) The remainder is given as (see, e.g. van der Laan, 2017),

R2(P, P0) = Ψ(P )−Ψ(P0) + P0φ
∗(P )

=
∑

a=0,1

(2a− 1)

∫
g(a |L)− g0(a |L)

g(a |L)

(
Q̄(a, L)− Q̄0(a, L)

)
dP0,

(3.9)

with g(a |L) = P (A = a |L) and Q̄(A,L) = E[Y |A,L]. We note that R2(P, P0) in
(3.9) admits a double robustness structure which implies that R2(P, P0) = 0 if either
Q̄ = Q̄0 or g = g0. In addition, we can bound R2(P, P0) by use of the Cauchy-Schwartz
inequality,

R2(P, P0) =
∑

a=0,1

(2a− 1)

∫ (
g(a |L)− g0(a |L)

)

g(a |L)

(
Q̄(a, L)− Q̄0(a, L)

)
dP0

≤
∑

a=0,1

(2a− 1)
1

g(a |L)
‖g − g0‖P0‖Q̄− Q̄0‖P0

≤
∑

a=0,1

(2a− 1)
1

δ
‖g − g0‖P0‖Q̄− Q̄0‖P0 ,

assuming the stronger version of Assumption (A3) (Section 2.2), δ < g(1 |L) < 1− δ
for some δ > 0. Now, substitute an estimator P̂n = ( ˆ̄Qn, ĝn) for P in R2(P, P0). We
see that one way to achieve R2(P̂n, P0) = oP (n−1/2) is by ensuring that ‖ĝn− g0‖P0 =

oP (n−1/4) and ‖ ˆ̄Qn − Q̄0‖P0 = oP (n−1/4). This holds if ˆ̄Qn and ĝn are based on
correctly specified parametric models, but, as we will see in the next chapter, it can
also hold for estimators based on much larger models.  
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Donsker class conditions. We can analyze the asymptotic behavior of the term
(C1) by applying a useful result from empirical process theory (van der Vaart and
Wellner, 1996; van der Vaart, 2000). We do not consider this in depth but rather
sketch what is needed here. We let F denote a class of functions f : O → R and
consider the empirical process {Gnf : f ∈ F}n≥1 for increasing sample size n. The
important result that we use again and again is the continuous mapping theorem as
formulated in van der Vaart (2000, Lemma 19.24): Suppose f̂n ∈ F where F is a
Donsker class F , and suppose P0(f̂n − f0)2 converges to zero in probability. Then
the continuous mapping theorem states that:

Gnf̂n = Gnf0 + oP (1).

Applying this result with f̂n = φ∗(P̂n), f0 = φ∗(P0) and Gn =
√
n(Pn−P0) takes care

of the convergence rate of the term (C1), if φ∗(P̂n) ∈ Fφ where Fφ is a Donsker class
and if P0(φ∗(P̂n)−φ∗(P0))2 converges to zero in probability.1 In general, one can show
that a function class is Donsker by using bracketing and covering numbers, but often
we use that “nice” transformations of Donsker function classes are again Donsker
(van der Vaart and Wellner (1996), Section 2.10). In that case we put Donsker
class conditions directly on the function class for P̂n and prove that the mapping φ∗
preserves the Donsker property. A very important Donsker class we make use of is
the class of càdlàg functions with finite variation norm (Gill et al., 1995), but Donsker
classes also include, for instance, parametric classes.

3.4 Final comments

In this chapter we have reviewed some important results from semiparametric effi-
ciency theory. We can now talk about asymptotically efficient estimation of a target
parameter Ψ : M → R in a given semiparametric statistical model M. Notably,
to construct an efficient estimator, one first needs to derive the efficient influence
function for the given estimation problem.

The following Theorem 3.3 states conditions for efficient substitution estimation as
discussed in Section 3.3. For any estimator Ψ̂∗n = Ψ(P̂ ∗n) that meets the conditions of
Theorem 3.3, we have that,

√
n
(
Ψ̂∗n − ψ0

) D→ N(0, σ2
0),

The next chapter introduces targeted minimum loss based estimation as a specific
methodology for constructing asymptotically linear and efficient estimators.

1Note that P0(φ∗(P̂n) − φ∗(P0))2 =
∫

(φ∗(P̂n)(o) − φ∗(P0)(o))2 dP0(o), i.e., the expectation is
taken over randomness in O 7→ φ∗(P̂n)(O), with P̂n considered fixed.
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Theorem 3.3 (Asymptotically efficient estimation). Suppose an estimator P̂ ∗n of P0

is constructed such that:

(C1) The estimator solves the efficient influence curve equation: Pnφ∗(P̂ ∗n) = oP (n−1/2),
(C2) φ∗(P̂ ∗n) takes value in a Donsker class and P0(φ∗(P̂ ∗n) − φ∗(P0))2 converges to

zero in probability,
(C3) R2(P̂ ∗n , P0) = oP (n−1/2),

then the estimator Ψ̂n = Ψ(P̂ ∗n) is an asymptotically linear and efficient estimator for
ψ0 = Ψ(P0).

We conclude this chapter by applying Theorem 3.3 specifically to Example 1. We
have seen that our target parameter (2.8) can be parametrized by Q = (Q̄, qL) with
the conditional expectation Q̄(A,L) = E[Y |A,L] and the covariate density qL. In the
same manner we note that the efficient influence function for the estimation problem
(see Example 1, page 23) is a function of P only through Q and g,

φ∗(Q, g)(Oi) =

(
1{Ai = 1} − 1{Ai = 0}

g(Ai |Li)

)(
Y − Q̄(Ai, Li)

)
(3.10)

+
(
Q̄(1, Li)− Q̄(0, Li)

)
−Ψ(Q). (3.11)

Notably, we can provide an estimator for the target parameter if we can estimate
Q = (Q̄, qL), but, as expressed by Theorem 3.3, we need both Q and g to construct
an efficient estimator. Now suppose (Q̂n, ĝn) of (Q0, g0) are constructed such that:

(C1) The efficient influence curve equation is solved: Pnφ∗(Q̂n, ĝn) = oP (n−1/2),

(C2) φ∗(Q̂n, ĝn) takes value in a Donsker class and P0(φ∗(Q̂n, ĝn)− φ∗(Q0, g0))2 con-
verges to zero in probability,

(C3) ‖ĝn − g0‖P0‖ ˆ̄Qn − Q̄0‖P0 = oP (n−1/2),

then, by Theorem 3.3, the estimator Ψ̂n = Ψ(Q̂n) is asymptotically linear and effi-
cient.





Chapter 4.

TMLE

Targeted minimum loss based estimation (TMLE) (van der Laan and Rose, 2011,
2018) is a general framework for construction of asymptotically linear estimators for
causal parameters. The methodology was first proposed in van der Laan and Rubin
(2006) but has since been extended for a large variety of problems (see, e.g., van der
Laan and Gruber, 2012; van der Laan and Luedtke, 2014; Chambaz and van der Laan,
2014; Sofrygin and van der Laan, 2017; van der Laan et al., 2018; Cai and van der
Laan, 2019).

Given observations O1, . . . , On
iid∼ P0 with P0 belonging to a semiparametric model

M, we let Ψ : M → R be our target parameter with efficient influence function
φ∗(P ). TMLE is based on substitution estimation: Estimation of the target param-
eter requires estimators for the infinite-dimensional nuisance parameters, as in our
running example where we need estimators for Q = (Q̄, qL) and for g. The idea is that
the estimators are constructed exactly such as to meet the conditions of Theorem 3.3
from the previous chapter.

The general TMLE template can be summarized as follows:

Step 1: Initial estimation. Construct an initial estimator P̂ 0
n for P0.

Step 2: Targeting step. Update P̂ 0
n 7→ P̂ ∗n such that,

Pn φ
∗(P̂ ∗n) = oP (n−1/2).

We mainly focus on the second step, the targeting step. We start by giving a gen-
eral description in Section 4.1, then we apply it specifically to our running example
for illustration. In Section 4.2 we give a brief outline of the first step; for sake of
presentation we focus only on the running example. We finish the chapter with the
(discrete) time-varying setting from Section 4.3, which is the setting that we gener-
alize to continuous time in Manuscript I.

4.1 The targeting step

The targeting step for the parameter Ψ : M → R with influence function φ∗(P ),
given an initial estimator P̂ 0

n , is defined by the following:
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(i) A choice of a loss function for P , (O,P ) 7→ L(P )(O).

(ii) A parametric fluctuation model parametrized by ε ∈ R through P at ε = 0,
{Pε : ε ∈ R} ⊂ M.

(iii) An updating algorithm.

Notably, (i) and (ii) must be defined such that the score of Pε equals the efficient
influence function for the target parameter evaluated in P itself,

d

dε

∣∣∣∣
ε=0

L(Pε)(Oi) = φ∗(P )(O). (4.1)

Recall that the end goal of the targeting step is to fluctuate, or update, the initial
estimator P̂ 0

n into P̂ ∗n such that P̂ ∗n solves the efficient influence curve equation. To
carry out the fluctuation, we consider the fluctuation model defined by (ii) through
the initial estimator P̂ 0

n : Denote this by P̂ 0
n,ε. The parameter ε determines the amount

of fluctuation. We now estimate ε in the model P̂ 0
n,ε based on the observed data by,

ε̂n := argmin
ε

Pn L(P̂ 0
n,ε).

Then we update P̂ 0
n into P̂ 1

n by defining P̂ 1
n := P̂ 0

n,ε̂n
. Notably, the minimizer ε̂n of

ε 7→ Pn L(P̂ 0
n,ε) solves,

Pn
d

dε

∣∣∣∣
ε=ε̂n

L(P̂ 0
n,ε) = 0.

Depending on the problem at hand we may already be done at this point; if we repeat
the same procedure with P̂ 1

n substituted for P̂ 0
n , and we have that,

Pn
d

dε

∣∣∣∣
ε=0

L(P̂ 1
n,ε) = 0, (4.2)

then P̂ ∗n := P̂ 1
n by the property ensured in (4.1) solves the efficient influence curve

equation without further updating. We are done and we define the TMLE estimator
for the target parameter as Ψ̂∗n = Ψ(P̂ ∗n).

For many problems, however, we need to iterate the fluctuation step before we get
to (4.2). This is for instance the case if the loss is indexed by other components of
the model that are also updated. We will see an example of this later in Chapter 6.
Starting from a current estimator P̂ k

n and substituting P̂ k
n for P̂ 0

n , the kth update is
carried out by solving ε̂k := argminε P̂ k

n,ε and defining P̂ k+1
n := P̂ k

n,ε̂k
. These steps are

repeated until ε̂k∗ is approximately zero. Then P̂ ∗n := P̂ k∗
n solves the efficient influence

curve equation, Pnφ∗(P̂ k∗
n ) = oP (n−1/2), and we define our TMLE estimator for the
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target parameter as Ψ̂∗n = Ψ(P̂ ∗n).

Consider specifically the target parameter that only depends on P through Q = Q(P )
but the efficient influence function depends on both Q = Q(P ) and G = G(P ). We
then need initial estimators for both Q and G, but a targeting step only for Q;
constructed such that the targeted estimator Q̂∗n for a given estimator Ĝn solves the
efficient influence curve equation,

Pnφ
∗(Q̂∗n, Ĝn) = oP (n−1/2).

This involves a choice of a loss function for Q, potentially indexed by G, (O,Q) 7→
L(Q)(O), and a parametric fluctuation model through Q. In the following section we
consider our running example for illustration.

4.1.1 The targeting step for Example 1

In our running example, suppose we have constructed initial estimators ĝn, ˆ̄Q0
n for

g, Q̄, respectively. We estimate qL by the empirical distribution q̂L,n of L1, . . . , Ln. Let
Q̂0
n = ( ˆ̄Q0

n, q̂L,n). In the targeting step we update ˆ̄Q0
n 7→ ˆ̄Q∗n such that Q̂∗n = ( ˆ̄Q∗n, q̂L,n)

solves,

Pn φ
∗(Q̂∗n, ĝn) = oP (n−1/2).

This involves a choice of a loss function for Q̄ and a corresponding path indexed
by ε ∈ R through Q̄, such that the generated score equals the first term (3.10) of
the canonical gradient. In other words, we define a parametric fluctuation model
{Q̄ε : ε ∈ R} ⊂ M through Q̄ at ε = 0 and a loss function (O, Q̄)→ L(Q̄)(O), such
that,

φ∗(Q,G)(Oi) =

(
1{Ai = 1} − 1{Ai = 0}

g(Ai |Li)

)(
Yi − Q̄(Ai, Li)

)

︸ ︷︷ ︸
= d

dε
|ε=0L(Q̄ε)(Oi)

+ Q̄(1, Li)− Q̄(0, Li)

−Ψ(Q̄, qL).

(4.3)

To achieve this, we use the log-likelihood loss,

L(Q̄)(O) = −
(
Y log Q̄(A,L) + (1− Y ) log(1− Q̄(A,L))

)
, (4.4)

along with a logistic regression model,

Q̄ε(A,L) = expit
(
logit(Q̄(A,L)) + εH(A,L)

)
, (4.5)

with the so-called “clever covariate”,

H(A,L) :=
1{A = 1} − 1{A = 0}

g(A |L)
, (4.6)
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that depends on g but not on Q̄. Substituting ĝn for g in (4.6), we now define,

ε̂n := argmin
ε

Pn L( ˆ̄Q0
n,ε),

and the updated estimator ˆ̄Q∗n(a, L) := ˆ̄Q0
n,ε̂n

(a, L). Per construction of our loss
function (4.4) together with the fluctuation model (4.5) and the clever covariate
(4.6), we now have that,1

1

n

n∑

i=1

(
1{Ai = 1} − 1{Ai = 0}

ĝn(Ai |Li)

)(
Yi − ˆ̄Q∗n(Ai, Li)

)
= 0, (4.7)

Finally we estimate qL by the empirical distribution q̂L,n of L1, . . . , Ln. This defines
the TMLE estimator as,

Ψ̂∗n = Ψ( ˆ̄Q∗n, q̂L,n) =
1

n

n∑

i=1

( ˆ̄Q∗n(1, Li)− ˆ̄Q∗n(0, Li)
)
,

and we solve,

1

n

n∑

i=1

(
ˆ̄Q∗n(1, Li)− ˆ̄Q∗n(0, Li)−Ψ( ˆ̄Q∗n)

)
= 0, (4.8)

which is the leftover term (3.11) of the efficient influence function. Combining (4.7)
and (4.8) now specifically implies that,

Pn φ
∗(Q̂∗n, ĝn) = 0,

exactly as we wanted, and we have completed the targeting step.

4.2 Initial estimation for Example 1

TMLE relies on initial estimators for the relevant parts of the data-generating distri-
bution. To illustrate the construction of such estimators we continue with our running
example. In this example, we need initial estimators ˆ̄Q0

n, ĝn for Q̄(A,L) = E[Y |A,L]

and g(a |L) = P (A = a |L). (Only ˆ̄Q0
n is indexed by the superscript ‘0’, since only

this, and not ĝn, is updated in the targeting step). Estimation of Q̄(A,L) and g(a |L)
can be formulated as a prediction problem. One could for example specify a logistic
regression of Y on A,L such as,

Q̄(A,L) = E[Y |A,L] = expit
(
β0 + β1A+ β>2 L

)
, (4.9)

1The score of a coefficient of a covariate in a parametric logistic regression is equal to the covariate
times the residual.
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and a logistic regression of A on L such as,

g(1 |L) = E[A |L] = expit
(
γ0 + γ>1 L

)
. (4.10)

Assuming that the models in (4.9) and (4.10) are correctly specified, the assumptions
of Theorem 3.3 are met, and we are done: The resulting estimator after performing
the targeting step is asymptotically linear and efficient. However, often we would
like to avoid such assumptions and, as we discussed in Chapter 3, work with larger
models than parametric ones.

4.2.1 Loss-function based cross-validation

We write general estimators as ˆ̄Qk and ĝk, where Pn 7→ ˆ̄Qk(Pn) and Pn 7→ ĝk(Pn)
map the empirical distribution Pn of the observed data to an estimator for Q̄ and g,
respectively. Our goal is to construct an estimator for Q̄ (and g equivalently) that
is ‘close’ to the truth. Recall that we defined a loss function (O, Q̄) → L(Q̄)(O) in
(4.4). We refer to PL(Q̄) as the corresponding risk (expected loss) under P . The
true Q̄0 is identified as the minimizer of the true risk, P0L(Q̄0) = EP0 [L(Q̄0)(O)]. To
assess the performance of a given estimator we can use the risk difference,

d0(Q̄, Q̄0) = P0L(Q̄)− P0L(Q̄0),

as a measure of ‘closeness’. We consider now a collection, or a library, of estimators
ˆ̄Q1, . . . ,

ˆ̄QK . (Notice that we are here using indexation k = 1, . . . , K, which is not to
be confused with k used in the previous sections to index the targeting iterations).
The estimator that is closest to the true Q̄0 in the library is the one that minimizes
the risk difference d0(Q̄, Q̄0), corresponding to minimizing the true risk P0L(Q̄).

To estimate the true risk, we work with the empirical risk obtained by V -fold cross
validation. A V -fold cross-validation scheme defines v = 1, . . . , V sample splits into a
training sample {1, . . . , n} \ Val(v) used to construct the estimator and a validation
sample Val(v) ⊂ {1, . . . , n} used to evaluate it. We note that (Val(v))1≤v≤V , forms
a partitioning of the total sample {1, . . . , n}. Let P0

n,v,P
1
n,v denote the empirical

distributions corresponding to the training and validation sample, respectively, for
the vth sample split, v = 1, . . . , V . We can now define the cross-validation selector
of k as,

k̂Qn := argmin
k

1

V

V∑

v=1

P1
n,v L( ˆ̄Qk(P

0
n,v)),

that adaptively selects an estimator among the given library of K estimators ˆ̄Q1, . . . ,
ˆ̄QK . Nice statistical properties have been established for this cross-validation selector:
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Under the following conditions on the loss function and the modelM,

sup
Q̄

‖L(Q̄)− L(Q̄0)‖2
P0

P0(L(Q̄)− L(Q̄0))
≤M1 <∞, (L1)

sup
O,Q̄

|L(Q̄)− L(Q̄0)| < M2 <∞, (L2)

asymptotic optimality of the cross-validation selector is implied by the oracle inequal-
ity (van der Laan and Dudoit, 2003; van der Vaart et al., 2006; van der Laan et al.,
2006; van der Laan et al., 2007; Polley et al., 2011) that compares the performance
of ˆ̄Qk̂Qn

(Pn) with the theoretical “oracle” estimator ˆ̄Qk̃Qn
(Pn) which is based on the

“oracle” selector (see, e.g., van der Laan et al., 2007, Theorem 1),

k̃Qn := argmin
k

1

V

V∑

v=1

P0 L( ˆ̄Qk(P
0
n,v)),

that minimizes the true risk. Specifically, the estimator ˆ̄Qk̂Qn
(Pn) performs asymptoti-

cally as well as the best performing candidate estimator included in the library. These
results have further been extended to the case where libraries also include, for exam-
ple, convex combinations of their individual estimators (van der Laan et al., 2007); let
ˆ̄QV
k (Oi) denote the cross-validated prediction for the ith observation, i.e., ˆ̄QV

k (Oi) =∑V
v=1 1{i ∈ Val(v)} ˆ̄Qk(P0

n,v)(Oi) where 1{i ∈ Val(v)} indicates whether the ith ob-
servation is included in the vth validation set. Define next ˆ̄QV

α = α1
ˆ̄QV

1 + · · ·+αK
ˆ̄QV
K

with α = (α1, . . . , αK) and
∑K

k=1 αk = 1, αk ≥ 0, k = 1, . . . , K. Then estimate α by,

α̂Qn = (α̂Q1 , . . . , α̂
Q
K) := argmin

α
Pn L( ˆ̄QV

α ),

which provides a corresponding weighted estimator ˆ̄Qα̂Q
n

= α̂Q1
ˆ̄Q1(Pn)+· · ·+α̂QK ˆ̄QK(Pn)

for Q̄. This process is also referred to as super learning (van der Laan et al., 2007),
and the estimator ˆ̄Qα̂Q

n
is called the super learner for Q̄. To realize the flexibility of

super learning, note that a library for example could consist of estimators based on
many different parametric models: One could replace the linear forms of (4.9)–(4.10)
with ones including any function of L or different combinations of interaction terms.
The library could also include any machine learning algorithm for, in this case, binary
outcome regression.

Super learners can be set up for any parameter that we can define as a risk minimizer.
Just as for Q̄, we can define (O, g)→ Lg(g)(O) ,

Lg(g)(O) = −
(
A log g(A |L) + (1− A) log(1− g(A |L))

)
,
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and, as we outlined above for Q̄, construct a super learner ĝα̂g
n
for g. In our running

example, the library of types of estimators can be the same as the one used for Q̄. The
oracle results tell us that the super learners for Q̄, g will perform asymptotically as well
as the best performing combination of estimators included in their libraries. This will
be important: Indeed, it can be shown that we can construct a particular estimator
for Q̄ and for g such that ‖ĝn − g0‖P0 = oP (n−1/4) and ‖ ˆ̄Qn − Q̄0‖P0 = oP (n−1/4)
under minimal conditions on M, so that when this estimator is included in the
libraries, condition (C3) of Theorem 3.3 is met. This estimator is called the highly
adaptive lasso (HAL) estimator (van der Laan, 2015; Benkeser and van der Laan,
2016; van der Laan, 2017; van der Laan and Rose, 2018). In the next section we
give a short presentation of the HAL estimator and some intuition on the theoretical
properties.

4.2.2 HAL estimation and proof of convergence

The key to the following is a particular nonparametric smoothness assumption that
we impose on the parameter spaces of the nuisance parameters. Importantly, the
elements ofM can be characterized by functions that can be discontinuous or non-
differentiable, we only need them to be càdlàg and have finite sectional variation
norm such that they each generate a signed measure (Gill et al., 1995). This implies
a specific representation of the nuisance parameters, that we use to define the HAL
estimator. Moreover, the class of functions that are càdlàg and have finite sectional
variation norm is a Donsker class, and this will allow us to establish conditions (C2)
and (C3) of Theorem 3.3 which, as we have seen, for our running example becomes:

(C2) φ∗(Q̂n, ĝn) takes value in a Donsker class and P0(φ∗(Q̂n, ĝn)− φ∗(Q0, g0))2 con-
verges to zero in probability,

(C3) ‖ĝn − g0‖P0‖ ˆ̄Qn − Q̄0‖P0 = oP (n−1/2).

We assume that for each g ∈ G, O 7→ g(O) is càdlàg with finite sectional variation
norm and δ < g(O) < 1− δ a.s. Likewise, for each Q̄ ∈ Q, O 7→ Q̄(O) is càdlàg and
has finite sectional variation norm. The sectional variation norm for any d-variate
real-valued càdlàg function f admits a representation in terms of its measures over
sections (Gill et al., 1995). In particular, when the function is defined on a discrete
support this representation reduces to a finite sum of interval indicator functions
and the measure assigned to those intervals. Moreover, the variation norm becomes
the sum of absolute values of coefficients. This implies that the estimation of the
function corresponds to an L1-penalized (Lasso) regression (Tibshirani, 1996) where
the unknown β coefficients are the measures assigned to the intervals. Indeed, we can
write a d-variate real-valued function f with m ∈ N support points zj as,

f(x) = f(0) +
∑

s∈P({1,...,d})

∑

j

1{zj,s ≤ xs}f(dzj,s), (4.11)
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where P({1, . . . , d}) is the set of all subsets of {1, . . . , d}, zj,s and xs are defined by
setting the coordinates not in the index set s to zero, and f(dzj,s) is the point mass
assigned to zj,s. If we define βj,s := f(dzj,s), we have that ‖f‖v = ‖β‖1 where ‖ · ‖1

denotes the L1-norm and ‖ · ‖v denotes the variation norm (Gill et al., 1995),

‖f‖v = |f(0)|+
∑

s∈P({1,...,d})

∑

j

|f(dzj,s)|.

For example, assume that L ∈ R+, and that we want to estimate g(L) = P (A =
1 |L). We assume that g is càdlàg in L and has finite sectional variation norm. Let
(`j)

J
j=1 be the observed support points of L (if L is truly continuous, then J = n).

Then the representation (4.11) for gh (that jumps only at support points of L) as an
approximation to g becomes,

gh(L) = gh(0) +
J∑

j=1

1{`j ≤ L} dgh(Lj). (4.12)

Define ψj(L) = 1{`j ≤ L} for j = 1, . . . , J with corresponding coefficients βj =
dgh(Lj), and the HAL estimator for a given choice of M <∞,

ĝHAL
n,M = argmin

β=(β0,...,βJ )

Pn Lg(g) s.t. ‖β‖1 ≤M. (4.13)

This corresponds to an L1-penalized regression with a coefficient vector of size equal
to the number of observed support points for the variable L. We may select M ,
corresponding to the bound that we put on the variation norm, by cross-validation.
Now suppose that L is two-dimensional, i.e., L = (L1, L2) ∈ R+ × R+. Let (`j,1)J1j=1

be the observed support points of L1 and (`j,2)J2j=1 the observed support points of L2.
Then the representation of gh in (4.12) as an approximation to g becomes,

gh(L) = gh(L1, L2) = g(0, 0) +

J1∑

j=1

1{`j,1 ≤ L1} dgh(`j,1, 0)

+

J2∑

j=1

1{`j,2 ≤ L2} dgh(0, `j,2)

+

J1∑

j1=1

J2∑

j2=1

1{`j1,1 ≤ L1}1{`j1,2 ≤ L2} dgh(`j1,1, `j2,2).

Define ψj,1(L1) = 1{`j,1 ≤ L1} for j = 1, . . . , J1, ψj,2(L2) = 1{`j,2 ≤ L2} for j =
1, . . . , J2, and ψj,12(L1, L2) = 1{`j(1),1 ≤ L1, `j(2),2 ≤ L2} with j = 1, . . . , J1J2 index-
ing all combinations of (j1, j2). Moreover, define βj,1 = dgh(`j,1, 0), βj,2 = dgh(0, `j,2)
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and βj,12 = dgh(`j,1, `j,2). Again we can define the HAL estimator as in (4.13), but
now the parameter β surely has a much larger dimension.

It is clear that the HAL representation (4.11) and the HAL estimation problem
increase rapidly in complexity when the dimension of the support of L increases.
Despite these potential practical problems (that may be solved by various discretiza-
tions or dimension reduction steps), the theory behind the HAL estimator is quite
powerful: The main point is that for HAL estimation,

‖ĝHAL
n − g0‖P0 = oP (n−1/4) and ‖ ˆ̄QHAL

n − Q̄0‖P0 = oP (n−1/4),

can be established (see van der Laan, 2017; Benkeser and van der Laan, 2016; van der
Laan and Rose, 2018, Chapter 7), relying only on the assumptions onM stated in the
beginning of this subsection. By the oracle properties of the super learner, a TMLE
that uses a super learner which includes HAL estimation in its library for initial
estimation thus meets the conditions of Theorem 3.3 requiring only that (Q̄0, g0) are
càdlàg and have finite variation norm.

4.3 Longitudinal TMLE (LTMLE)

Here, we describe the TMLE template for the longitudinal data setting from Chapter
2 with observed data,

O = (L0, A1, L1, A1, . . . , LK , AK , LK+1 = Y ).

We are interested in estimating ψ0 = Ψ(P0), where the target parameter Ψ : M→ R
is defined by,

Ψ(P ) = EPq,g∗ [Y ] =

∫

O
Y dPq,g∗ .

Again, g∗ represents the intervention of interest and Pq,g∗ has density as defined by
the g-computation formula (2.6). We also refer to van der Laan and Gruber (2012);
Schnitzer et al. (2014); Petersen et al. (2014); Sofrygin et al. (2019) and van der Laan
and Rose (2018, Chapter 3 and 4). We focus on the implementation of TMLE for
longitudinal data that constructs an estimator by exploiting a sequential regression
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representation of the target parameter (Robins, 2000; Bang and Robins, 2005):

Q̄K+1(L̄K , ĀK) = EPq,g∗ [Y | L̄K , ĀK ] = Y,

Q̄K(L̄K−1, ĀK−1) = EPq,g∗ [Q̄K+1(L̄K , ĀK) | L̄K−1, ĀK−1],

...
Q̄k(L̄k−1, Āk−1) = EPq,g∗ [Q̄k+1(L̄k, Āk) | L̄k−1, Āk−1],

...
Q̄2(L̄1, A1) = EPq,g∗ [Q̄3(L̄2, Ā2) | L̄1, Ā1],

Q̄1(L0) = EPq,g∗ [Q̄2(L̄1) |L0] = E[Q̄2(L̄1) |L0].

(4.14)

The representation allows for evaluation of EPq,g∗ [Y ] by an integration process, where,
at each time-point k, we first integrate out Ak with respect to the intervention g∗k and
then Lk with respect to qk.

The canonical gradient (the efficient influence curve) of the pathwise derivative of
Ψ : M → R at P ∈ M is given by (see, e.g., van der Laan and Gruber, 2012,
Theorem 1),

φ∗(P )(O) = Q̄1(L0)−Ψ(P ) (4.15)

+
K+1∑

k=1

(
k−1∏

`=0

g∗` (Ā` | L̄`)
g`(Ā` | L̄`)

)
(
Q̄k+1(L̄k, Āk)− Q̄k(L̄k−1, Āk−1)

)
. (4.16)

The longitudinal TMLE (LTMLE) procedure is defined iteratively, along the lines of
the representation in (4.14). Largely, it can be summarized as follows. The algorithm
starts with an initial estimator of the conditional expectation at the final time-point
K+1, and updates this estimator to solve the efficient influence function at time-point
K + 1. Then the updated conditional expectation serves as the outcome in the next
(Kth) conditional expectation and is updated to solve the efficient influence function
at time-point K. Proceeding iteratively in this way along the time sequence, a tar-
geting step is performed at each time k to solve the efficient influence curve equation
at time k. In the end we have an estimator for Q̄1 which is a function only of L0, but
was obtained from a sequence of estimators ( ˆ̄Q∗k : k = 1, . . . , K) constructed such
as to solve the entire efficient influence curve equation, and we estimate the target
parameter by taking the empirical average over ˆ̄Q∗1.

To explore the details, consider hereK = 2 and let the intervention be the static inter-
vention g∗k = 1{Ak = 0}, k = 0, 1. Our observed data are then: O = (L0, A0, L1, A1, Y ).
For the implementation of the LTMLE, we need initial estimators ĝk for gk, k = 0, 1,
and initial and updated estimators for Q̄k, k = 1, 2. For g1 we can apply loss-based
cross-validation as described in Section 4.2.1, now with outcome A1 and condition-
ing set (A0, L1, L1), and, similarly for g0, with outcome A0 and conditioning set L0.
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Estimation and targeting of the conditional expectations Q̄1, Q̄2 proceed as follows.
First, for Q̄2, we define the log-likelihood loss function,

L2(Q̄2)(O) = −
(
Y log Q̄2 + (1− Y ) log(1− Q̄2)

)
.

This corresponds to a regression of Y on (Ā1, L̄1), and defines an estimator ˆ̄Q0
2 as a

function of (Ā1, L̄1). To fluctuate and target ˆ̄Q0
2, we define the submodel {Q̄2,ε : ε ∈

R} as,

Q̄2,ε = expit
(
logit Q̄2 + εH2

)
,

with the “clever covariate”,

H2(Ā1, L̄1) =
∏

`=0,1

1{A` = 0}
g`(Ā` | L̄`)

. (4.17)

We provide an estimator Ĥ2 by substituting ĝ`, ` = 0, 1, in (4.17). We define,

ε̂2 := argmin
ε

Pn L2( ˆ̄Q0
2,ε),

and the updated estimator ˆ̄Q∗2 := ˆ̄Q0
2,ε̂2

. For this updated estimator it now holds that,

1

n

n∑

i=1

(∏

`=0,1

1{A` = 0}
g`(Ā` | L̄`)

)(
Yi − ˆ̄Q∗2(L̄1,i, Ā1,i)

)
= 0, (4.18)

and we say this it is targeted. This was the first step. In the second step we use the
targeted estimator ˆ̄Q∗2 to provide an estimator for Q̄1. We define the log-likelihood
loss function, indexed by the estimator ˆ̄Q∗2,

L1(Q̄1)(O) = −
( ˆ̄Q∗2 log Q̄1 + (1− ˆ̄Q∗2) log(1− Q̄1)

)
.

This corresponds to a regression of ˆ̄Q∗2 on (A0, L0), and defines an estimator ˆ̄Q0
1 as a

function of (A0, L0). To target ˆ̄Q0
1, we define the submodel { ˆ̄Q0

1,ε : ε ∈ R} as,

ˆ̄Q0
1,ε = expit

(
logit Q̄1 + εH1

)
,

with,

H1(A0, L0) =
1{A0 = 0}
g0(A0 |L0)

. (4.19)

We provide an estimator Ĥ1 by substituting ĝ0 in (4.19). We define,

ε̂1 := argmin
ε

Pn L1( ˆ̄Q0
1,ε),
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and the updated estimator ˆ̄Q∗1 := ˆ̄Q0
1,ε̂1

. For this targeted estimator it now holds
that,

1

n

n∑

i=1

1{A0 = 0}
g0(A0 |L0)

(
ˆ̄Q∗2(L̄1,i, Ā1,i)− ˆ̄Q∗1(L0,i, A0,i)

)
= 0. (4.20)

Now, note that (4.18)–(4.20) together sum up to the second part (4.16) of the efficient
influence function φ∗(P ). As in Section 4.1.1, we estimate the distribution of baseline
covariates by the empirical distribution which takes care of the first term (4.15) of
the efficient influence function φ∗(P ). In the end, we define the targeted estimator
Ψ̂∗n as,

Ψ̂∗n =
1

n

n∑

i=1

ˆ̄Q∗1(L0,i),

which solves the efficient influence curve equation,

Pn φ
∗(Q̂∗n, Q̂n) = 0,

with Q̂∗n = ( ˆ̄Q∗1,
ˆ̄Q∗2) and Ĝn = (ĝ0, ĝ1).

4.4 Final comments

In Chapter 3 we presented Theorem 3.3 which characterizes conditions for asymptot-
ically efficient estimation of a target parameter ψ0 = Ψ(P0). In this chapter we have
reviewed TMLE as a two-step procedure for construction of an estimator that meets
the conditions of this theorem:

1. By the targeting step, the TMLE estimator solves the efficient influence curve
equation. This already implies nice properties that relates back to double ro-
bustness as we discussed in Chapter 3: An estimator that solves the efficient
influence curve equation (for which the specific efficient influence function ad-
mits a double robustness structure) is consistent if either the estimator for Q or
the estimator for G is consistent. That the TMLE estimator solves the efficient
influence curve equation further provides the basis for establishing asymptotic
normality and efficiency.

2. The targeting step can be supplemented by a data-adaptive super learning ap-
proach for initial estimation. Particularly, the super learner performs asymp-
totically as well as any algorithm used in its library. Combined with double
robustness, including any estimator that attains a rate as fast as n−1/4 in the
library of the super learner is enough to take care of the remainder term in
Theorem 3.3.
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We note that TMLE is not the only method that exploits the efficient influence
function for efficient estimation of the target parameter. Estimating equation metho-
dology (van der Laan and Robins, 2003) provides a complementary approach that
similarly exploits double robustness properties and asymptotic efficiency by identify-
ing parameters as solutions to the right estimating equations. One simple example
of an estimating equation is the inverse probability weighted estimating equation,

0 =
1

n

n∑

i=1

(2Ai − 1)Yi
g(Ai |Li)

− ψ. (4.21)

which is solved by the IPTW estimator ψ̂IPTW
n we had in Example 1 on page 20,

when substituting ĝn for g. The performance of the IPTW estimators relies entirely
on estimation of g. However, we can improve upon the method by augmenting the
estimating equation in (4.21) so that the solution solves the efficient influence curve
equation (Robins and Rotnitzky, 1992; van der Laan and Robins, 2003). Notably, by
substituting ĝn for g and ˆ̄Qn in the estimating equation,

0 =
1

n

n∑

i=1

(
1{Ai = 1} − 1{Ai = 0}

g(Ai |Li)

)(
Y − Q̄(Ai, Li)

)
+
(
Q̄(1, Li)− Q̄(0, Li)

)
− ψ,

we obtain an estimator ψ̂∗n that, per construction, solves the efficient influence curve
equation for the estimation problem of our running example.

In Section 4.3 we briefly outlined the longitudinal (LTMLE) procedure as a technique
for causal effect estimation based on longitudinal data. Our Manuscript I is moti-
vated by the encounter of a similar type of longitudinal data. However, instead of
imposing a discrete structure on the underlying time-scale, we consider data given
continuously in time as discussed in the next chapters.





Chapter 5.

Counting processes, right-censoring and
competing risks

So far we have considered data observed in discrete time with no censoring. In con-
trast, all our manuscripts are concerned with longitudinal data observed in continuous
time subject to right-censoring and/or competing risks. In this chapter we give an
informal introduction to the counting process framework utilized in survival analysis
to provide a background for the manuscripts. Counting processes allow for a mathe-
matical formulation of events happening at random points in time.

We start by introducing standard concepts for counting processes, taking a practical
approach. Section 5.1.1 and Section 5.1.2 introduces right-censoring and competing
risks, respectively, and Section 5.1.3 extends the setting to longitudinal data with
time-varying covariates. We note that:

• Manuscript I is concerned with a continuous-time longitudinal data setting with
time-varying covariates and treatment.

• Manuscript II and Manuscript III are concerned with right-censored data.
• Manuscript IV is concerned with competing risks data.

Key concepts in this chapter are the intensity (and the hazard) function, coarsening
at random (and independent censoring), and the correspondence between the hazard
rate and the failure probability (the risk). Both this chapter and the next, where we
consider treatment effect estimation in the right-censored survival analysis setting of
Section 5.1.1, will be useful for presenting our manuscripts later in Chapter 8.

5.1 Counting processes

Formally, a counting process N(t) is a càdlàg stochastic process indexed by time with
N(0) = 0 and paths that are piecewise constant. A counting process only has posi-
tive integer-valued and finite jumps. We introduce the notion of a filtration (Ft)t≥0

on the measure space (Ω,F), which is a family of increasing σ-algebras indexed by
t ≥ 0. We say that a stochastic process X = (X(t))t≥0 is adapted to (Ft)t≥0 if X(t)
is Ft-measurable for all t ≥ 0, in which case we write X(t) ∈ Ft. We say that X is
predictable if X is Ft−-adapted. The filtration generated by the stochastic process
Ft = σ(Xs : 0 ≤ s ≤ t) is the smallest σ-algebra that makes Xs measurable for all
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s ∈ [0, t]. Heuristically, the filtration carries information on the history of the process
X up to time t.

We give a characterization of the distribution of a counting process in terms of its
intensity. In the following we consider a filtration (Ft)t≥0 such that N(t) is adapted
to Ft. The counting process has a compensator Λ(t), a left-continuous and pre-
dictable process such that M(t) = N(t) − Λ(t) is a martingale with respect to Ft.
An adapted stochastic process (M(t))t≥0 is a martingale if E[|Mt|] <∞ for all t ≥ 0
and E[Mt | Fs] = Ms for all s ≤ t. The intensity process λ(t) of N(t) is defined by,

Λ(t) =

∫ t

0

λ(s)ds, (5.1)

and we also refer to the compensator Λ(t) as the cumulative intensity. Since M(t) is
a martingale, we have that E[dM(t) | Ft−] = 0, which moreover implies that,

E[dN(t) | Ft−] = E[dΛ(t) | Ft−] = dΛ(t) = λ(t)dt.

We use the notation dΛ(t) = Λ(dt) and λ(t)dt interchangeably. Conveniently one can
think of dΛ(t) as P (dN(t) = 1 | Ft−), i.e., the risk of an event in the interval [t, t+dt).
We define the times where N(t) jumps, also referred to as the event times,

Tk = inf{t > 0 : N(t) > k − 1}. (5.2)

The relation between the conditional probability of a jump of N(t) and the intensity
of N(t) further provides a connection to hazard functions. In the following, we let
T = T1 ∈ R+ be the time where the first jump of N(t) occurs. We define the hazard
function of the distribution of T as,

α(t) = lim
dt→0

P (T ∈ [t, t+ dt) |T ≥ t)

dt
, (5.3)

which is interpreted as the instantaneous rate of an event immediately after t given
that it did not happen before t. The cumulative hazard function is defined by A(t) =∫ t

0
α(s)ds. If we denote the at-risk indicator by R(t) = 1{T ≥ t}, the hazard α(t) for

the distribution of T and the intensity of the counting process are related by,

λ(t) = R(t)α(t), (5.4)

that is, for subjects at risk, the hazard and the intensity coincide. The hazard rate
is connected to the distribution of an event time, whereas the intensity function
describes the occurrence of a sequence of events over time. Let F be the distribution
of T . We identify the survival function by,

S(t) = 1− F (t) = R
s≤t

(
1− α(t)dt

)
,
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where P denotes the product integral (Andersen et al., 1993, Section II.6). When F
is absolutely continuous this reduces to,

S(t) = exp

(
−
∫ t

0

α(s)ds

)
.

A multivariate counting process,

N = (Nj : j = 1, . . . , J),

is a vector of J ∈ N Ft-adapted counting processes counting J types of events.
For example, j = 1, . . . , J may indicate different causes of death in a competing
risks model (see Section 5.1.2). Each component N j has a compensator Λj, and the
likelihood based on observing (N(s) : s ≤ t) can be characterized by,

Lt = R
s≤t

J∏

j=1

(
λj(s)ds

)dNj(s)(
1− λj(s)ds

)1−dNj(s)
. (5.5)

Informally, we can think of the data generated recursively from infinitesimal time
interval to infinitesimal time interval, with the probability of a jump of N j(t) in
[t, t+ dt) characterized by dΛj(t) = λj(t)dt.

5.1.1 Right-censoring in survival analysis

In survival analysis we are interested in characterizing the distribution of the time
until a particular event of interest happens (the survival time). Often this event time
is subject to right-censoring, with T being right-censored if it is only known that T
is larger than some value. Letting C denote the right-censoring time, the observed
time is T̃ = min(T,C) and we let the variable ∆ = 1{T ≤ C} be the indicator of
event. We consider a counting process formulation. Based on the observed data we
define:

• The observed counting process N1(t) = 1{T̃ ≤ t,∆ = 1} with intensity λ1(t).

• The observed counting process N c(t) = 1{T̃ ≤ t,∆ = 0} with intensity λc(t).

• The observed at-risk indicator R(t) = 1{T̃ ≥ t}.

We let Ft = σ(N1(t), N c(t) : 0 ≤ s ≤ t) denote the filtration generated by the
observed data. The likelihood of the observed data factorizes as,

Lt = R
s≤t

(
λ1(s)ds

)dN(s)(
1− λ1(s)ds

)1−dN(s)(
λc(s)ds

)dNc(s)(
1− λc(s)ds

)1−dNc(s)
.

(5.6)
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Under independent censoring (see, e.g., Andersen et al., 1993, Definition III.2.1), or,
more generally, coarsening at random (see Remark 5.1 below), the intensity λ1(t)
of the observed process N1(t) is again related to the hazard function α(t) of the
distribution of T through,

λ1(t) = R(t)α(t),

and we can model the distribution of T accordingly. Particularly, we identify the
survival probability as,

S(t) = P (T > t) = R
s≤t

(
1− α(s)ds

)
= exp

(
−
∫ t

0

α(s)ds

)
.

Remark 5.1 (Coarsening at random (CAR) (Heitjan and Rubin, 1991; Jacobsen
and Keiding, 1995; Gill et al., 1997)). Let X be the full data structure and C the
coarsening mechanism such that, for a known many-to-one mapping Φ, O = Φ(X,C)
is the observed data. Let X be the sample space of X and C the sample space of C.
Further let,

C(o) = {x ∈ X : Φ(x, c) = o for some c ∈ C},

be the subset of X with elements consistent with the observation o. A general defini-
tion of CAR is given in (Gill et al., 1997) and is formulated as (van der Laan and
Robins, 2003, Section 1.2.3):

dP (o |X = x) = dP (o |X = x′) on {o : x ∈ C(o)} ∩ {o : x′ ∈ C(o)}.

Informally, given X, the coarsening mechanism only depends on the observed part
c(o) of x. For example, for the right-censored setting considered here, the full data
structure is X = T whereas the observed data are O = (T̃ ,∆), and CAR implies that
the hazard of C only depends on the history of the observed data (see also, van der
Laan and Robins, 2003, Example 1.8). Note that CAR models for right-censored
data is usually also formulated with a (baseline) covariate L included in both the
full and the observed data structure. By that it becomes a conditional independence
assumption, and the richer the information contained in L the more likely it is to
hold.

5.1.2 Competing risks

Competing risks models are concerned with time-to-event data, where each subject
may experience one of J ≥ 2 mutually exclusive types of failures. A competing risks
model is useful, for example, if we are interested in analyzing the time to death of a
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0Initial state

1 Event of interest

2 Competing event
...
J Competing event

Figure 5.1: A multi-state representation of competing risks.

particular cause when other types of deaths are encountered as well.

As in Section 5.1.1, we let T̃ = min(T,C), but now we observe only ∆̃ = 1{T ≤ C}∆
where ∆ ∈ {1, . . . , J} is an indicator of the type of event, i.e., ∆ = j if cause j was
observed at time T , and ∆̃ = 0 indicates that the subject was right-censored. We
define the observed multivariate counting process N = (N c, N j : j = 1, . . . , J) with
N c(t) = 1{T̃ ≤ t, ∆̃ = 0} and N j(t) = 1{T̃ ≤ t, ∆̃ = j}, j = 1, . . . , J . The likelihood
based on the observed data can be represented as,

Lt = R
s≤t

(
λc(s)ds

)dNc(s)(
1− λc(s)ds

)1−dNc(s)
J∏

j=1

(
λj(s)ds

)dNj(s)(
1− λj(s)ds

)1−dNj(s)
.

(5.7)

Under independent censoring, the intensity λj(t) identifies the corresponding cause-j
specific hazard function,

αj(t) = lim
dt→0

P (T ∈ [t, t+ dt),∆ = j |T ≥ t)

dt
,

by the relation,

λj(t) = R(t)αj(t), j = 1, . . . , J.

The cause-j specific hazard αj(t) at time t represents the risk of event j just after
t for subjects who are event-free until just before time t, and thus characterizes the
instantaneous probability of a jump from the initial state to state j (Figure 5.1).

In the situation without competing risks (J = 1), there is a one-to-one correspondence
between the survival function and the hazard function, i.e., between the risk and the
rate. One key aspect of competing risks analysis is that this is no longer the case.
Accordingly, another way of analyzing the distribution of the time to a particular
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event type of interest is by the cumulative incidence,

F j(t) = P (T ≤ t,∆ = j) =

∫ t

0

S(s−)λj(s) ds

=

∫ t

0

λj(s) exp

(
−

J∑

l=1

∫ s

0

λl(u) du

)
ds.

(5.8)

Notably, this also depends on other causes l 6= j than the one of interest.

5.1.3 Longitudinal data with time-varying covariates

We can use a representation of longitudinal data with time-varying covariates in terms
of counting processes, letting intensities characterize the rate of a finite number of
continuous monitoring times for each individual conditional on their observed history.
Suppose time-varying covariates only consist of a single process N `(t) that records,
for example, hospital admissions. The subject-specific longitudinal data are collected
in a multivariate counting process (N1, N c, N `) that tracks failure, censoring and
covariate events. Jumps of N1, N c are terminating events, whereas N ` can jump
many times. We may represent our observed data as,

Ō(t) =
(
s,N1(s), N c(s), N `(s) : s ∈ {Tk}Kt

k=0

)
,

where Tk is the time of the kth monitoring of the subject, and Kt <∞ is the number
of monitoring times before time t. The likelihood can now be expressed as,

Lt = R
s≤t

Λ1(ds)N(ds)
(
1− Λ1(ds)

)1−N1(ds)
Λc(ds)N

c(ds)
(
1− Λc(ds)

)1−Nc(ds)

Λ`(ds)N
`(ds)

(
1− Λ`(ds)

)1−N`(ds)
.

A marked point process model provides a useful generalization to allow for more
complex covariate events. We say that N ` is a marked point process with respect
to a given measurable mark space (X ,X ) if N ` takes value in the product space
(T ×X ,B(T )⊗X ). Here B denotes the Borel σ-algebra and T an interval of time.
The compensator Λ` of N ` defines a measure on (T × X ,B(T ) ⊗X ). For sake of
presentation, we assume that X is finite. Conditional on the past at time t, there
is an event of N ` in the time interval [t, t + dt) with a mark at x with probability
Λ`(dt, x) and there is no event with probability 1 − Λ`(dt,X ). Now, we can present
the likelihood as,

Lt = R
s≤t

Λ1(ds)N
1(ds)

(
1− Λ1(ds)

)1−N1(ds)
Λc(ds)N

c(ds)
(
1− Λc(ds)

)1−Nc(ds)

∏

x∈X
Λ`(ds, x)N

`(ds,x)
(
1− Λ`(ds,X )

)1−N`(ds,X )
.

This is a slightly different version of the likelihood that we work with in Manuscript
I, where we have an additional process Na(t) tracking treatment changes.
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5.2 Final comments

In event history analysis, the goal is to analyze the time until some event of interest
happens. Often we model the intensities that characterize the process by which events
happen as a function of covariate history for all time-points. A popular method in
medical research for taking covariate information into account when characterizing
the distribution of an event time is the Cox regression model (Cox, 1972). The
Cox model assumes a multiplicative effect of covariates on the intensities, whereby
covariate changes are associated with a higher or lower event rate compared to a
baseline. A baseline hazard λ0(t) represents the change in the hazard rate over time.
Consider particularly a setting with A ∈ F0 a baseline treatment variable, L0 ∈ F0

a baseline (pre-treatment) covariate and L(t) ∈ Ft a time-varying covariate vector.
We may then posit a Cox proportional hazards model as follows:

λ(t |L0, A, L(t)) = λ0(t) exp(αL0 + β>L(t) + ψA). (5.9)

Say we are interested in ψ. Notably, this equals,

log

(
λ(t |L0, 1, L(t))

λ(t |L0, 0, L(t))

)
= ψ,

but the interpretation is less clear, as we are comparing individuals with the same
values of covariates L(t) at time t. Since past covariate values may have been affected
by treatment, controlling for covariates that are after treatment may block some of
the treatment effect. If we exclude the covariates, on the other hand, we fail to model
the event rate accurately if the data were truly generated according to (5.9). This is
the same issue we discussed in Section 1.1.1 (and was pointed out by Robins, 1986,
already in 1986).

In our manuscripts presented later, we have two aims that we keep distinct:

(1) To analyze treatment effects on time-to-event outcomes in presence of covariate-
dependent censoring and competing risks without imposing, possibly restrictive,
model assumptions such as proportionality of hazards.

(2) To incorporate time-dependent covariates such as to enable treatment effect
estimation with a sound interpretation.

Manuscript I is particularly focused on (2) but also presents a framework for (1).
Manuscripts III–IV are concerned with (1). In the next chapter we consider treat-
ment effect estimation in the survival analysis setting from Section 5.1.1 to discuss a
few more aspects relevant for the manuscripts.





Chapter 6.

Causal survival analysis

In this chapter we consider treatment effect estimation in the right-censored survival
analysis setting from Section 5.1.1. This serves as an introduction to Manuscript III
and Manuscript IV, but can also be viewed as a special-case of Manuscript I. Alto-
gether, this chapter gives an overview of different aspects relevant for the manuscripts.
We summarize a few points:

• Censoring adds another layer to the counterfactual analysis introduced in Chap-
ter 2. Throughout this chapter we consider treatment and censoring acting
together as a coarsening mechanism, as we detail below.

• Inverse probability weighting by the distribution of coarsening mechanisms iden-
tifies parameters representing treatment effects. Manuscripts III and IV follow
this approach, along the lines of Section 6.1.1.

• The discrete longitudinal setting considered in Chapter 2 and Section 4.3 also
covers right-censored data structures. We give a brief overview of existing
TMLE methods for right-censored data analysis in Section 6.2.

• All existing TMLE procedures assume that time is discrete. For the survival
analysis setting with only baseline covariates and treatment, the discrete-time
TMLE (as, e.g., presented by Moore and van der Laan, 2009a) generalizes
more or less directly to a continuous-time version. Section 6.3 outlines such a
TMLE procedure for continuous-time survival analysis. We present the efficient
influence function that we use for the procedure in Section 6.1.2.

We continue from Section 5.1.1. Assume that we have observations of an event time
T̃ = min(T,C), an event indicator ∆ = 1{T ≤ C} ∈ {0, 1}, and now also a baseline
treatment A ∈ {0, 1} and a (pre-treatment) baseline covariate vector L ∈ Rp. As in
Chapter 2, we introduce counterfactuals. Let T a, for a = 0, 1, be the counterfactual
event time had treatment been A = a. We make the consistency assumption that the
observed data are related to the counterfactuals in terms of T̃ = min(TA, C) and ∆ =
1{TA ≤ C}. Notice that T 0, T 1 are only partly observed for two reasons: Firstly since
any subject was only either treated or not, and, secondly, due to censoring. In the
causal framework we can think of censoring as adding another counterfactual layer,
with T a the counterfactual event time had there been no censoring and had treatment
been A = a. This gives a general formulation of treatment and censoring acting
together as a coarsening mechanism, where the coarsening at random assumption (see
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Remark 5.1 from the previous chapter) allows for identification of the distribution
of counterfactual event times (van der Laan and Robins, 2003; Tsiatis, 2007). We
further note that (as shown by Robins et al., 2000) the sequential randomization
assumption (A2) from Chapter 2 is equivalent to a coarsening at random assumption
under reasonably general conditions. Here the full data are the set of counterfactual
treatment-specific outcomes (Y āK : āK), and the observed data (under consistency)
are the actual treatment received and the corresponding treatment-specific outcome
(ĀK , Y

ĀK ).

6.1 Target parameter

We let P0 ∈ M denote the distribution of the observed data O = (T̃ ,∆, A, L) and
(Ft)t≥0 the filtration generated by the observed data (so that A,L ∈ Ft for all t ≥ 0).
The likelihood p0 of the observed data factorizes as,

p0(O) = qL(L) R
t

(
λ1(t |A,L)dt

)N1(dt)(
1− λ1(t |A,L)dt

)1−N1(dt) (6.1)

g(A |L)
(
λc(t |A,L)dt

)Nc(dt)(
1− λc(t |A,L)dt

)1−Nc(dt)
, (6.2)

where λ1(t |A,L) is the conditional intensity for the observed counting processN1(t) =
1{T̃ ≤ t,∆ = 1}, i.e.,

E[dN1(t) | Ft−] = E[dΛ1(t |A,L) | Ft−] = dΛ1(t |A,L) = λ1(t |A,L)dt,

likewise, λc(s |A,L) is the conditional intensity for the process N c(t) = 1{T ≤ t,∆ =
0}, qL is the distribution of baseline covariates L and g(a |L) = P (A = a |L) is the
distribution of treatment A conditional on L. In the factorization, (6.2) represents the
interventional part (G) and (6.1) the non-interventional part (Q). We are interested
in characterizing the distribution of the counterfactual event time T a. Essentially we
achieve this by replacing G by G∗ that puts all mass in no censoring and treatment
A = a. To motivate this, however, we need to relate the resulting g-computation
formula PQ,G∗ to the distribution of the counterfactual T a.

We represent the observed data O as a missing data structure on the full data struc-
ture (L, T 1, T 0) coarsened by (A,C), and assume coarsening at random. Under coars-
ening at random, we can now identify the conditional hazard α(t |A,L) of the under-
lying event time T from the intensity of the observed counting process N1(t):

λ1(t |A,L) = 1{T̃ ≥ t}α(t |A,L).

This further means that we can identify the counterfactual survival probability,

P (T a > t) = E
[
P (T a > t |L)

]
= E

[
P (T > t |A = a, L)

]
= R

s≤t

(
1− α(s | a, L)ds

)
.
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We now fix a time-point t0 > 0 and define the target parameter Ψt0 : M→ R by,

Ψt0(P ) = P (T 1 > t0)− P (T 0 > t0), (6.3)

that is, the difference in survival beyond time t0 in the counterfactual scenario where
everyone is treated versus the counterfactual scenario where no one is treated.

The positivity assumption in this setting becomes,

P (C > t0 | a, L)P (A = a |L) > η > 0 a.s.,

for a = 0, 1, and we note that this may restrict possible choices for t0 in a given
application.

6.1.1 Inverse probability weighting

An alternative characterization of the target parameter in (6.3) can be given as fol-
lows. Under coarsening at random, we can factorize the observed data distribution
as,

P (T̃ ∈ dt,∆ = 1, A = a, L ∈ d`)
= P (∆ = 1 |T a = t, A = a, L = `)P (A = a |T a = t, L = `)P (T a ∈ dt, L ∈ d`)
= P (C > t |A = a, L = `)P (A = a |L = `)P (T a ∈ dt |L = `)P (L ∈ d`),

for a = 0, 1, which implies that,

P (T a ∈ dt |L = `) =
P (T̃ ∈ dt,∆ = 1, A = a |L = `)

P (C > t |A = a, L = `)P (A = a |L = `)
.

This further means that,

P (T a > t0 |L) =

∫ ∞

t0

P (T a ∈ dt |L)

=

∫ ∞

t0

P (T̃ ∈ dt,∆ = 1, A = a |L)

P (C > t |A = a, L = `)P (A = a |L)
,

which immediately suggests an inverse probability weighted estimator for P (T a >

t0 |L). Let ˆ̄Gn(t |A,L) denote an estimator for Ḡ(t |A,L) = P (C > t |A,L) and
ĝn(L) an estimator for P (A = a |L).1 Then a consistent estimator for (6.3) can be
obtained as,

ψ̂IPW
n =

1

n

n∑

i=1

(2Ai − 1)1{T̃i > t0}
ˆ̄Gn(t0 |Ai, Li)ĝn(Ai |Li)

, (6.4)

if ˆ̄Gn(t |A,L) and ĝn(L) are both consistent.
1Notice that we try to follow the notation from Manuscripts III and IV, but, to avoid confusion,

we use Ḡ (rather than G) to denote the censoring survival distribution.
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6.1.2 Efficient influence function

As we have discussed in earlier chapters, the efficient influence function for the estima-
tion problem guides the construction of efficient estimators. Once we have the efficient
influence function, we can consider TMLE methodology, or, as was mentioned in the
end of Chapter 4, we can improve upon the inverse probability weighted estimator
(6.4) directly by considering the efficient influence curve equation (van der Laan and
Robins, 2003). In the next section we, again, consider the TMLE framework.

We here sketch how one may derive an expression for the efficient influence function
for the parameter defined in (6.3) in the CAR model that assumes G to be known.
This is then also the efficient influence function in the model with unknownG (van der
Laan and Robins, 2003). Under CAR we have that:

Ḡ(t |A,L) = P (C > t |A,L) = R
s≤t

(
1− Λc(dt |A,L)

)
,

S(t |A,L) = P (T > t |A,L) = R
s≤t

(
1− Λ1(dt |A,L)

)
.

We use the influence function for the IPW estimator from (6.4) in Section 6.1.2 as
an initial gradient,

φIPW(P )(O) =
1{A = 1} − 1{A = 0}

g(A |L) Pt≤t0(1− Λc(dt |A,L))
1{T̃ > t0} −Ψ(P ), (6.5)

Now, we need to project φIPW(P ) onto the tangent space TQ(P ) = TqL(P )⊕TΛ1(P )
where Q = (qL,Λ

1). The projection onto TqL(P ) equals E[φIPW(P )(O) |L] = P (T >
t0 |A = 1, L)− P (T > t0 |A = 0, L)−Ψ(P ). The projection onto TΛ1(P ) equals,

∫ (
E[φIPW(P )(O) |N1(dt) = 1,Ft−]

− E[φIPW(P )(O) |N1(dt) = 0,Ft−]
)(
N(dt)− Λ1(dt)

)
.

If we define,

Ht(O) := E[φIPW(P )(O) |N1(dt) = 1,Ft−]− E[φIPW(P )(O) |N1(dt) = 0,Ft−], (6.6)

we can present the efficient influence function as,

φ∗(P )(O) =

∫
Ht(O)

(
N1(dt)− Λ1(dt)

)

+ P (T > t0 |A = 1, L)− P (T > t0 |A = 0, L)−Ψ(P ).

(6.7)
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We note that,

E[φIPW(P )(O) |N1(dt) = 1,Ft−]

=

(
1{A = 1} − 1{A = 0}

g(A |L)

)
E

[
1{T̃ > t0}

Pt≤t0(1− Λc(dt |A,L))

∣∣∣∣N1(dt) = 1,Ft−
]
,

where,

E

[
1{T̃ > t0}

Pt≤t0(1− Λc(dt |A,L))

∣∣∣∣N1(dt) = 1,Ft−
]

=
1{t > t0}

Pt≤t0(1− Λc(dt |A,L))
.

Likewise,

E[φIPW(P )(O) |N1(dt) = 0,Ft−]

=

(
1{A = 1}
g(1 |L)

− 1{A = 0}
g(0 |L)

)
E

[
1{T̃ > t0}

Pt≤t0(1− Λc(dt |A,L))

∣∣∣∣N1(dt) = 0,Ft−
]
,

where,

E

[
1{T̃ > t0}

Pt≤t0(1− Λc(dt |A,L))

∣∣∣∣N1(dt) = 0,Ft−
]

=
1{t > t0}

Pt≤t0(1− Λc(dt |A,L))
+

1{t ≤ t0}
Ps<t(1− Λc(ds |A,L))

P (T > t0 |T > t,A, L)

=
1{t > t0}

Pt≤t0(1− Λc(dt |A,L))
+

1{t ≤ t0}
Ps<t(1− Λc(ds |A,L))

P (T > t0 |A,L)

P (T > t |A,L)
.

This now means that we can write the clever covariate in (6.6) as:

Ht(O) = −
(

1{A = 1} − 1{A = 0}
g(A |L)

)
1{t ≤ t0}

Ps<t(1− Λc(ds |A,L))

P (T > t0 |A,L)

P (T > t |A,L)
.

(6.8)

In Section 6.3 we outline a TMLE algorithm that uses the representation of the
efficient influence function in (6.7) with the time-varying clever covariate Ht defined
by (6.8). We also use the same influence function in Manuscript III, although it admits
a different representation (that they are equivalent can be realized by combining
van der Laan and Robins, 2003, Example 1.12 and Theorem 1.1).

6.2 TMLE for (discrete-time) survival analysis

We give a brief overview of some of the existing TMLE methods for survival analysis.
We make the following distinction between these methods:
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(1) Estimation of treatment-specific discrete-time survival at a fixed timepoint for
right-censored survival outcomes using full likelihood based TMLE (van der
Laan and Rubin, 2006; Moore and van der Laan, 2009a,b,c; Stitelman et al.,
2011; Stitelman and van der Laan, 2011; van der Laan and Rose, 2011; Benkeser,
2015).

(2) Estimation of treatment-specific discrete-time survival at a fixed timepoint for
right-censored survival outcomes using time-varying covariate-adjusted TMLE
(LTMLE) (van der Laan and Gruber, 2012; Schnitzer et al., 2014; Petersen
et al., 2014; Lendle et al., 2017).

Furthermore, Manuscript I of this thesis provides the groundwork for:

(3) Estimation of treatment-specific continuous-time survival at a fixed timepoint
for right-censored survival outcomes using time-varying covariate-adjusted TMLE.

The TMLE methods (1) and (2) all consider the setting where each subject is mon-
itored at discrete event times. This means that T̃ (and covariates and treatment)
only takes values in the set {1, 2, . . . , τ}. In this case we can represent the observed
data as in Section 2.2:

O = (L0, A1, L1, A2, . . . , Lτ , Aτ , Lτ+1),

with N1(t) = 1{T̃ ≤ t,∆ = 1} being part of Lt = (L1
t , N

1(t)) and N c(t) = 1{T̃ ≤
t,∆ = 0} being part of the intervention variable, which now includes both censoring
and treatment, At = (A1

t , N
c(t)). Note that A1

t denotes treatment at time t and L1
t

denotes time-varying covariates at time t (which may both be empty sets for t ≥ 1
if we do not consider time-varying covariates and treatment). When N1(t) = 1 or
N c(t) = 1, the variables are encoded with their last known value. The LTMLE
procedure (2) (van der Laan and Gruber, 2012; Schnitzer et al., 2014; Petersen et al.,
2014; Lendle et al., 2017) summarized in Section 4.3 applies directly to this setting,
with the sequential regression steps at each step t carried out only among subjects
uncensored and alive by this time.

The full likelihood based TMLEs (1) (van der Laan and Rubin, 2006; Moore and
van der Laan, 2009a,b,c; Stitelman et al., 2011; Stitelman and van der Laan, 2011;
van der Laan and Rose, 2011; Benkeser, 2015) are referred to as targeted maximum
likelihood estimation methods, rather than targeted minimum loss-based estimation.
Here all components of the likelihood (including potentially very high-dimensional
covariate densities) are estimated and then updated in an iterative manner that is
targeted towards the parameter of interest. In the next section we describe how
one may define a TMLE procedure for the continuous-time setting of Section 6.1
that follows along the lines of the TMLE (targeted maximum likelihood estimation)
procedure for discrete-time survival analysis.
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6.3 Sketch of TMLE for continuous-time survival analysis

We sketch a TMLE procedure for the continuous-time survival analysis setting with
baseline confounding. We emphasize that more details for a more complicated sit-
uation is found in Manuscript I. We consider estimation of the target parameter
Ψ : M→ R defined in (6.3) with influence function φ∗(P ) displayed in (6.7).

Initial estimation. We need initial estimators for the censoring mechanism (Λc), for
the treatment distribution (g), for the covariate distribution (qL) and for the survival
mechanism (Λ1). For qL we use the empirical distribution. We estimate g by ĝn as a
binary regression with outcome A and covariates L. For the sake of presentation, we
form initial estimators for the intensities based on Cox regression working models.2
Specifically,

λc(t |A,L) = R(t)λc0(t) exp(αL+ γA),

λ1(t |A,L) = R(t)λ1
0(t) exp(βL+ ψA),

where R(t) = 1{T̃ ≥ t} denotes the at-risk indicator. We estimate the coefficients
(α, γ) and (β, ψ) with their partial maximum likelihood estimators, and we use the
Breslow estimator (Breslow, 1974) for the baseline cumulative hazard functions,

Λ̂c
0,n(t) =

∫ t

0

∑n
i=1 dN

c
i (s)∑n

i=1 Ri(s) exp(α̂Li + γ̂Ai)
, (6.9)

Λ̂1
0,n(t) =

∫ t

0

∑n
i=1 dN

1
i (s)

∑n
i=1 Ri(s) exp(β̂Li + ψ̂Ai)

. (6.10)

We note that Λ̂c
0,n(t) jumps at the censoring times, and that Λ̂1

0,n(t) jumps at the
event times.

For each subject i and each time t, we compute,3

dΛ̂1
k=0(t | a, L) = exp(β̂L+ ψ̂a)

∑n
j=1 dN

1
j (t)

∑n
j=1Rj(t) exp(β̂Lj + ψ̂Aj)

, a = 0, 1.

Note that this estimator is a step function of time, with changes at all event times in
the data. This defines an initial estimator for,

Λ̂1
k=0(t | a, L) =

∫ t

0

dΛ̂1
k=0(s | a, L) = exp(β̂L+ ψ̂a) Λ̂1

0,n(t),

2In applications we would use super learning, see comments in Chapter 9.
3The notation here is a little tricky; note that ‘k = 0’ is used to indicate ‘initial estimator’, not

to be mistaken with Λ1
0,n which is the Breslow estimator for the baseline cumulative hazard.
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based on which we form an initial estimator for the survival probability at time t,

Ŝk=0(t | a, L) = exp
(
− Λ̂1

k=0(t | a, L)
)
. (6.11)

This suggests an initial estimate of the target parameter defined by,

Ψ̂k=0
n =

1

n

n∑

i=1

(
Ŝk=0(t | 1, L)− Ŝk=0(t | 0, L)

)
.

Targeting. Recall that the purpose of the targeting step is to update the initial
estimator such as to solve the efficient influence curve equation. We presented an
expression for the efficient influence function in (6.7) with a time-varying clever co-
variate Ht defined by (6.8). Note that the efficient influence φ∗(P ) function depends
on P only through (Λ1, g,Λc). We abuse notation and write φ∗(Λ1, g,Λc). Likewise it
is noted that the clever covariate Ht also depends on (Λ1, g,Λc), whereas our target
parameter depends only on Λ1.

To carry out the targeting step, we need an estimator for the clever covariate Ht. It
was noted that Ht depends on Λc but only through the censoring survival function
G(t |A,L) = exp(−Λc(t |A,L)) and on Λ1 but only through the survival function.
We estimate the censoring survival function by,

ˆ̄Gn(t |A,L) = exp

(
− exp(α̂L+ γ̂A)

∫ t

0

∑n
i=1 dN

c
i (s)∑n

i=1Ri(s) exp(α̂Li + γ̂Ai)

)
.

Further, we substitute our estimator ĝn for g and our initial estimator Ŝk=0(t |A,L)
from (6.11) for S(t |A,L). Accordingly, we obtain,

Ĥt,k=0(A,L) = −
(

1{A = 1} − 1{A = 0}
ĝn(A |L)

)
1{t ≤ t0}

ˆ̄Gn(t− |A,L)

(
− Ŝk=0(t0 |A,L)

Ŝk=0(t |A,L)

)
.

Note that the estimator for the clever covariate is indexed by ‘k = 0’ since it depends
on the estimator Ŝk=0(t |A,L), which, as we will see, is part of the updating procedure.

Our aim is to update the estimator Λ̂1
k=0(t |A,L) in a way such as to solve the efficient

influence curve equation. As dictated by Section 4.1, we need the following:

(i) A choice of a loss function for λ1, (O, λ1) 7→ L(λ1)(O). Here we consider the
partial log-likelihood loss function for λ1:

L(λ1) =

∫ t0

0

log λ1(t) dN1(t)− λ1(t)dt.



6.3. Sketch of TMLE for continuous-time survival analysis 59

(ii) A parametric fluctuation submodel parametrized by ε ∈ R through λ1 at ε = 0,
{λ1

ε : ε ∈ R}. Here we define the submodel:

λ1
ε(t) = λ1(t) exp

(
εHt

)
,

(iii) An updating algorithm.

For the choices of (i)–(ii) we note that:

d

dε

∣∣∣∣
ε=0

L(λ1
ε) =

∫ t0

0

Ht

(
dN1(t)− λ1(t)dt

)
=

∫ t0

0

Ht

(
dN1(t)− dΛ1(t)

)
,

as desired, recognizing the expression on the right hand side as the first term of the
efficient influence curve equation displayed in (6.7). Now, consider the submodel
through the initial estimator dΛ̂1

k=0(t) = λ̂1
k=0(t)dt. Finding ε̂n,1 that minimizes

ε 7→ Pn L(λ̂1
k=0,ε), for the given estimator Ĥt,k=0, corresponds to solving the equation,

1

n

n∑

i=1

(∫ τ

0

1{t ≤ t0}Ĥt,k=0(Ai, Li)
(
dNi(t)− exp

(
εĤt,k=0(Ai, Li)

)
dΛ̂1

k=0(t |Ai, Li)
))

= 0,

with respect to ε. The updated estimator,

dΛ̂1
k=1(t | a, L) := dΛ̂1

k=0(t | a, L) exp
(
ε̂n,1Ĥ

1
t,k=0(a, L)

)
, for a = 0, 1,

now solves the relevant part of the efficient influence curve equation,

Pn

∫ t0

0

Ĥ1
t,k=0

(
dN1(t)− dΛ̂1

k=1(t)
)

= 0,

however, with respect to the not yet updated Ĥ1
t,k=0. This means that the steps

above must be iterated. Below we describe the step to update a current estimator
Λ̂1
k(t | a, L) into Λ̂1

k+1(t | a, L):

1. Compute the current survival function for all t ≤ t0 based on Λ̂1
k(t | a, L),

Ŝ1
k(t | a, L) = exp

(
− Λ̂1

k(t | a, L)
)
, a = 0, 1.

2. Compute the current value of the clever covariates for all t ≤ t0:

Ĥ1
t,k(a, L) = −

(
1{A = 1} − 1{A = 0}

ĝn(A |L)

)
1{t ≤ t0}

ˆ̄Gn(t− |A,L)

(
− Ŝk(t0 |A,L)

Ŝk(t |A,L)

)
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3. Estimate ε̂n as the solution to the following equation:

1

n

n∑

i=1

(∫ τ

0

1{t ≤ t0}Ĥt,k(Ai, Li)
(
dNi(t)− exp

(
εĤt,k(Ai, Li)

)
dΛ̂1

k(t |Ai, Li)
))

= 0.

4. Use ε̂n to update:

dΛ̂1
k+1(t | a, L) := dΛ̂1

k(t | a, L) exp
(
ε̂nĤ

1
t,k(a, L)

)
, a = 0, 1.

5. Compute:

Λ̂1
k+1(t | a, L) =

∫ t

0

dΛ̂1
k+1(t | a, L), a = 0, 1.

The iterations are continued until |Pnφ∗(Λ̂1
k∗ , ĝn, Λ̂

c
n) | < γn, where γn = oP (n−1/2) is

some stopping criterion to ensure that we solve the efficient influence curve equation
up to order oP (n−1/2). We define the final estimator for the counterfactual survival
probability as,

Ŝk∗(t0 | a, L) = exp

(
−
∫ t0

0

dΛ̂1
k∗(t | a, L)

)
, a = 0, 1,

and estimate the target parameter by,

Ψ̂∗n =
1

n

n∑

i=1

(
Ŝk∗(t0 | 1, Li)− Ŝk∗(t0 | 1, Li)

)
, (6.12)

which is the final TMLE estimator Ψ∗n for our target parameter. If the conditions of
Theorem 3.3 are satisfied, Ψ∗n follows an asymptotic normal distribution around the
true value with a standard error that we can estimate by σ̂2

n,

σ̂2
n =

1

n

n∑

i=1

(
φ∗(Λ̂1

k∗ , ĝn, Λ̂
c
n)(Oi)

)2
,

where, by (6.7),

φ∗(Λ̂1
k∗ , ĝn, Λ̂

c
n)(Oi)

=

∫
1{t ≤ t0}Ĥt,k∗(Ai, Li)

(
dNi(t)− exp

(
εĤt,k∗(Ai, Li)

)
dΛ̂1

k∗(t |Ai, Li)
)

+ Ŝk∗(t0 | 1, Li)− Ŝk∗(t0 | 0, Li)− Ψ̂∗n.
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6.4 Final comments

All our manuscripts consider parameters like Ψt0 : M → R defined by (6.3) in
Section 6.1. Manuscript I uses the TMLE framework to estimate the effect of time-
dependent treatment strategies on the survival probability in a continuous-time set-
ting. In Section 6.3 we outlined the case with only baseline confounding: Here, the
continuous-time version of TMLE works more or less precisely as the discrete-time
version. For the setting considered in Manuscript I, on the other hand, the existing
discrete-time versions of TMLE do not apply directly and we propose a new algo-
rithm. Manuscripts III and IV both apply random forest methodology to estimate
Ψt0(P0). Manuscripts IV utilizes a weighting approach to target different variations
of Ψt0(P0) in the competing risks setting. Manuscripts III identifies the target pa-
rameter by inverse probability weighting, but proposes an estimation procedure that
incorporates the (efficient) influence function. We discuss random forest methodology
in the next chapter.

Recall our motivating problem from Chapter 1. Assume that we have a list ofM ∈ N
binary drug treatment variables A1, . . . , AM ∈ {0, 1}, and we want to compare these
drugs in terms of their effect on the time T until onset of depression. Optimally, we
want to report one number for each treatment that gives us a measure of the effect
of that treatment. In Manuscript IV we construct a search algorithm where we use
variations over k-specific versions of the target parameter we defined Section 6.1,

Ψt0,k(P ) = P (TAk=1 > t0)− P (TAk=0 > t0), (6.13)

as a measure of the effect of drug Ak. Clearly, the choice of t0 may make a difference
and estimation of the entire survival curve will give a more complete account of the
effect. However, if the number of drugs M ∈ N is large, it is not optimal to compare
M survival curves. Focusing on (6.13), on the other hand, we have one well-defined
parameter for each drug for which we can obtain p-values and confidence intervals.

We consider only effects on the survival scale (or the absolute risk scale), and not
on the hazard scale, even if there is no time-dependent confounding. As pointed out
by Hernán (2010), there is a generally an unclear basis for causal interpretability of
hazard ratios. The problem can be described shortly as follows; for more details we
refer to Hernán and Robins (2020, Chapter 17). The hazard at any time t is defined
conditional on being alive and event-free by time t. However, being alive and event-
free is a post-treatment variable. Suppose the treatment has a large effect on the
risk of dying; it kills all subjects in high risk of dying so that survivors in the treated
group at time t are all in lower risk of dying than those in the non-treated group.
The hazard ratio will then tell us that there is a beneficial effect of treatment. Effects
on the absolute risk scale, like (6.3), are not subject to this issue.





Chapter 7.

Random forests

In this chapter we introduce random forests, a machine learning algorithm that uses
randomized regression trees to form ensemble predictions. Our motivation for working
with random forest is two-fold:

1. A random forest (Breiman, 2001) is a powerful prediction tool for regression,
classification and also, as reviewed in Manuscript II, survival analysis and com-
peting risks (Ishwaran et al., 2008, 2014). Thus, random forests are useful, for
instance, to enhance super learning (Section 4.2.1).

2. Recent extensions of random forests, the causal forests (Wager and Athey, 2018)
and the generalized random forests (Athey et al., 2019), provide a targeted
methodology where, much like TMLE (Chapter 4), the estimation algorithm
is tailored towards a specific target parameter. Manuscripts III and IV are
concerned with adaptations of generalized random forests for right-censored
data and competing risks.

We start by reviewing the original random forest algorithm (Breiman, 2001); along
the way we introduce relevant terminology that we need to present the material of
Manuscripts II–IV. Some of the concepts, like sample splitting and cross-validation,
were also described in Section 4.2.1 and are common to many machine learning al-
gorithms. We give a short outline of the causal forests and the generalized random
forests in Section 7.2 and Section 7.3, respectively.

Throughout this chapter, we switch to the notation that we use in Manuscripts II–IV:
The variable A denotes the treatment like we had earlier, but now X ∈ X is used to
denote the vector of baseline covariates. Following machine learning terminology, we
sometimes refer to the data as the training data and to X as the feature space. In
Section 7.1 we consider a prediction problem, but in Sections 7.2–7.3, when introduc-
ing work by Wager and Athey (2018); Athey et al. (2019), we move on to treatment
effect estimation considering again the setting of our running example from previous
chapters. Wager and Athey (2018); Athey et al. (2019) provide some of the first
results on the use of random forests for asymptotic statistical inference. We give a
summary, but we have not considered the mathematical details in depth.
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7.1 The random forest algorithm

We consider data consisting of n ∈ N iid observations of a covariate vector X ∈ X ⊆
Rp, p ∈ N, and some outcome Y ∈ R. A forest consists of B ∈ N trees (see Figure 7.1),
where, generally, the bth tree defines a partitioning Πb of the covariate space X into
hyperrectangular cells, with each cell corresponding to a terminal node of the tree.
For construction of a tree, various steps of randomization are imposed. First, only
a bootstrap sample of the training data is used to grow a tree. Bootstrapping can
either be done with or without replacement, and the bootstrap sample can be of size
n or smaller. Second, in each step of the tree growing procedure, the covariate space
is split along a single axis at a time (the splits are ‘axis-aligned’); here, the axis along
which to place the split is chosen among a smaller number of randomly pre-selected
axis directions based on some splitting criterion. Let ni,b ≥ 0 denote the number of
times unit i appears in the bootstrap sample used in tree b. Note that if bootstrap
with resampling is used it may be that ni,b > 1, otherwise ni,b ≤ 1. Consider any
x ∈ X . We let Lb(x) ⊂ X denote the unique region of the covariate space defined
by the partitioning Πb that contains x ∈ X and let Nb(x) =

∑n
i=1 ni,b 1{Xi ∈ Lb(x)}

denote the number of units (possibly with resampling) falling in this region.1

The random forest algorithm has the following hyperparameters:

B ∈ N : The number of trees.

sn ∈ {1, . . . , n} : The size of the subsample used to build the trees.

ptry ∈ {1, . . . , p} : The number of axis directions pre-selected for splitting in each
tree.

kn ≥ 1 : The minimal number of unique observations in each terminal node.

Generally, the choices of the parameters above are to be made based on considerations
of bias-variance trade-off, and, in particular, the choices are important for what we
can infer about the asymptotic properties of a random forest estimator. Furthermore,
different choices are made for different purposes.

7.1.1 Prediction using forest weights

Breiman’s random forest algorithm (Breiman, 2001) forms predictions by averaging
predictions across an ensemble of trees. Figure 7.2 illustrates how each tree of a forest
starts with a root node and ends up with a set of terminal nodes that are to be used

1In the manuscripts we use Lb(x) and Nb(x). We have here switched notation, so that there is
no confusion with the notation of counting processes and covariates from earlier chapters in this
document.
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Data lala laData

Subsample 1 Subsample 1 Subsample 1Subsample 1 . . . Subsample b . . . Subsample B

Tree 1 Tree 1 Tree 1Tree 1 . . . Tree b . . . Tree B

Figure 7.1: The forest is built up by trees that each uses a bootstrap subsample of the
training data.

for the prediction. Suppose, for now, that we are interested in estimating,

f(x) = E[Y |X = x], ∀ x ∈ X . (7.1)

We distinguish between “inbag” prediction, that is based on all samples in all trees,
and “out-of-bag” prediction where estimation is done for training sample j, j =
1, . . . , n, using only the trees where sample j itself was left out of the bootstrap sam-
ple. Inbag prediction is used for a new independent sample point x ∈ X , whereas
out-of-bag prediction is used for internal validation. Out-of-bag prediction is based
on the same principles as V -fold cross-validation discussed in Section 4.2.1.

Inbag prediction. The predicted value of the forest in a new observation x ∈ X may
be obtained by collecting all the learning samples (with bootstrap repetition) falling
in any of the b = 1, . . . , B tree terminal nodes containing x. This we can write as,

f̂n(x) =
1

B

B∑

b=1

∑n
i=1 ni,b 1{Xi ∈ Lb(x)}Yi∑n
j=1 nj,b1{Xj ∈ Lb(x)} =

n∑

i=1

αi(x)Yi, (7.2)

where we have defined weights αi : X → [0, 1],

αi(x) :=
1

B

B∑

b=1

ni,b 1{Xi ∈ Lb(x)}∑B
b=1

∑n
j=1 nj,b 1{Xj ∈ Lb(x)}

=
1

B

B∑

b=1

ni,b 1{Xi ∈ Lb(x)}
Nb(x)

. (7.3)

Out-of-bag prediction. The predicted value for subject j uses only the trees where
sample j is out-of-bag, corresponding to all trees b for which nj,b = 0. This results in
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root note

nodedepth 1

nodedepth 2

terminal nodes

Figure 7.2: Trees sequentially partion the covariate space, starting from the root node and
ending in a set of terminal nodes.

out-of-bag weights for prediction, i 6= j,

α
(−j)
i (Xj) :=

1

B

B∑

b=1

1{nj,b = 0} ni,b 1{Xi ∈ Lb(x)}
Nb(Xj)

, (7.4)

and defines the out-of-bag forest prediction f̂n(Xj) which is obtained by substituting
α

(−j)
i (Xj) for αi(x) in (7.2).

We note how the weights measure the proximity of Xj, or x, to Xi by counting how
often Xi and x belong to the same terminal node. We return to this in Section 7.1.3.

7.1.2 Splitting

Trees are grown by sequentially partitioning the covariate space. This is carried out
by performing axis-aligned splits guided by a splitting criterion. Any split starts
with a mother node M ⊆ X that is to be split into two daughter nodes D1 and
D2, as illustrated in Figure 7.3. We consider here the standard CART regression
splitting criterion (Breiman et al., 1984) as an example. We let nD1 = #{i ∈ D1}
and nD2 = #{i ∈ D2} be the number of samples falling in the left and the right
daughter node, respectively. The standard CART regression splitting criterion is
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M

M MD1 D2

mother node

left
daughter

right
daughter

Figure 7.3: A mother node M is split into two daughter nodes D1 and D2.

defined as,

L(D1, D2) =
∑

i∈D1

nD1

(
Yi −

1

nD1

∑

i∈D1

Yi

)2

+
∑

i∈D2

nD2

(
Yi −

1

nD2

∑

i∈D2

Yi

)2

(7.5)

We note that M = D2 ·∪ D2 where D1 and D2 only differ along a single axis of the
covariate space. Any potential split is on the form (Xj ≤ c) and (Xj > c) for a value
c ∈ R where j is some coordinate of X (or, if Xj is categorical, the split will collect
certain values of Xj in one node and the rest in the other, since Xj is not necessarily
ordered). Only a set of ptry ≤ p axes are pre-selected from which we can choose to
make the split. Then j is chosen from the ptry axis directions such as to minimize
the splitting criterion in (7.5). Note that, since splits are axis-aligned, we can always
write a terminal node Lb(x) ∈ X as,

Lb(x) = ⊗pq=1Ib(x; q), (7.6)

where Ib(x; q) is some interval of the qth coordinate axis of X .

7.1.3 Random forests as an adaptive nearest neighbor method

Consistency and other asymptotic properties of random forests have been studied
and analyzed in various ways (Meinshausen, 2006; Biau, 2012; Scornet et al., 2015;
Mentch and Hooker, 2016; Wager and Athey, 2018; Athey et al., 2019). A key aspect
of most of the theoretical results is to analyze trees and forests as adaptive nearest
neighbors (Lin and Jeon, 2006; Biau and Devroye, 2010; Meinshausen, 2006; Wager
and Athey, 2018) utilizing that forests use a weighted average of nearby observations
to form predictions. In this section we sketch this idea.
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Define the tree-b-subject-i specific weights as,

αi,b(x) =
1{Xi ∈ Lb(x)}∑n

j=1 nj,b1{Xj ∈ Lb(x)} . (7.7)

Then the (inbag) forest prediction expressed in (7.2) can be written as,

f̂n(x) =
1

B

B∑

b=1

T̂b(x), T̂b(x) =
n∑

i=1

αi,b(x)Yi, (7.8)

where T̂b(x) is the tree-b specific prediction. Now, consider a tree grown on a bootstrap
subsample obtained without resampling. Then ni,b ∈ {0, 1}, and the tree weight
expression reduces to,

αb,i(x) =
1{Xi ∈ Lb(x)}∑n
j=1 1{Xj ∈ Lb(x)} .

Recall that a tree defines a rectangular partitioning of X , and that there are a mini-
mal number of kn samples in each terminal node.

As pointed out by Lin and Jeon (2006), we can relate random forests to so-called
potential nearest neighbors (PNN). General potential nearest neighbors form predic-
tions by doing a nearest neighbor search over rectangles: A point x′ is a k-PNN to x
if there exists fewer than k sample points other than x′ in the hyperrectangle defined
by x′ and x (see Lin and Jeon, 2006, Definition 1 and Proposition 1). Particularly, as
shown by Lin and Jeon (2006), a tree that makes axis-aligned splits and has terminal
node size between k and 2k − 1, regardless of the splitting scheme used, is a k-PNN
predictor. Potential nearest neighbor predictions can generally be written as,

n∑

i=1

Wi(x)Yi,

where Wi(x) is a variable that gives non-zero weight to the nearest neighbor sam-
ples. For tree b we have Wi(x) = αb,i(x) (from (7.7)) which gives non-zero weight
to samples falling in the same terminal node as x ∈ X and was chosen in a data-
adaptive manner based on the splitting criterion. Tree weights give rise to forest
weights by αi(x) = B−1

∑B
b=1 αi,b(x). Thus, random forests (with predictions on the

form (7.8)) can be viewed as an adaptively weighted PNN method. Accordingly, we
also refer to the forest weight αi(x) as a ‘neighborhood function’. Figure 7.4 and
Figure 7.5 illustrate the tree-based and forest-based nearest neighbor sets for x ∈ X
where X = [0, 1]2.

In the next section we see how work by Wager and Athey (2018) utilizes the adaptive
nearest neighbor framework to propose forests for causal analysis. To gain some
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intuition for this transition, we note that it is a common idea in the causal inference
literature to use matching, for instance on the propensity score (Rosenbaum and
Rubin, 1983), to control for confounding. Matching requires that we find samples
that are “close” enough in the covariate space measured by some distance or proximity
measure. A random forest defines a proximity measure in terms of its weighting
function αi(x). To make sense of this proximity measure, one would like to have that
the terminal node Lb(x) ⊂ X containing x shrinks around x when n→∞. Following
Meinshausen (2006), one may show that the diameter of the terminal node Lb(x),
defined as,

diam(Lb(x)) := max
q∈{1,...,p}

∣∣Ib(x; q)
∣∣,

converges to zero in probability under conditions largely as follows: (1) X = [0, 1]p,
(2) the proportion of samples in a terminal node is vanishing for n → ∞, (3) the
probability that a covariate is chosen for split is bounded away from zero, and (4) there
is at least some proportion γ ∈ (0, 0.5] of samples in all terminal nodes. Notably,
(3) is needed to ensure that the terminal nodes become small in all directions of
the covariate space X ; we refer to this as minimum split probability. All conditions
combined with (5) f(x) is Lipschitz continuous in x, can further be used to establish
consistency of the forest prediction.

7.2 Causal forests

Causal forests proposed in Wager and Athey (2018) are based on Breiman’s classical
random forest algorithm but involves additional conditions on the tree and forest
building process. We give a brief summary. The three key conditions that are im-
posed are: 1) Subsampling is done without replacement, 2) the subsample size sn
scales at a suitable rate relative to the sample size n, and 3) any training sample is
only used to either place the splits of the tree or is part of within node estimation.
The last part is referred to as honesty (Athey and Imbens, 2016). Honesty can be
achieved by, for instance, dividing the subsample into two equally large parts, using
one to build the tree and the other to do estimation.2 Then the subsampling and the
following splitting is redone over each tree.

We now suppose that the data consist of a treatment indicator A ∈ {0, 1} additional
to the covariates X ∈ X and the outcome Y ∈ R. This corresponds to our running
example from previous chapters. As in Chapter 2, let Y 1 and Y 0 be the counterfactual
variables under treatment (A = 1) and no treatment (A = 0), respectively. Wager
and Athey (2018) consider estimation of the treatment effect conditional on x ∈ X :

θ(x) = E[Y 1 |X = x]− E[Y 0 |X = x]. (7.9)

2Similar techniques seem to be used in double/debiased machine learning, see Chernozhukov
et al. (2018).
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(Notice that we have changed notation from previous chapters, where we used ψ
rather than θ). As in Example 1, page 13, we assume no unmeasured confounding
(A2) A ⊥⊥ (Y 1, Y 0) |X, which allows the identification of (7.9) by,

θ(x) = E

[
(2A− 1)Y

g(A |x)

∣∣∣∣X = x

]
, (7.10)

where g(a |X) = P (A = a |X) is the propensity of treatment. Wager and Athey
(2018) use the representation in (7.10) without explicitly estimating g(A |X) and
propose a tree estimator for θ(x) as follows,

Tb(x) =

∑n
i=1 ni,bAi 1{Xi ∈ Lb(x)}Yi∑n
j=1 nj,bAj 1{Xj ∈ Lb(x)} −

∑n
i=1 ni,b (1− Ai) 1{Xi ∈ Lb(x)}Yi∑n
j=1 nj,b (1− Aj) 1{Xj ∈ Lb(x)} .

(7.11)

The heuristic argument is that the terminal nodes of the trees are small enough to
have “removed confounding effects”. By aggregation over the tree prediction (7.11),
Wager and Athey (2018) obtain a forest estimator for θ(x) as,

θ̂n(x) = B−1

B∑

b=1

Tb(x),

and they show conditions under which (Wager and Athey, 2018, Theorem 4.1),

θ̂n(x)− θ(x)√
Var(θ̂n(x))

D→ N(0, 1). (7.12)

They further propose to use the infinitesimal jackknife (Wager et al., 2014) to develop
a consistent estimator for the asymptotic variance Var(θ̂n(x)). Their proof for (7.12)
relies partly on a refinement of the proof by Meinshausen (2006) of diam(Lb(x)) =
oP (1) briefly mentioned in Section 7.1.3, and thus requires conditions along the lines
of this result. Their conditions include Lipschitz continuity of E[Y a |X = x], a = 0, 1,
X = [0, 1]p, minimum split probability, a regularity condition on the number of sam-
ples in any node (requiring further that any node has at least a certain number of
observations from each treatment group), and that the subsample size sn scales in an
appropriate way.

The splitting criterion (Section 7.1.2) is key to understanding the neighborhood func-
tion defined by the forest weights. Wager and Athey (2018) propose two different
forest procedures using two different splitting schemes:

Double-sample trees. Double-sample trees use Y as outcome and a splitting criterion
proposed by Athey and Imbens (2016) that maximizes the variance of θ̂n(x).
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Propensity trees. Propensity trees use A as outcome and, for instance, a CART
splitting criterion.

Double-sample trees produce forest weights αi(x) that optimize heterogeneity in the
target parameter. Propensity trees, on the other hand, produce forest weights that
capture similarity in the propensity score. As pointed out by Wager and Athey
(2018), the use of propensity trees can be useful in the same problems as propensity
score matching (Rosenbaum and Rubin, 1983). Wager and Athey (2018) argue that
the double-sample trees and the propensity trees have different strengths, with, for
instance, the propensity trees being more robust to confounding. We note that this
discussion is similar to that of choosing between a simple inverse probability weighted
estimator or the estimator that is based entirely on g-computation. In the next section
we introduce generalized random forests that have been proposed as a generalization
of causal forests. Generalized random forests are formulated for much more general
problems, but also apply to the estimation of conditional treatment effects where they
provide a more robust (perhaps even double robust) alternative to double-sample trees
and propensity trees.

7.3 Generalized random forests

Generalized random forests (Athey et al., 2019) have been proposed as an extension
of the causal forests (and the original random forests), casting forests as a general
kernel method with kernels estimated in a data-driven way. The idea is to use the
forest weights to solve estimating equations of the form,

E[ψθ(x),ν(x)(Oi) |Xi = x] = 0, ∀x ∈ X ,

where θ(x) is the parameter of interest and ν(x) is an optional nuisance parame-
ter. Given forest weights αi(x) that measure the relevance of the ith sample for the
estimation of θ(x), estimators

(
θ̂n(x), ν̂n(x)

)
are found as a solution to,

n∑

i=1

αi(x)ψθ̂n(x),ν̂n(x)(Oi) = 0.

Athey et al. (2019) propose that the forest should be constructed such that the adap-
tive neighborhood function captures heterogeneity in the target θ(x) specifically. The
key is again the splitting scheme of the trees: We should split a mother node into
daughter nodes such as to improve estimation of the target parameter θ(x) in the
daughter nodes as much as possible.

It is here nice to recall some concepts from Chapter 3 to relate the work of Athey
et al. (2019) to the framework of previous chapters. From Chapter 3, recall that an
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estimator θ̂n is an asymptotically linear estimator with influence function φ if,3

θ̂n − θ =
1

n

n∑

i=1

φ(Oi; θ) + oP (n−1/2), (7.13)

where E[φ(O; θ)] = 0 and E[φ(O; θ)2] <∞. Once the influence function is known, we
can define,

ψ(Oi, θ) = φ(Oi; θ),

such that θ is identified as the solution to the estimating equation,

E[ψ(O, θ)] = 0.

Now consider the split of a mother node M ⊂ X into two daughter nodes M =
D1 ·∪ D2. In the mother node we have an estimator for the target parameter θ̂M .
We further have an estimator φ(Oi; θ̂M) for its influence function. As in Section
7.1.2, let nD1 , nD1 be the number of samples in the first and second daughter node,
respectively. Now, instead of estimating the target parameter in the daughter nodes
(θ̂D1 , θ̂D2) across all possible splits, we can use an asymptotic approximation by the
influence function via (7.13):

θ̂D1 − θ̂M ≈ n−1
D1

∑

{i:Xi∈D}
φ(Oi; θ̂M),

and implement splits such as to maximize:

L̃(D1, D2) :=
∑

j=1,2

n−1
Dj

( ∑

{i:Xi∈D}
φ(Oi; θ̂M)

)2

. (7.14)

This is quite elegant: The influence function φ(Oi; θ̂M) represents the rate of change
in the estimator θ̂M in direction of Oi. By placing splits that maximize (7.14), we
maximize heterogeneity in daughter node estimates θ̂D1 , θ̂D2 relative to the estimate
in the mother node θ̂M . Further, it is computationally convenient since the implemen-
tation can use a standard CART splitting criterion (see (7.5) in Section 7.1.2) applied
to ρ = φ(Oi; θ̂M) as a pseudo-outcome and does not have to recompute θ̂D1 , θ̂D2 across
all possible splits.

7.3.1 Conditional average treatment effects

Athey et al. (2019, Section 6) consider conditional average partial effect estimation.
This includes estimation of the conditional average treatment effect (7.9) that we

3Note that we have here changed the notation from Chapter 3 slightly.
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(re)introduced in Section 7.2 as a special case. In their framework one starts with a
random effects model,

Y = Ab+ ε.

The assumption of no unmeasured confounding is expressed as (b, ε) ⊥⊥ A |X. The
parameter of interest is identified as,

θ(x) = E[b |X = x] =
cov(Y,A |X = x)

Var(A |X = x)
, (7.15)

and, given forest weights αi(x), one may estimate θ(x) by,

θ̂α(x) =

∑n
i=1 αi(x)(Ai − Āα)2

∑n
i=1 αi(x)(Ai − Āα)(Yi − Ȳα)

,

where Āα =
∑n

i=1 αi(x)Ai and Ȳα =
∑n

i=1 αi(x)Yi. Further, a splitting criterion based
on pseudo-outcomes is specified as,

ρi = W−1
M (Ak,i − ĀM)

(
Yi − ȲM −

(
Ak,i − ĀM

)
θ̂M

)
, (7.16)

where,

WM =
1

#{i : Xi ∈M}
∑

{i :Xi∈M}
(Ak,i − ĀM)2,

and ĀM , ȲM are mother node averages. Accordingly, splits are carried out such as to
maximize (7.14) with ρi substituted for φ(Oi; θ̂M). If we look more closely,4 it can be
noted that θ(x) in (7.15) is equal to the conditional treatment effect in (7.9) when
A ∈ {0, 1}. Further, we see that ρi provides a mother node estimator for,

φ(O; θ) =
(
Var(Ak |X = x)

)−1(
A− g(A |X = x)

)(
Y − E[Y |X = x]

−
(
A− g(A |X = x)

)
θ(x)

)
,

(7.17)

which can be shown to equal the familiar efficient influence function for our running
example (except only including the projection (3.10) on the tangent space for varying
qY and not qL). Supposedly, the generalized random forest inherits to some extent the
double robustness properties of the efficient influence function. Athey et al. (2019,
Section 6.2) present a simulation study where it seems to be the case that causal
forests of Wager and Athey (2018) based on double-sample trees and propensity trees,
respectively, outperform one another in different scenarios, whereas the generalized
random forest works well across all scenarios.

4See Supplementary Material of Manuscript IV.



74 Chapter 7. Random forests

7.3.2 Asymptotic theory

Athey et al. (2019) provide conditions under which they can prove consistency and
asymptotic normality of θ̂n(x) obtained using generalized random forests (specifically,
Athey et al., 2019, Assumptions 1–6, Theorem 3, Theorem 5). Their analysis requires
that X ∈ X = [0, 1]p and that the density of X is bounded away from zero and
infinity. Further conditions can be categorized as follows. First, conditions on the tree
construction, second, assumptions on the expected score function x 7→ E[ψ(O) |X =
x] and, third, assumptions on the score function ψ itself. Like Wager and Athey
(2018), they require honesty, regularity, minimum split probability, and a specific
scaling of the subsample size. They assume that x 7→ E[ψ(O) |X = x] is Lipschitz
continuous and that (θ, ν) 7→ E[ψθ,ν(O) |X = x] is twice continuously differentiable
with uniformly bounded second derivative. Lastly, their conditions on the score
function ψ include convexity and certain regularity. Athey et al. (2019, Section 6)
argue that all required conditions hold for the example in Section 7.3.1, if E[Y |X =
x], E[A |X = x] and cov(Y,A |X = x) are Lipschitz in x and if Var(A |X = x) is
invertible. Then their Theorem 5 applies, and,

θ̂(x)− θ(x)

σn(x)

D→ N(0, 1),

for a sequence σn(x) = polylog(n/sn)−1sn/n (see Athey et al., 2019, Theorem 5).
Athey et al. (2019) further derive an estimator for σn(x) for constructing asymptot-
ically valid confidence intervals for θ(x) (see Athey et al., 2019, Section 4, Theorem
6).

7.4 Final comments

Random forests are well-established for prediction purposes in survival and compet-
ing risks analysis (Ishwaran et al., 2008, 2014). However, current implementations
consider estimation of the entire survival curve (or, similarly, the entire cumulative
incidence function). We review the different algorithms in Manuscript II.

But what if we are interested in low-dimensional parameters? In the previous chapter
we defined a target parameter Ψ : M→ R by,

Ψt0(P ) = P (T 1 > t0)− P (T 0 > t0),

where T a, for a = 0, 1, is the counterfactual event time had there been no censoring
and had treatment A been set to a. In Chapter 4 we presented the TMLE metho-
dology as a two-step procedure where the first step involves initial estimation, e.g.,
using super learning, and the second step is concerned with fluctuation of the initial
estimator in an optimal way, targeted towards the specific parameter of interest. In
this chapter we have briefly introduced the generalized random forest methodology,
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that provides a one-step approach along the same lines. While most machine learning
methods for estimation of conditional expectations, density or survival estimation in
nonparametric models are used without concern for the target parameter, the split-
ting in generalized random forests is implemented for optimal estimation of the target
parameter. Manuscript III and Manuscript IV are concerned with generalized ran-
dom forests for targeted estimation of treatment effects on time-to-event outcomes.
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Figure 7.4: Illustration of the tree-based nearest neighbors for x ∈ X where X = (0, 1)2.
The colored circles show the training samples that fall into the same daughter node as the
new test point x (marked by a large cross). The set of neighbors becomes smaller the
deeper we grow the trees. Upper left: Shown is a tree consisting of a single split (depth
1). Upper right: Shown is a tree grown to depth 3 as in Figure 7.2. Lower left: Shown
is a tree grown to depth 5. Lower right: Shown is a tree grown to depth 10.
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Figure 7.5: Illustration of the forest-based nearest neighbors for x ∈ X where X = (0, 1)2.
The colored circles show the weight applied to the training samples for prediction in the
new test point x (marked by a large cross): The darker the circle, the closer the weight is
to 1. Upper left: Shown is a forest consisting of 10 trees. Upper right: Shown is a forest
consisting of 100 trees. Lower left: Shown is a forest consisting of 500 trees. Lower right:
Shown is a forest consisting of 1000 trees. The more trees we include, the more nuanced the
weights become.





Chapter 8.

Summary of manuscripts

In this chapter we summarize the manuscripts of the thesis. As an overview we note
that:

Manuscript I is concerned with a generalization of targeted minimum loss based
estimation to continuous time.

Manuscript II is concerned with random forests as a prediction strategy for sur-
vival analysis.

Manuscript III is concerned with generalized random forest methodology for sur-
vival analysis.

Manuscript IV is concerned with an inverse probability weighted approach to the
use of generalized random forests for right-censored data and competing risks.

The first section of Chapter 9 provides further summary of the results.

8.1 Manuscript I

Manuscript I builds upon the work of Robins (1986, 1987, 1989); Robins et al. (1992,
2000); Gill and Robins (2001); Bang and Robins (2005); Stitelman et al. (2011); Pe-
tersen et al. (2014) and proposes a generalization of TMLE methods from van der
Laan (2010a,b); Stitelman and van der Laan (2011); van der Laan and Gruber (2012);
Schnitzer et al. (2014); Petersen et al. (2014) to a continuous-time setting. The con-
sidered setting is one where changes in both treatment, covariates and outcome can
happen on an arbitrarily fine time-scale. The motivation comes from the problem
presented in Chapter 1: Subjects of a population are measured on a daily basis over
many years and we wish to infer on treatment effects on an outcome of interest while
taking into account time-dependent confounding. This setting is quite general, and
with increasing accessibility of large-scale observational databases such methods be-
come more and more relevant. As explored in (Sofrygin et al., 2019), the existing
(LTMLE) methods are not directly scalable to the data when the time scale gets finer
and finer (and at most time-points we do not observe anything), unless a discretiza-
tion approach is taken instead.

In the manuscript we propose a unified framework based on counting processes (An-
dersen et al., 1993): By use of product integrals, we can treat both the discrete and
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the continuous-time case simultaneously, and we can use intensities to track the indi-
vidual monitoring of subjects conditional on their observed history. We note that a
continuous-time approach is also considered in Lok (2008); Didelez (2008); Røysland
(2011, 2012); Commenges and Gégout-Petit (2009); Aalen (1987); Aalen et al. (2012),
but not extended to semiparametric efficient estimation.

We define our parameter of interest as the intervention-specific mean outcome at a
fixed time-horizon. This incorporates a lot of different special cases, including the
survival probability. We analyze the estimation problem and present the efficient
influence function which is used to construct a targeting algorithm. We propose an
algorithm that can be viewed as a combination of the existing TMLEs for longitudi-
nal data; the one that targets the full likelihood and the one based on the sequential
regression representation. It proceeds iteratively, using separate targeting steps for
intensities (to deal with random monitoring times) and conditional expectations (to
deal with covariate information). The targeted estimator solves the efficient influence
curve equation.

We consider also a continuous-time version of Theorem 3.3 and discuss Donsker class
conditions and the convergence rate of the second-order remainder. To show that es-
timation procedures do exist to meet these conditions, we apply the highly adaptive
lasso (HAL) methodology to the continuous-time setting. Relying on this, we are
able to establish asymptotic linearity and efficiency along the lines of van der Laan
(2017). The discussion of HAL in the manuscript is mostly for theoretical purposes
and we do not yet provide an implementation for the continuous-time setting.

The manuscript includes a simulation study which serves as a proof-of-concept.

8.2 Manuscript II

In Manuscript II (Rytgaard and Gerds, 2018) we review extensions of the random
forest methodology proposed for right-censored data and competing risks. Our fo-
cus is mainly on the random survival forest algorithm (Ishwaran et al., 2008, 2014)
implemented in R in the package randomForestSRC (Ishwaran and Kogalur, 2018,
2007a), but there exist other implementations and many other variations of the algo-
rithm specifically for survival analysis (Hothorn et al., 2004, 2005, 2006; Wright and
Ziegler, 2017; Wright et al., 2017).

Splitting rules for trees in a survival forest are, for the most part, based on two-sample
tests for survival data (LeBlanc and Crowley, 1993). In the setting without compet-
ing risks, a common choice is the log-rank test for the null hypothesis of equal survival
probabilities in the daughter nodes. Here the split is chosen such as to maximize the
log-rank test statistic, and thus the survival difference across the entire time interval,
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in the two daughter nodes. For competing risks analysis, one has a choice between
a log-rank test of equal cause-specific hazards or the Gray’s test of equal cumulative
incidence.

Forest ensembles for the cumulative incidence or the survival function are, for in-
stance, obtained by averaging over tree-specific Aalen-Johanson estimators (Aalen
and Johansen, 1978) and tree-specific Kaplan-Meier estimators (Kaplan and Meier,
1958), respectively. We here consider the Kaplan-Meier estimator as proposed in
Hothorn et al. (2004), where all learning samples that fall in a terminal node with x
are collected and used to estimate the survival function,

Ŝn(t |x) = R
s≤t

(
1−

∑n
i=1

∑B
b=1 ni,b1{Xi ∈ Lb(x)}dN1

i (s)∑n
i=1

∑B
b=1 ni,b1{Xi ∈ Lb(x)}Ri(s)

)
.

This is in contrast to Ishwaran et al. (2008) and Ishwaran et al. (2014) who propose
ensembles obtained as averages over tree-specific estimators. (Note that we have used
the notation from Section 5.1.1 and from Section 7.1).

Manuscript II further reviews prediction accuracy for survival forests (which includes
the area under the ROC curve (Heagerty et al., 2000; Chambless and Diao, 2006)
and the time-dependent Brier score (Gerds and Schumacher, 2006)) and variable
importance measures. Variable importance measures allow the researcher to explore
which covariates were important for constructing the forest. The so-called VIMP
(Variable IMPortance) of a variable X (Breiman, 2001) targets the prediction error
between running the forest with a ”noised-up” version of X and running the forest
with X as was observed (Liaw et al., 2002; Ishwaran and Kogalur, 2007b). If the
prediction performance decreases more for variable X1 than for variable X2, then
importance(X1) > importance(X2). Another measure is the minimal depth (Ishwaran
et al., 2010, 2011) that is defined as the distance from the root node of a tree to the
first node that is split on X.

8.3 Manuscript III

Manuscript III (Rytgaard, 2019) proposes an adaptation of the framework of gene-
ralized random forests (Athey et al., 2019) to right-censored data. In the paper we
focus on the target parameter defined as the difference in absolute risk between the
two counterfactual scenarios of being treated and not being treated. We provide the
causal assumptions needed for identifiability and express our parameter in terms of
an inverse probability weighted estimating equation for the target parameter. We
propose a kernel weighted estimator for the nuisance parameters, where the kernel
weights are the forest weights.
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The splitting criterion in the generalized random forest framework is targeted towards
the parameter of interest, and splits are implemented by using an approximation
based on influence functions. In the paper, we present the influence function that
is to be used in the algorithm of a generalized random forest applied to censored data.

The final estimator for the target parameter becomes a forest version of the kernel-
weighted Kaplan-Meier estimator (Dabrowska, 1989; Kaplan and Meier, 1958). It is
defined as,

θ̂α(x) =
∑

a∈{0,1}
(2a− 1)

∫ ∞

0

1{t > t0}
dĤ1

α(t, a)

Ĝα(t, a)
,

using the kernel function αi(x) defined by the forest, and,

Ĥδ
α(t, a |x) =

n∑

i=1

K(x, xi) 1{T̃i ≤ t,∆i = δ, Ai = a}, for δ = 0, 1,

ĤK(t, a |x) =
n∑

i=1

K(x, xi) 1{T̃i > t,Ai = a},

Ĝα(t, a |x) =
∏

s≤t

(
1− Ĥ0

K(ds, a |x)

ĤK(s, a |x)

)
.

We note how the approach of this paper stands in contrast to the random forest
methods for survival analysis reviewed in Manuscript II, where splitting rules and
prediction focus on the entire survival curve rather than a low-dimensional causal
parameter.

8.4 Manuscript IV

Manuscript IV uses generalized random forests (Athey et al., 2019) to construct a
causal search algorithm as motivated by the problem presented in Chapter 1. The
central idea is to conduct a variable importance analysis that targets causal param-
eters (van der Laan, 2006) in survival and competing risks settings.

The manuscript discusses two causal parameters in a competing risks setting, where
interest is in the treatment effect on occurrence of a particular event type of interest.
The manuscript provides the causal assumptions needed for identifiability of both
parameters. The two parameters have different interpretations and are defined as
follows,

θ̄1 = P (T 1,1 ≤ t0)− P (T 1,0 ≤ t0), (8.1)
θ̄2 = P (T 1 ≤ t0,∆

1 = 1)− P (T 0 ≤ t0,∆
0 = 1), (8.2)
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We start with the latter, θ̄2. This is the treatment effect in the world without censor-
ing, with (T a,∆a) being the uncensored counterfactual event time and cause indicator
in the hypothetical scenario where treatment is set to A = a. Under causal assump-
tions, P (T a ≤ t0,∆

a = 1) corresponds to the treatment-specific cumulative incidence,
c.f. (5.8) in Section 5.1.2. As was briefly noted here, this also depends on the oc-
currence of competing events. This means that we may have θ̄2 6= 0, even if A has
no direct effect on the specific event type of interest. In contrast, the parameter θ̄1

is formulated under further hypothetical reasoning, and corresponds to a treatment
effect in a world where competing events have been eliminated. Specifically, the coun-
terfactual variable T 1,a is the latent time to the particular event of interest in the
hypothetical scenario where treatment is set to A = a and latent time-to-competing-
event times are considered right-censoring times. This means that we have θ̄1 = 0
whenever A has no direct effect on the specific event type of interest.

Identifiability of the parameters θ̄1, θ̄2 relies on a coarsening at random assumption,
conditional on the observed history. Let us consider this for θ̄1: The distribution of
the latent times to competing events only depends on the observed history, and not
on any unmeasured confounding.

In the manuscript we apply an inverse probability weighting scheme to target es-
timation of θ̄1 and θ̄2, respectively. We investigate the difference between the two
through simulation and in a data application. Particularly, we consider the problem
from Chapter 1, where we are interested in searching for drugs with an effect on
depression; here we do not wish to conclude effects, or lack of effect, of a treatment
if that effect was only due to an effect on a competing event. We implement a search
algorithm based on the R implementation of generalized random forests (Tibshirani
et al., 2018) combined with our weighting scheme. We use this to rank a list of drugs
according to their protecting effect against depression relapse.





Chapter 9.

Conclusions and Perspectives

In this thesis we have investigated statistical methodology for causal inference based
on non-randomized longitudinal data. In particular, we have proposed an extension
of the targeted minimum loss based estimation framework to continuous-time data,
and we have worked on generalized random forest methodology for survival analysis.

In Chapter 1 we motivated our research work with an applied problem from the
Danish registries. We used this problem to illustrate some complications arising
when analyzing longitudinal data. What have we gained so far?

• Manuscripts I–IV impose as few restrictions as possible on the data-generating
distribution. Rather than a priori having to specify interactions and functional
forms in a parametric model, we allow for the use of flexible machine learning
tools to learn directly from the data. Thus, model misspecification becomes
much less of an issue and our parameters have a sound interpretation, across a
very large class of data-generating mechanisms.

• Manuscript I, III and IV are concerned with target parameters defined as an
absolute risk (or survival) difference. All parameters are either defined in terms
of counterfactual variables or defined directly from the g-computation formula.
The parameters can, generally, be ascribed a causal interpretation under a
set of assumptions. The questions we are able to address are such as: What
is the expected difference in survival beyond one year had everyone received a
particular treatment compared to no one having received this treatment?

• Manuscript I presents the main theoretical contribution of the thesis, proposing
a methodology for targeted minimum loss based estimation of intervention-
specific mean outcomes based on a continuous-time counting process model.
Under regularity conditions, we demonstrate asymptotic linearity and efficiency
under minimal conditions on the statistical model. This lays the groundwork
for an improved approach for data-driven analysis of longitudinal data with
time-dependent confounding.

• Manuscript III outlines an adaptation of the generalized random forest metho-
dology to a survival analysis setting based on a kernel Kaplan-Meier estimator
that uses forest weights as kernels. The forest weights are adaptively estimated
in a targeted way to capture heterogeneity specifically in the absolute survival
difference.
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• Manuscript IV discusses two different causal parameters for the purpose of
ranking treatments according to their causal effect on a time-to-event outcome
in a competing risks setting. A weighting scheme is proposed to move between
different interpretations, and is further used to construct an algorithm based
on generalized random forests to search for causal treatment effects.

In the following, we discuss limitations and future perspectives. We start by dis-
cussing the two main topics of the thesis (TMLE and random forests) separately, and
then we move on to more general issues.

9.1 TMLE in continuous time

Manuscript I presents our ideas for generalizing TMLE to a continuous-time setting.
There are still a large number of aspects to consider. One important aspect that
requires further discussion is the final causal interpretation of the estimates. In the
manuscript, we go directly after the g-computation formula, which, obviously, can be
computed in any case. However, if no causal interpretation in the end can be ascribed
to the parameter, the method lacks motivation.

The current implementation used in the simulation study only deals with a very sim-
ple setting, and the simulation study itself is rather limited. We only consider data
simulated on a discrete (although fine) grid to enable comparison with the existing
LTMLE. Extensive evaluation on simulated and real data is necessary, before we can
apply the methodology to the problem from Chapter 1.

It is our plan to make a general software implementation. For nuisance parameter es-
timation in the continuous-time case, we can construct a library based on proportional
hazards models, Aalen models, or random forests, but a current practical limitation
is that software and methods for machine learning estimation of continuous-time in-
tensities are rather limited. In comparison, discrete-time intensity estimators can
be constructed based on binary regression, for which there exists a vast amount of
methods. To enhance the library for continuous-time intensities, we may consider in-
cluding also discrete-time intensity estimators using different discretizations (we can
even estimate an optimal grid size by cross-validation). In Manuscript I, we consider
highly adaptive lasso estimation, but the treatment here is mainly theoretical. Future
implementation of the highly adaptive lasso for continuous-time intensities should be
added as an option in the existing HAL software.

In further regard to the implementation, we note that we in this manuscript use a full
likelihood approach for initial estimation. This means that we also have to estimate
the conditional density of covariates given the history of the observed data. We are
working on ways to avoid this, just like LTMLE avoids it by exploiting the sequen-
tial regression representation of the target parameter. The fact is that our targeting
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algorithm does not depend on this conditional density, only through conditional ex-
pectations. In future work we will address in detail how to construct estimators for
the conditional expectations directly.

To deal with potential scalability issues it may be of interest to go into the online
learning methods for targeting learning, see van der Laan and Lendle (2014); Benkeser
et al. (2018) and also van der Laan and Rose (2018, Part V). In online learning we
have “old” and “new” data; we have performed estimation on the old data and we
want to know how inference changes when also taking into account the new data.
Instead of recomputing the estimator using all data (old and new), an online learner
uses the new data to update the estimator based on the old data only. For longitu-
dinal data (that may have a long time-horizon), we can collect “old” data up to a
certain time-point τ ′ ∈ (0, τ) and compute the estimator here. Then we can update
that estimator using “new” data after τ ′.

In Manuscript I, we argue that our methods work for general treatment regimes,
both static, dynamic and stochastic. Nonetheless, we do only consider very simple
treatment regimes (a static intervention on treatment decisions). For an example of a
relevant stochastic intervention, refer back to our data application from the Chapter
1 where we want to compare treatment with different drugs to one another. Con-
sider the case where one drug only comes on the market at a later point τ ′ ∈ (0, τ)
in calendar time. Now consider an intervention on the timing of treatment decisions
represented by the intensity λa: We may proceed as in Ryalen et al. (2018) and define
λa,∗ that corresponds to treatment monitoring being randomized. To ensure positivity
one could further specify only a non-zero monitoring for t ∈ (τ ′, τ). Such an interven-
tion might make our treatment effect estimates more relevant for the applied research.

In the manuscript we demonstrate that the efficient influence function admits a double
robust structure, and we argue for the use of data-adaptive algorithms for estimation
of the nuisance parameters. We remark upon a general issue in this regard. As pointed
out by Benkeser et al. (2017), and also studied by van der Laan (2014), doubly robust
inference is not guaranteed. Specifically, as argued by Benkeser et al. (2017), when
nuisance parameters are estimated based on data-adaptive methods, the resulting es-
timator for the target parameter may be biased and further not asymptotically linear
if the nuisance parameters are inconsistently estimated. This is in contrast to para-
metric models that preserve asymptotically linearity, even under misspecification.We
have not addressed this issue in our work.

9.2 Random forests for survival analysis

We plan to continue working with the generalized random forest methodology for
survival analysis, both with the implementation (implementing the splitting scheme
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of Manuscript III in the R package grf (Tibshirani et al., 2018)), and also the theory.
In our manuscripts, we do not delve deeply into the theoretical work by Athey et al.
(2019); Wager and Athey (2018) but focus on the applicability. It remains for us
to fully understand and exploit the asymptotic theory of Athey et al. (2019) as was
briefly summarized in Section 7.3.2.

It is generally not clear how we should identify effects on the occurrence of a partic-
ular event of interest in presence of competing risks: Either we target the cumulative
incidence or the cause-specific hazard. In Manuscript IV we propose a weighting ap-
proach to target parameters with different interpretations, where one is the treatment
effect in a hypothetical world with no competing risks. Recent work by Stensrud et al.
(2019) propose a different approach borrowing ideas from mediation analysis (Robins
and Greenland, 1992; Pearl, 2001): Positing that the treatment of interest can be
divided into two active parts, one with an effect on the outcome of interest and one
with an effect on the competing event, we can split the effect of the drug between a
direct effect on the outcome of interest and an indirect effect through the competing
event. This may be an alternative approach worth pursuing for handling competing
risks in the future, as it defines treatment effects on the event type of interest with-
out referring to a hypothetical scenario where the competing risk has been eliminated.

There is a general issue with the weighting approach used in Manuscript IV that re-
lies on consistent estimation of the censoring and the competing event distributions.
In the manuscript, we propose weights based on the Kaplan-Meier estimator which
is unbiased for applications with completely independent censoring. However, when
weights are needed for an effect in the hypothetical world with competing risks elim-
inated, a Kaplan-Meier estimator is likely biased. Furthermore, even when censoring
is independent of covariates, one can improve efficiency by incorporating covariate
information in the weight estimation. One idea for improvement would be to use a
separate random survival forest (Ishwaran et al., 2008) to estimate the inverse prob-
ability weights in a flexible way that uses all covariates. Such an approach would
require a thorough analysis of the asymptotic behavior of the proposed two-step ap-
proach. An alternative idea is the one-step approach of Manuscript III.

To further improve the generalized random forest estimators, perhaps the work of
Hubbard et al. (2000), or even a targeting step, may be relevant: The estimator
proposed by Hubbard et al. (2000) improves upon the inverse probability weighted
estimator by adding the sample mean of the estimated efficient influence curve. This
results in a double robust estimator. In a similar manner, one could incorporate a
targeting step for the nuisance parameters in the forest procedure; it would be in-
teresting to see if one could achieve double robustness gains by implementing such a
targeting step.
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Our work so far deals with random forests only for survival analysis with baseline
covariates and baseline treatment. It is very much of interest to incorporate time-
dependent covariates, both for the existing survival forests implementations as sum-
marized in Manuscript II and for the generalized random forests. Trees and forests
for time-varying covariates have been proposed in different variants (Bacchetti and
Segal, 1995; Xu and Adak, 2002; Bou-Hamad et al., 2011; Wallace, 2014; Fu and
Simonoff, 2016; Bertolet et al., 2016), but the applicability and interpretability in
settings with time-dependent confounding should be investigated further.

9.3 Other topics

Estimation of the entire survival curve. Throughout this thesis, we have focused on
estimation and efficiency theory for univariate parameters. The argument is that we
are only interested in a single effect measure for each treatment (as, for example, in
our variable importance analysis in Manuscript IV, and in general for our motivating
problem from Chapter 1). But what if we are, in fact, interested in the entire sur-
vival curve? If we simply apply our methods for each time-point encountered in the
dataset, the result is possibly a non-monotone survival function. However, recent ad-
vances in targeted learning have addressed exactly this issue and propose a so-called
one-step TMLE for estimation of the entire survival curve (see Cai and van der Laan
(2019), which is based on work by van der Laan and Gruber (2016)). In regard to the
random forest methodology, we propose in Manuscripts III and IV forest estimation
of the counterfactual survival and absolute risk difference at a single time-point t0; as
reviewed in Manuscript II, existing forest implementations target the entire survival
curve by using a log-rank splitting rule, but this is with no considerations on causal
interpretability.

Heterogeneous treatment effects. We have focused on average treatment effects. But
what if there is an effect only for some individuals and not others? In that case we
say that there is a heterogeneous effect, or an individualized effect. Various methods
based on recursive partitioning such as Athey and Imbens (2016); Seibold et al. (2019)
have been proposed for data-adaptively discovering groups of individuals that differ in
terms of their treatment effects. The work by Athey et al. (2019); Wager and Athey
(2018) target heterogeneous causal effects as well. It would further be interesting
to extend our methods to estimation of optimal dynamic treatment regimes (Zhang
et al., 2013, 2012; Hernán et al., 2006; Murphy, 2003; Bai et al., 2017), defined, for
instance, as the dynamic regime that minimizes the absolute risk under the dynamic
rule (see also van der Laan and Rose, 2018, Chapter 22).

Practical limitations. It should be noted that we have disregarded many practical
challenges. Some are general problems of causal inference. We assumed a given
causal direction in the observed variables determined by the time-order; we have



90 Chapter 9. Conclusions and Perspectives

not discussed, for instance, reverse causality. Another common problem in causal
inference arises from near positivity violations. This may be handled by considering
more stable dynamic interventions (van der Laan and Petersen, 2007). Moreover,
assumptions such as no unmeasured confounding pose a general problem for our
methods. Is it reasonable to think that we observe everything that predicts both
treatment and outcome? We need to “borrow” a lot of information between subjects
which requires a lot from the observed covariates. Instrumental variables (see, e.g.,
Angrist et al., 1996; Hernán and Robins, 2006) provide an approach to relax some
of these assumptions. For the problem discussed in Chapter 1 we could use calendar
time as an instrument, which would require that calendar time is only a predictor for
drug intake and not for diagnosis with depression. Generalized random forests are
implemented for instrumental variable analysis (see Athey et al., 2019, Section 7),
which must be adapted to right-censored data and competing risks. Additional to
these more general problems, there are many other practical aspects specifically for
the motivating problem in Chapter 1 that were not discussed here. For example, we
assume that drugs purchased were in fact taken; the actual treatment regime followed
remains unobserved. Moreover, when we compare various drugs, we should take into
account that different drugs work very differently; some drugs have an instant effect,
others a lagged effect. Some of these problems have been addressed by, e.g., Nielsen
et al. (2008, 2009).
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This paper studies the generalization of the targeted minimum
loss-based estimation (TMLE) framework to estimation of effects of
time-varying interventions in settings where both interventions, co-
variates and outcome can happen at subject-specific time-points on
an arbitrarily fine time-scale. TMLE is a general template for con-
structing asymptotically linear substitution estimators for smooth
low-dimensional parameters in infinite-dimensional models. Existing
longitudinal TMLE methods are developed for data where observa-
tions are made on a discrete time-grid.

We consider a continuous-time counting process model where in-
tensity measures track the monitoring of subjects, and focus on a
low-dimensional target parameter defined as the intervention-specific
mean outcome at the end of follow-up. To construct our TMLE algo-
rithm for the given statistical estimation problem we derive an expres-
sion for the efficient influence curve and represent the target param-
eter as a functional of intensities and conditional expectations. The
high-dimensional nuisance parameters of our model are estimated and
updated in an iterative manner according to separate targeting steps
for the involved intensities and conditional expectations.

The resulting estimator solves the efficient influence curve equa-
tion. We state a general efficiency theorem and describe a highly
adaptive lasso estimator for nuisance parameters that allows us to
establish asymptotic linearity and efficiency of our estimator under
minimal conditions on the underlying statistical model.

1. Introduction. We consider a continuous-time longitudinal data struc-
ture of n ∈ N independent and identically distributed observations of a
multivariate counting process on a bounded interval of time [0, τ ] with dis-
tribution P0 belonging to a semiparametric statistical model M. We are
interested in assessing the effect of interventions on an outcome of interest
under interventions that can happen at arbitrary points in time and are sub-

Keywords and phrases: targeted minimum loss-based estimation (TMLE), time-varying
confounding, continuous-time interventions, semiparametric model, efficient estimation,
causal inference.
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ject to time-dependent confounding. Our focus is on the construction of an
asymptotically efficient substitution estimator of intervention-specific mean
outcomes represented as a parameter Ψ : M→ R.

In all that follows, we use the words ‘intervention’ and ‘treatment’ synony-
mously. Recent developments in the field of causal inference have produced
numerous methods to deal with effects of time-varying treatments in pres-
ence of time-varying confounding (Robins, 1986, 1987, 1989a,b, 1992, 1998,
2000a,b; Bang and Robins, 2005; Robins, Orellana and Rotnitzky, 2008;
van der Laan, 2010a,b; Petersen et al., 2014). These methods deal with set-
tings with a fixed number of time-points at which subjects of a population
are all measured and can be intervened upon.

In the present work we consider a continuous-time model, utilizing a count-
ing process framework (Andersen et al., 1993) where intensity processes de-
fine the rate of a finite number of continuous monitoring times for each
subject conditional on their observed history, see Figure 1. Our approach is
closely related to the work of Lok (2008) and of Røysland (2011, 2012), who
propose continuous-time versions of structural nested models and marginal
structural models (Robins, 1989a,b, 1992, 1998, 2000b,a; Robins, Orellana
and Rotnitzky, 2008), respectively, using counting processes and martin-
gale theory. Our parameter Ψ(P0) is defined via the g-computation formula
(Robins, 1986) in terms of interventions on the product integral representing
the data-generating distribution.

To estimate Ψ(P0), we proceed on the basis of the targeted minimum
loss-based estimation (TMLE) framework (van der Laan and Rubin, 2006;
van der Laan and Rose, 2011, 2018). TMLE is a general methodology for
constructing regular and asymptotically linear substitution estimators for
smooth low-dimensional parameters in infinite-dimensional models, combin-
ing flexible ensemble learning and semiparametric efficiency theory in a two-
step procedure. The earliest of the TMLE developments for estimation of ef-
fects of time-varying treatments in longitudinal data structures (LTMLE) in-
volve full likelihood estimation and targeting (van der Laan, 2010a,b; Stitel-
man, De Gruttola and van der Laan, 2012) whereas the later (van der Laan
and Gruber, 2012; Petersen et al., 2014) are based on the techniques of
sequential regression originating from Bang and Robins (2005). All these
methods rely on a discrete time-scale.

To construct our continuous-time TMLE algorithm we derive an expres-
sion for the efficient influence curve. The efficient influence curve is the canon-
ical gradient of the functional Ψ and is a central component in the construc-
tion of locally efficient estimators of a target parameter in general (Bickel
et al., 1993). Semiparametric efficiency theory yields that, given a statistical
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Fig 1. Observations measured on a continuous scale, with five random time-points
Ti1, . . . , Ti5 between time 0 and time τ , referred to as monitoring times, where actual
changes for the given subject i are measured.

model and a target parameter, a regular and asymptotically linear estimator
is efficient if and only if its influence curve is equal to the efficient influence
curve. Our estimation procedure is based on a representation of the target
parameter in terms of intensities and conditional expectations for which we
need initial estimators and a targeting updating algorithm. We propose such
a targeting algorithm based on separate targeting steps for the intensities
and for the conditional expectations that are iterated until convergence. The
resulting estimator solves the efficient influence curve equation.

Our TMLE relies on initial estimators for the intensities and the con-
ditional expectations that constitute our nuisance parameters. The TMLE
framework allows us to take advantage of flexible and data-adaptive nuisance
parameter estimation through super learning (van der Laan, Polley and Hub-
bard, 2007). A super learner is based on a library of candidate estimators for
each nuisance parameter, and uses cross-validation to select the best combi-
nation of estimators. The general oracle inequality for cross-validation shows
that the super learner performs asymptotically as well as the best combina-
tion of estimators in the library (van der Laan and Dudoit, 2003; van der
Vaart, Dudoit and van der Laan, 2006). In particular, we discuss the highly
adaptive lasso (HAL) (van der Laan, 2017) for all likelihood components. If
this HAL estimator is included in the library of the super learner used for
initial estimation, we can show that our TMLE estimator is asymptotically
linear and efficient under minimal conditions on the modelM.

Our methods extend the existing longitudinal TMLE (LTMLE) to the
continuous-time case. While the theory and asymptotic performance of LTMLE
remain valid on any arbitrarily fine time-scale as long as it is discrete, we
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note the following. Sequential regression based LTMLE works by iterating
through a sequence of regressions across all time-points and has been a pop-
ular choice over the full likelihood-based LTMLE that requires modeling of
densities of potentially high-dimensional covariates. Our framework provides
a unified methodology that covers both the continuous and the discrete-time
case, where intensities of monitoring times are modeled separately and the
regression approach can be used to deal with high-dimensional covariates.
The substantial difference between LTMLE and our continuous-time TMLE
lies in the limitation of LTMLE that one needs sufficiently many events at
each time-point to fit the regressions. In contrast, our method can be applied
when there are monitoring times with few events, or just one event.

1.1. Motivating applications. The methods developed here are applica-
ble to a large variety of problems in pharmacoepidemiology. In this field
of research, hazard ratios are often used as measures of the association of
time-dependent exposure with time-to-event outcomes (see, e.g., Andersen
et al., 2013; Karim et al., 2016; Kessing et al., 2019). However, the interpreta-
tion of hazard ratios as the measure of causal treatment effects is hampered
for many reasons (Hernán, 2010; Martinussen, Vansteelandt and Andersen,
2018). Furthermore, the time-dependent Cox model cannot be used in pres-
ence of time-dependent confounding (Keiding, 1999). In many applications,
it is thus of great interest to formulate and estimate statistical parameters
under hypothetical treatment interventions that have a causal interpretation
under the right assumptions.

Specifically, it may be of interest to assess the effect of a (dynamic) drug
treatment regime on the τ -year risk of death. As an example, letNa(t) denote
the process counting visits to a medical doctor who can prescribe the drug.
Let the process A(t) be information on the type and dose level of the drug
prescribed at patient-specific times T a1 < T a2 < . . . < T aNa(τ) during the study
period [0, τ ]. Further, let N `(t) denote the process counting, e.g., hospital
admissions, and let L(t) be the information collected at, including the reason
for, the hospital admission. At visit T ak , the doctor considers the baseline
characteristics L0 of the patient, the treatment so far {(Na(t), A(t)) : t ∈
[0, T ak−1]}, and evaluates changes of covariates {(N `(t), L(t)) : t ∈ [0, T ak )} to
decide to continue or to change the treatment. We are interested in the result
of a hypothetical experiment that we would have liked to have conducted but
did not. In our example, the causal effect resulting from such a hypothetical
experiment could be the difference of the τ -year risk of death under different
(dynamic) treatment regimes.

A treatment regime is any a priori defined rule which can be applied at
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doctor visits during the study period to decide if the treatment should be
changed or continued. For example, the intervention could state that the
patient stays on an initially randomized drug throughout the entire study
period. A dynamic treatment regime is an example of an adaptive interven-
tion which allows the decision to depend on the current history of the patient.
The rule could be that whenever the measurement of a blood marker value
exceeds a certain threshold the dose level of the drug should be adapted. By
comparison of the effects of different regimes we may further learn optimal
strategies for treatment interventions based on patients’ medical past. In this
article, we focus on interventions of the treatment process keeping the doctor
visits where they naturally occur.

The data analysis is complicated by the fact that the observed data are
subject to time-dependent confounding: At any point in time, doctors make
treatment decisions for a reason, and past treatment may further influence
future values of covariates (biomarkers and diagnoses) and future treatment
changes. Additionally, a proportion of subjects in the population may be
lost to follow-up (censored) which can likewise depend on prior treatment
decisions and covariate values. Our estimation framework allows us to con-
trol for the history of all observed time-varying covariates and treatment
choices that we believe could be predictive of both treatment decisions and
censoring, and of the risk of death. Importantly, in the case where neither the
treatment decision nor the censoring mechanism depend on any unrecorded
health information, i.e., the observed history at any point in time is suffi-
cient to predict the next treatment decision and the censoring at that time,
the sequential randomization assumption holds, and the estimated effects
of hypothetical interventions based on the observed data can be interpreted
causally.

1.2. Organization of article. The article is organized as follows. We first
define the statistical estimation problem. Section 2 introduces the continuous-
time longitudinal setting and presents the model of a single subject along
with the likelihood. In particular, Section 2.2 defines interventions on the like-
lihood, Section 2.4 defines the target parameter, and Section 2.5 provides the
efficient influence function for the estimation problem. In Section 2.4.1, we
briefly review the assumptions under which the target parameter identifies
the causal effect of interest. Section 3 presents a representation of the target
parameter in terms of intensities and conditional expectations for which we
need to construct an estimation procedure. Section 4 states a general theorem
for asymptotically efficient substitution estimation. Section 5 introduces tar-
geted minimum loss-based estimation (TMLE) for the considered estimation
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problem. Section 6 describes initial estimation of the likelihood components
needed for the targeting updating steps and for estimation of the target pa-
rameter that fulfills the criteria of the efficiency theorem. Section 7 presents
a particular TMLE algorithm for estimation of the target parameter in the
continuous-time setting that involves separate targeting for conditional ex-
pectations and intensities, pooled over time. Section 8 reviews inference for
the TMLE estimator. Section 9 presents the results of a simulation study
as a demonstration of the methods and a proof-of-concept. Section 10 closes
with a discussion.

2. Formulation of the statistical estimation problem. We start
out defining the data structure, the statistical estimation problem and the
target parameter.

2.1. Notation and setup. We represent the subject-specific information
in terms of a counting process model (Andersen et al., 1993). Suppose n ∈ N
subjects of a population are followed in a bounded interval of time [0, τ ].
Let (Na, N `, N c, Nd) be a multivariate counting process generating random
times at which treatment, covariates, censoring status and survival status
may change. At jump times of Na we observe changes in a treatment regime
A(t) taking values in finite set A and at jump times of N ` we observe changes
of a covariate vector L(t) with values in a compact subset of Rd. The pro-
cesses N c and Nd generate changes in censoring status and death status,
respectively. Furthermore, L0 denotes a vector of baseline covariates mea-
sured at time 0, and Y a real valued outcome variable measured at time τ .
We assume that there are no events at time zero, and that realizations of
all processes are càdlàg functions on [0, τ ]. Let (Ft)t≥0 denote the filtration
generated by the history of the observed processes up to time t. Specifically,
we have F0 = σ(L0).

Let T a1 < T a2 < . . . < T aNa(τ) and T `1 < T `2 < . . . < T `
N`(τ)

be the random
times at which the treatment regime A and the covariate process L may
change, and let T c and T d be the right-censoring time and the survival time,
respectively. By definition, Na(t) and N `(t) are the subject-specific numbers
of treatment and covariate monitoring times in [0, t]. The actual end of follow-
up for a subject is min(T c, T d, τ) and the total number of unique event times
before time t is,

(1) Kt = #
{
{T a1 , . . . , T aNa(t)} ∪ {T `1 , . . . , T `N`(t)} ∪ {T c, T d}

}
.

For each subject, the number of change points of the multivariate counting
process on [0, τ ], K = Kτ , is finite.
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For x = a, `, d, c, we denote by Λx0 the cumulative intensity that charac-
terizes the compensator of Nx. We further denote by Mx = Nx − Λx0 the
corresponding martingale. Heuristically, we have that,

P (Nx(dt) = 1 | Ft−) = E[Nx(dt) | Ft−] = dΛx0(t | Ft−),

where the increment Nx(dt) is non-zero and equal to 1 if and only if there is
a jump of Nx in the infinitesimal interval [t, t + dt) (Andersen et al., 1993;
Gill, 1994).

We assume that the processes A and L only change at monitoring times.
The distribution of the treatment A(t) at any time t where Na(t) jumps is
denoted π0,t(a | Ft−) = P (A(t) = a | Ft−), a ∈ A, and the distribution of
covariates L(t) at any time t where N `(t) jumps is characterized by a con-
ditional density µ0,t(` | Ft−) with respect to a dominating measure νL. We
assume that A(t) = A(t−) and L(t) = L(t−) otherwise. Lastly, the probabil-
ity distribution of baseline covariates L0 is characterized by the conditional
density µ0,L0 with respect to a dominating measure νL0 .

2.1.1. Observations. For subject i, with i = 1, . . . , n independent sub-
jects, let {Ti,k}Ki,tk=1 denote the ordered set of unique event times up to time
t. The observed data for subject i in a bounded interval [0, t], t ≤ τ , is given
by,

Ōi(t) =
{(
L0,i, s,N

a
i (s), Ai(s), N

`
i (s), Li(s), N

d
i (s), N c

i (s)
)

: s ∈ {Ti,k}Ki,tk=1

}
.

(2)

We also use the shorthand notation Oi = Ōi(τ) and denote by O the space
where Oi takes its values. Let Pn denote the empirical distribution of the
data {Oi}ni=1. For a dataset with n observations, we use,

0 = t0 < t1 < · · · < tK̄n ,(3)

with K̄n =
∑n

i=1Ki, to denote the ordered sequence of unique times of
changes ∪ni=1{Ti,k}Kik=1.

The distribution P0 of the observed data O factorizes according to the
time-ordering, going from one infinitesimal time interval to the next with
dΛx0(t | Ft−) representing the conditional probability of an event of Nx in
[t, t+ dt), for x = a, `, d, c (Andersen et al., 1993, Section II.7). Accordingly,
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we express the density p0 of P0 as,

p0(O) =

µ0,L0(L0) R
t∈(0,τ ]

(
dΛ`0(t | Ft−)µ0,t(L(t) | Ft−)

)N`(dt)(
1− dΛ`0(t | Ft−)

)1−N`(dt)

R
t∈(0,τ ]

(
dΛa0(t | Ft−)π0,t(A(t) | Ft−)

)Na(dt)(
1− dΛa0(t | Ft−)

)1−Na(dt)

R
t∈(0,τ ]

(
dΛc0(t | Ft−)

)Nc(dt)(
1− dΛc0(t | Ft−)

)1−Nc(dt)

R
t∈(0,τ ]

(
dΛd0(t | Ft−)

)Nd(dt)(
1− dΛd0(t | Ft−)

)1−Nd(dt)
,

(4)

with P denoting the product integral (Gill and Johansen, 1990; Andersen
et al., 1993, Section II.6). A particularly nice aspect of the product-integral
representation is that it gives a unified presentation for the discrete and the
continuous time case.

2.2. Interventions. We are interested in estimating the effect of dynamic
treatment regimes (Robins, 2002; Murphy et al., 2001; Hernán et al., 2006;
van der Laan and Petersen, 2007) corresponding to hypothetical experi-
ments, under hypothetical interventions, where data had been generated
differently. An intervention defines a rule specifying treatment at each in-
tervention time point given the data so far. In our setting, we allow the
number and schedule of the intervention time-points to be subject-specific
and to occur in continuous time. We thus distinguish between interventions
that control the treatment, but not the schedule of the intervention time
points, and interventions that control both the treatment and the schedule
of the intervention time points. In addition to the treatment regimes of in-
terest, interventions always control the censoring mechanism, such that, in
the hypothetical experiment, all subjects are followed for the entire study
period [0, τ ].

The observed data are generated by the distribution P0 which factorizes
as displayed in (4). We define interventions directly on P0, by replacing a
subset of its components by an intervention-specific choice. To formulate
this, we decompose the observed data distribution P0 into two parts which
we refer to as the interventional part (G0) and the non-interventional part
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(Q0), respectively. We parametrize P0 accordingly,

dP0 = dPQ0,G0 = R
t∈[0,τ ]

dQ0,t dG0,t,

with dG0,t(o) and dQ0,t(o) denoting the conditional measures, given the ob-
served history, corresponding to the interventional part and the non-inter-
ventional part at time t, respectively. We use g0,t to denote the density of
G0,t and likewise q0,t to denote the density of Q0,t, both with respect to
appropriate dominating measures.

Now, an intervention involves replacing G0 by some G∗ encoding how
treatment and censoring is generated conditional on the available history
in the hypothetical experiment. In its generality, this is what is referred
to as a randomized plan in Gill and Robins (2001, Sections 6 and 7), or
a stochastic intervention (Robins, Hernán and Siebert, 2004; Dawid and
Didelez, 2010), but it includes static and dynamic interventions (Hernán
et al., 2006; Chakraborty and Moodie, 2013) plans as special cases as we ex-
plain below. Which components we include in G0, and thus intervene upon,
depends on what kinds of effects we are interested in and thus what scientific
question we wish to address. Consider the following options.

Definition 1 (Interventions on treatment assigned). An intervention
on treatment assigned involves replacing π0,t by some choice π∗t . Thus, the
interventional part includes the treatment and the censoring mechanism:

dG0,t(O) =
(
π0,t(A(t) | Ft−)

)Na(dt)(
dΛc0(t | Ft−)

)Nc(dt)

(
1− dΛc0(t | Ft−)

)1−Nc(dt)
.

(5)

The intervention prevents censoring and specifies the treatment regime π∗t ,
such that,

dG∗t (O) =
(
1−N c(t))π∗t (A(t) | Ft−).

The distribution of the intervention times is not intervened upon, i.e., Λa0 is
included in the non-interventional part.

When the interventional treatment distributions are degenerated and, for
example, set to a single value a∗ ∈ A throughout the entire study period,

π∗t (A(t) | Ft−) =
(
1{A(t) = a∗}

)Na(dt)
.(6)

we refer to π∗t as a static intervention since it deterministically sets A(t) = a∗

(at treatment monitoring times). A dynamic intervention, on the other hand,
defines π∗t that assigns A(t), still deterministically, to some value based on
the subject’s past.
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Definition 2 (Intervention on treatment and schedule). The interven-
tional part includes the treatment, the schedule of intervention times, and
the censoring mechanism:

dG0,t(O) =
(
dΛa0(t | Ft−)π0,t(A(t) | Ft−)

)Na(dt)(
1− dΛa0(t | Ft−)

)1−Na(dt)

(
dΛc0(t | Ft−)

)Nc(dt)(
1− dΛc0(t | Ft−)

)1−Nc(dt)
.

The intervention prevents censoring and specifies a treatment regime by π∗t
and Λa,∗0 , such that,

dG∗0,t(O) =
(
dΛa,∗0 (t | Ft−)π∗0,t(A(t) | Ft−)

)Na(dt)(
1− dΛa,∗0 (t | Ft−)

)1−Na(dt)
.

An intervention on the schedule of treatment decisions involves replacing
the intensity Λa0 by some choice Λa,∗0 . In the context of the applications
described in Section 1.1, this could be to decrease or increase the frequency
of doctor visits, for instance to ensure at least a monthly visit.

To focus our presentation, we continue with dG0,t as defined by (5) ac-
cording to Definition 1, considering interventions only on the treatment de-
cision πt and on the censoring mechanism Λc. Note that this defines the
non-interventional part as,

dQ0,t(O) =
(
dΛa0(t | Ft−)

)Na(dt)(
1− dΛa0(t | Ft−)

)1−Na(dt)

(
dΛ`0(t | Ft−)µ0,t(L(t) | Ft−)

)N`(dt)(
1− dΛ`0(t | Ft−)

)1−N`(dt)

(
dΛd0(t | Ft−)

)Nd(dt)(
1− dΛd0(t | Ft−)

)1−Nd(dt)
,

for t > 0.

2.3. Statistical model. Let Q denote the parameter set for the non-inter-
ventional part Q0 and G the parameter set for the interventional part G0.
We consider a statistical modelM as follows:

M =

{
P : dP = dPQ,G = R

t∈[0,τ ]

dQtdGt, G ∈ G, Q ∈ Q
}
.(7)

In Section 6 we consider Q,G to be contained in the set of càdlàg functions
with bounded variation norm. For now we leave Q,G unspecified.

2.4. Target parameter. Suppose an intervention G∗ is given. We define
the post-interventional distribution for any P ∈ M by replacing G by G∗

in PQ,G. The resulting PQ,G∗ is commonly referred to as the g-computation
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formula (Robins, 1986; Gill and Robins, 2001). We will also denote this
by PG

∗ . Based on the data O = Ō(τ), our overall aim is to estimate the
expectation of the outcome of interest Y under the g-computation formula.
That is, we are interested in the parameter ΨG∗ : M→ R given by,

ΨG∗(P ) = EPG∗
[
Y
]

=

∫

O
y R
t∈[0,τ ]

dQt(o) dG
∗
t (o),(8)

where the notation EPG∗ refers to the expectation operator with respect to
the post-interventional measure PG∗ = PQ,G∗ .

In this paper we focus on an all-cause mortality outcome, Y = Nd(τ), so
that (8) is the expected risk of dying by time τ under the distribution defined
by the g-computation formula. We emphasize, however, that in principle Y
can be defined as any mapping of the observed past Fτ as long as Y takes
value in a compact set. We denote by ψ0 := ΨG∗(P0), the true value of
the target parameter. The target parameter is identifiable from the observed
data under the following positivity assumption.

Assumption 1 (Positivity). We assume absolute continuity of dḠ∗τ =

Ps<τ dG
∗
s with respect to dḠτ = Ps<τ dGs, i.e., dḠ

∗
τ � dḠτ . This implies

existence of the Radom-Nikodym derivative dḠ∗τ/dḠ0,τ .

The g-computation formula arising from replacing the observed G0 by G∗

and the resulting target parameter in (8) are well-defined statistical quanti-
ties by Assumption 1.

2.4.1. Causal parameter and causal interpretability. Causal interpretabil-
ity of the g-computation formula in the setting of fully discrete data is pro-
vided by Robins’ work (Robins, 1986, 1987, 1989a) under assumptions of
sequential randomization (SRA) and positivity (for a nice review, see also,
Hernan and Robins, 2020, Part III), and is further generalized by Gill and
Robins (2001) to continuously varying covariates and treatments. Our setting
differs from their considered setting in that subjects are measured at differ-
ent random times that take place continuously in time: Our g-computation
formula is represented as a product integral over times where something actu-
ally happens, whereas the g-computation formula of Gill and Robins (2001)
consists of a finite product over times of a discrete grid. Nevertheless, note
that the counting processes only have finitely many changes in the compact
time interval [0, τ ], and that interventions on the treatment decision are in
fact only applied at a finite number of (random) times. Thus, the ‘tradi-
tional’ causal assumptions as stated by Gill and Robins (2001), applied now
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at the random rather than at fixed times, ensure the causal interpretation of
the g-computation formula (Gill and Robins, 2001, Theorem 2). We consider
here the SRA assumption for the treatment mechanism in our setting. A
more detailed discussion can be found in Gill and Robins (2001).

Particularly, let OG∗ be the counterfactual random variable represent-
ing the data that would have been observed, had G∗ been adhered to from
the beginning of follow-up rather than the factual G. The causal parame-
ter of interest is E[Y G∗ ], the mean causal effect on Y of imposing the in-
tervention G∗. For our setting with random treatment monitoring times,
T a1 < T a2 < . . . < T aNa(τ), we formulate the sequential randomization as-
sumption as follows:

Assumption 2 (SRA). Y G∗ ⊥⊥ A(T ak ) | Ō(T ak−), for all k = 1, . . . , Na(τ).

Under Assumptions 1 and Assumption 2, PG∗ identifies the distribution of
OG

∗ and our target parameter the expectation of the counterfactual outcome,
i.e., ΨG∗(P ) = E[Y G∗ ].

2.5. Canonical gradient. The canonical gradient of the pathwise deriva-
tive of the target parameter characterizes the information bound of the esti-
mation problem relative to the statistical modelM (Bickel et al., 1993). It is
also known as the efficient influence curve. The following theorem provides a
representation of the canonical gradient for our statistical modelM and tar-
get parameter ΨG∗ : M→ R. We will use this representation to construct
an asymptotically efficient estimator.

We derive our expression for the canonical gradient as the projection of the
influence curve of an inverse probability of action weighted (IPAW) estimator
in the submodel of M that takes the interventional part G as known onto
the tangent space TQ of the non-interventional part Q (van der Laan and
Robins, 2003). The derivations can be found in Appendix A.

Theorem 1 (Canonical gradient). The canonical gradient D∗(P ) at P
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inM can be represented as follows,

D∗(P ) = EPG∗ [Y | F0]−ΨG∗(P )

+

∫ τ

0 R
s<t

dG∗s
dGs

(
EPG∗ [Y |L(t), N `(t),Ft−]− EPG∗ [Y |N `(t),Ft−]

)
N `(dt)

+

∫ τ

0 R
s<t

dG∗s
dGs

(
EPG∗ [Y |∆N `(t) = 1,Ft−]− EPG∗ [Y |∆N `(t) = 0,Ft−]

)
M `(dt)

+

∫ τ

0 R
s<t

dG∗s
dGs

(
EPG∗ [Y |∆Na(t) = 1,Ft−]− EPG∗ [Y |∆Na(t) = 0,Ft−]

)
Ma(dt)

+

∫ τ

0 R
s<t

dG∗s
dGs

(
1− EPG∗ [Y |Nd(t) = 0,Ft−]

)
Md(dt).

We here follow notation of Andersen et al. (1993) and use ∆ to denote the
difference operator defined by ∆X = X −X− for a càdlàg process X.

3. Representation of the target parameter by iterated expecta-
tions. Estimation of the target parameter requires evaluation of a large
integral. We here present a parametrization of the target parameter in terms
of a nested sequence of conditional expectations which is central for our es-
timation procedure. As for the discrete-time analogue (Bang and Robins,
2005; Robins, 2000b), the parametrization is defined backwards through
time, starting at the end of the study period τ . The main difference to the
discrete-time representation is that the time-points where events happen are
random.

The notation that we present in this section will be used throughout the
remainder of the paper. For P ∈M, a fixed regimeG∗ according to Definition
1 and t ∈ [0, τ ], we denote by:

ZG
∗

t := EPG∗
[
Y
∣∣L(t), N `(t), Na(t), Nd(t),Ft−

]
=

∫
Y R

s≥t
dG∗s R

s>t

dQs.

(9)

Note that the conditioning set of ZG∗t excludes the interventional part at
time t. We further denote the conditional expectation where L(t) has been
integrated out by:

ZG
∗

t,L(t) := EPG∗
[
Y
∣∣N `(t), Na(t), Nd(t),Ft−

]

= EPG∗
[
ZG

∗
t

∣∣N `(t), Na(t), Nd(t),Ft−
]

=

∫ (∫
Y R

s≥t
dG∗s R

s>t

dQs

)
dµ0,t(L(t) | Ft−).

(10)



14 RYTGAARD, H. C., GERDS, T. A., AND VAN DER LAAN, M. J.

The notation using the subscript ‘L(t)’ in ZG∗t,L(t) to refer to L(t) being inte-
grated out follows the notation of van der Laan and Gruber (2012).

Lemma 1. Define, for any P ∈M:

Z = Z(P ) :=
(
ZG

∗
t , ZG

∗
t,L(t),Λ

`(t),Λa(t),Λd(t) : t ∈ [0, τ ]
)
.(11)

Particularly, let Z0 = Z(P0). The target parameter ΨG∗ defined in (8) can
be represented as a functional of P only through Z.

Proof. See Appendix A.6.

In line with the sequential regression representation of Bang and Robins
(2005), we may thus utilize that Z rather than P itself can be used to
evaluate the target parameter. Our aim is to estimate Z in an optimal way.
The canonical gradient presented in Theorem 1 can be represented as a
functional of Z and G; this will guide the construction of estimators for Z
as a result of our efficiency theorem in Section 4.

4. Efficiency theorem for substitution estimation. In the previous
section we have demonstrated that the target parameter can be represented
as a functional of P ∈ M through Z. We define a substitution estimator
of the target parameter ψ0 = Ψ(P0) based on an estimator Ẑn for Z0. The
following theorem states the general conditions for asymptotic efficiency of
such substitution estimation of ψ0. The proof is short and relies on an analysis
of the separate terms of a von Mises expansion of the target parameter. In
Section 6.1 we state sufficient smoothness conditions on M and describe
initial estimators that meet the regularity conditions. Throughout we use
the notation Pf =

∫
fdP and ‖f‖P =

√
Pf2.

We show in Appendix A.5 that the difference ΨG∗(P ) − ΨG∗(P0) admits
the following presentation,

ΨG∗(P )−ΨG∗(P0) = −P0D
∗(P ) +R2(P, P0), P ∈M,(12)

whereD∗(P ) is the canonical gradient and the second-order remainderR2(P, P0)
is given by,

R2(P, P0) = ΨG∗(P )−ΨG∗(P0) + P0D
∗(P )

=

∫ τ

0

∫

O
Y

1

ḡt

(
ḡ0,t − ḡt

)
R
s≤τ

dG∗s R
s<t

dQ0,s

(
dQ0,t − dQt

)
R
s>t

dQs.
(13)
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Here we have used the notation,

ḡt = R
s<t

gs, and, ḡ0,t = R
s<t

g0,s,

with gt being the density of the interventional part Gt as defined in Section
2.2. Note that an estimator P̂ ∗n is characterized by (Z∗n, Ĝn).

Theorem 2. Consider an estimator P̂ ∗n for P0, such that

PnD
∗(P̂ ∗n) = oP (n−1/2).(14)

If the following conditions 1 and 2 hold true,

Condition 1) R2(P̂ ∗n , P0) = oP (n−1/2),

Condition 2) D∗(P̂ ∗n) belongs to a Donsker class, and P0

(
D∗(P̂ ∗n)−D∗(P0)

)2
converges to zero in probability,

then,

ΨG∗(P ∗n)−ΨG∗(P0) = PnD
∗(P0) + oP (n−1/2),

that is, ΨG∗(P̂ ∗n) is asymptotically linear at P0 with influence curve D∗(P0)
and is thus asymptotically efficient among all locally regular estimators at
P0.

Proof. The proof of the theorem relies on the expansion (12). Applying
the representation at P̂ ∗n and using Equation (14) from the theorem now
yields,

ΨG∗(P̂ ∗n)−ΨG∗(P0) = (Pn − P0)D∗(P̂ ∗n) +R2(P̂ ∗n , P0) + oP (n−1/2).

It is now a result of empirical process theory (see, e.g., van der Vaart, 2000,
Lemma 19.24) that condition 2 implies,

(Pn − P0)
(
D∗(P̂ ∗n)−D∗(P0)

)
= oP (n−1/2),

which finishes the proof.

If we are able to construct estimators P̂ ∗n that meet the conditions of
Theorem 2 and solve Equation (14), the so-called efficient influence curve
equation, then the resulting substitution estimator ΨG∗(P̂ ∗n) is asymptoti-
cally linear and efficient. In the following, we comment on conditions 1 and
2.
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Remark 1 (Second-order remainder). The second-order remainder ex-
pressed in (13) displays a double robustness structure (van der Laan and
Robins, 2003) in the sense that,

R2(P, P0) = 0 if ḡt = ḡ0,t or qt = q0,t.

When ḡt is bounded away from zero, the product structure of the remainder
R2(P, P0) yields, by use of the Cauchy-Schwartz inequality, an upper bound
in terms of the L2(P0)-norm of (ḡ0,t− ḡt) and the L2(P0)-norm of (q0,t−qt),

∫ τ

0
‖ḡ0,t − ḡt‖P0 ‖q0,t − qt‖P0 dt.

The required convergence rate R2(P̂ ∗n , P0) = oP (n−1/2) will for example be
achieved if we estimate both parts at a rate faster than oP (n−1/4). In Sec-
tion 6.1 we apply recent results on highly adaptive lasso (HAL) estimation
(van der Laan, 2017) to show that such estimators do exist.

Remark 2 (Donsker class conditions). In Section 6.1 we give conditions
under which D∗(P̂ ∗n) ∈ F where F = {D∗(P ) : P} is a Donsker class. The
key is that there is a finite number of monitoring times per subject, so that
any subject contributes with finitely many terms to the likelihood. Then the
canonical gradient can be written as a well-behaved mapping of the nuisance
parameters such that Donsker properties of the former will rely on Donsker
properties of the latter. An important Donsker class is the class of càdlàg
functions with finite variation.

Theorem 2 tells us what we need for efficient estimation of our target
parameter. The next sections deal with construction of such an estimator.

5. Targeted minimum loss-based estimation (TMLE). We present
a TMLE procedure for construction of an estimator that will satisfy the con-
ditions of Theorem 2. In summary, this consists of, first, constructing initial
estimators for the components of Z and G, and, second, setting up an al-
gorithm for performing an update of the collection of initial estimators that
guarantees that it solves the efficient influence curve equation (14).

We also refer to the second step as the targeting step or the targeting
algorithm. It involves for each component of Z a choice of a loss function
and a corresponding path indexed by ε ∈ R through the initial estimator
of that component such that the generated score at ε = 0 gives a desired
part of the canonical gradient. The general targeting algorithm involves it-
erative updating steps that are repeated until convergence, at which point
the efficient influence curve equation (14) is solved.
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A certain amount of extra notation is needed. For t ∈ (0, τ ], we define the
“clever weights”,

hG
∗

t = R
s<t

dG∗s
dGs

,(15)

that only depends on the G-part of the likelihood, and the “clever covariates”,

h`t = EPG∗ [Y |∆N `(t) = 1,Ft−]− EPG∗ [Y |∆N `(t) = 0,Ft−],(16)
hat = EPG∗ [Y |∆Na(t) = 1,Ft−]− EPG∗ [Y |∆Na(t) = 0,Ft−],(17)

hdt = 1− EPG∗ [Y |Nd(t) = 0,Ft−],(18)

that only depend on Z. This now allows us to write the canonical gradient
as,

D∗(P ) = ZG
∗

t=0 −ΨG∗(P )

+

∫ τ

0
hG
∗

t

(
ZG

∗
t − ZG

∗
t,L(t)

)
dN `(t) +

∑

x∈{a,`,d}

∫ τ

0
hG
∗

t hxt dM
x(t).(19)

In the following, we define loss functions and one-dimensional parametric
submodels for each component of Z such that the scores are equal to the
respective terms of (19). These will be used to construct our targeting algo-
rithm in Section 7.

5.1. Loss function and submodel for ZG∗t,L(t). We need a loss function and
a submodel for ZG∗t,L(t) such that the score of the submodel equals the first
term of (19). This term consists of an integral over a difference between ZG∗t
and ZG∗t,L(t). Thus, we will define our loss function and submodel for ZG∗t,L(t)

for a given ZG∗t . First, we define the time-point specific logarithmic loss for
ZG

∗
t,L(t), indexed by ZG∗t ,

Lt,ZG∗t
(
ZG

∗
t,L(t)

)
= ZG

∗
t logZG

∗
t,L(t) +

(
1− ZG∗t

)
log
(
1− ZG∗t,L(t)

)
.

With this loss function, the parametric submodel,

logitZG
∗

t,L(t)(ε) = logitZG
∗

t,L(t) + εhG
∗

t ,

has the desired property that,

d

dε
Lt,ZG∗t

(
ZG

∗
t,L(t)(ε)

) ∣∣∣
ε=0

= hG
∗

t

(
ZG

∗
t − ZG

∗
t,L(t)

)
.
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Correspondingly, we define the integrated loss for Z̄G
∗

τ,L(τ) = (ZG
∗

s,L(s) : 0 ≤
s ≤ τ), indexed by Z̄G

∗
τ = (ZG

∗
s : 0 ≤ s ≤ τ),

L̄
Z̄
G∗
τ

(
Z̄
G∗
τ,L(τ)(ε)

)
=

∫ τ

0
Lt,ZG∗t

(
ZG

∗
t,L(t)(ε)

)
dN `(t),

for which we have that,

d

dε
L̄
Z̄
G∗
τ

(
Z̄
G∗
τ,L(τ)(ε)

) ∣∣∣
ε=0

=

∫ τ

0

d

dε
Lt,ZG∗t

(
ZG

∗
t,L(t)(ε)

) ∣∣∣
ε=0

dN `(t)

=

∫ τ

0
hG
∗

t

(
ZG

∗
t − ZG

∗
t,L(t)

)
dN `(t),

which, as we wanted, equals the first term of the part of the canonical gra-
dient expressed in (19).

5.2. Loss function and submodel for the intensities Λx(t). We consider
the case that Λx is absolutely continuous and denote by λx the intensity rate
such that Λx(t | Ft−) =

∫ t
0 λ

x(s | Fs−)ds. For each x = a, `, d, we specify a
proportional hazard type submodel for Λx with time-dependent covariates
as follows,

dΛx(t; ε) = dΛx(t) exp(εhG
∗

t hxt ),(20)

together with the partial log-likelihood loss function,

Lx(Λx) = log

(

R
t∈[0,τ ]

(
λx(t)

)Nx(dt)(
1− dΛx(t)

)1−Nx(dt)
)

=

∫ τ

0
log λx(t) dNx(t)−

∫ τ

0
dΛx(t).

For this pair of submodel and loss function we have the desired property
that,

d

dε
Lx(Λx(· ; ε))

∣∣∣
ε=0

=
d

dε

(∫ τ

0

(
log λx(t) + εhG

∗
t hxt

)
dNx(t)−

∫ τ

0
exp

(
εhG

∗
t hxt

)
dΛx(t)

)∣∣∣∣
ε=0

=

∫ τ

0
hG
∗

t hxt dN
x(t)−

∫ τ

0
hG
∗

t hxt dΛx(t)

=

∫ τ

0
hG
∗

t hxt
(
dNx(t)− dΛx(t)

)
,

is equal to the corresponding terms of the canonical gradient as expressed in
(19).
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6. Initial estimation of nuisance parameters. To carry out our tar-
geting algorithm, we need initial estimators for the following time-sequence
of conditional densities, conditional expectations and intensities,

G =
(
πt,Λ

c(t) : t ∈ [0, τ ]
)
, and,

Z =
(
ZG

∗
t , ZG

∗
t,L(t),Λ

`(t),Λa(t),Λd(t) : t ∈ [0, τ ]
)
.

(21)

In this section, we describe HAL estimation for each of the quantities dis-
played in (21). In the present work the aim of this is mainly theoretical; we
can prove formal convergence results for the HAL estimator. In Appendix C
we provide some preliminaries on implementing our HAL estimators.

Although we focus on describing the HAL estimator, we note that in order
to optimize the estimation of the quantities in (21) we would use a super
learner that selects the best weighted combination of a prespecified library
of candidate algorithms by minimizing the cross-validated empirical risk. See
also Table 3 in Appendix C. The super learner performs asymptotically no
worse than any algorithm included in its library, a property known as the
oracle inequality (van der Laan and Dudoit, 2003; van der Vaart, Dudoit
and van der Laan, 2006). Accordingly, by proving the convergence results
for the HAL estimator we also prove it for a super learner that includes the
HAL estimator in its library.

6.1. Highly adaptive lasso (HAL). In the remaining part of this section
we describe HAL estimation for the quantities in (21) and state a set of con-
ditions on our modelM that are sufficient to establish asymptotic efficiency
of our TMLE estimator. Appendix B provides supplementary details. The
key is to restrict attention to the Donsker class of functions that are càdlàg
(right-continuous with left limits) with finite variation norm (van der Laan,
2017). We define the Banach space Dk([0, η]) of k-variate càdlàg functions
on [0, η] ⊂ Rk, η ∈ Rk+, and the variation norm of f ∈ Dk([0, η]) as (Gill,
van der Laan and Wellner, 1995),

‖f‖v = |f(0)|+
∑

s∈P({1,...,k})

∫

(0s,ηs]
|f(dxs, 0−s)|,

where P({1, . . . , k}) denotes the power set of {1, . . . , k}, xs = (xj : j ∈ s),
x−s = (xj : j 6∈ s) and xs → f(xs, 0−s) is the s-specific section of f that
sets the coordinates in the complement of the index set s equal to zero. Then
we let,

Jv,M =
{
f ∈ Dk([0, η]) : ‖f‖v ≤M

}
,
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denote the subset of càdlàg functions with variation norm bounded by a
constant M <∞. Any f ∈ Jv,M admits an integral representation in terms
of the measures generated by its s-specific sections (Gill, van der Laan and
Wellner, 1995) which is used to define a HAL estimator.

6.2. Fixed-dimensional representation of the observed data. It is essential
to our analysis that we at any point in time t can represent the observed
data Ō(t) in terms of a finite-dimensional vector. For this purpose, we define,

Ōk =
{(
L0, s, dN

a(s), A(s), dN `(s), L(s), dNd(s), dN c(s)
)

: s ∈ {Tj}kj=0

}
,

where {Tk}Kk=1 denotes the ordered set of unique event times of one subject.
Then Ōk ∈ Rkp

′+d0 where p′ ∈ N denotes the dimension of an observation at
a monitoring time Tk, i.e.,

(
Tk, dN

a(Tk), A(Tk), dN
`(Tk), L(Tk), dN

d(Tk), dN
c(Tk)

)
∈ Rp

′
,

and d0 ∈ N is the dimension of L0. Following the notation from the previous
Section 6.1, where xs = (xj : j ∈ s) denotes the s-specific coordinates of a
vector x, we use Ōk,s to denote the s-specific coordinates of Ōk.

6.3. Estimation of conditional expectations. Our targeting algorithm re-
quires initial estimators for the time-sequence of conditional expectations,
ZG

∗
t , ZG∗t,L(t). We will proceed by estimating the conditional density µt di-

rectly. Then we construct substitution estimators for ZG∗t and ZG∗t,L(t) based
on estimators for µt,Λ`(t),Λa(t),Λd(t), by evaluating the g-computation for-
mula.

6.4. Parametrizations and loss functions. We parametrize the conditional
density µt of L(t) in terms of a function fL(t, Ō(t)), the conditional distri-
bution πt of A(t) in terms of fA(t, Ō(t)) and the intensities Λx(t) in terms
of fx(t, Ō(t)), x = `, a, c, d.

In the following, x runs through {L,A, c, a, `, d}. Let (O, fx) 7→ Lx(fx)(O)
be the log-likelihood loss. We denote by fx0 = argminfxP0Lx(fx), the min-
imizer of the true risk. We define the sum loss function O 7→ LQ(fQ)(O),
where fQ = (fx : x = L, `, a, d), for the Q-factor of the likelihood, and,
equivalently, the sum loss function O 7→ LG(fG)(O), where fG = (fx : x =
A, c), for the G-factor of the likelihood.

Assumption 3 (Bounded loss functions). We assume that the loss func-
tions are uniformly bounded in the sense that supfx,O Lx(fx)(O) < ∞ a.s.
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In addition, we assume that,

sup
fG

‖LG(fG)− LG(fG0 )‖2P0

dG(fG, fG0 )
<∞,

sup
fQ

‖LQ(fQ)− LQ(fQ0 )‖2P0

dQ(fQ, fQ0 )
<∞

(22)

where d(f, f0) := P0L(f)−P0L(f0) denotes the loss-based dissimilarity mea-
sure.

Assumption 3 guarantees the oracle properties of the cross-validation se-
lector (van der Laan and Dudoit, 2003; van der Vaart, Dudoit and van der
Laan, 2006). We note that (22) holds for most common loss functions.

The next assumption is central: It will allow us to define HAL estimators
and it provides sufficient conditions for condition 2 of Theorem 2 to hold
(see Lemma 2). To formulate the assumption, we recall that, for any subject,
Ō(t) only changes at the observed event times T1, . . . , TKt . Accordingly, we
may now further parametrize fx in terms of a fixed-dimensional real-valued
function (t, Ōk) 7→ fxk (t, Ōk),

fx(t, Ō(t)) =
K∑

k=0

1{Kt = k} fxk (t, Ōk).(23)

Assumption 4 is formulated for the fixed-dimensional fxk , but translates to
fx because the sum in (23) is finite.

Assumption 4 (Càdlàg and finite variation). We assume that fxk ∈
Jv,Mx for all k ≤ K and all x = L,A, c, a, `, d, that is, fxk is càdlàg and
has variation norm bounded by a constant Mx <∞.

As detailed in Appendix B.2, the representation of a càdlàg function with
finite variation norm becomes a finite sum over indicator basis functions
when the function is defined on a discrete support. The HAL estimator for
fx is defined as the minimizer of the empirical risk over all discrete measures
with a particular support defined by the actual observations {Oi}ni=1.

6.5. HAL representation and HAL estimation. To define the HAL esti-
mator for fx, consider the representation for fxk ∈ Jv,Mx on the support
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defined by the n observations {Oi}ni=1 as follows:

fxk,β(t, Ōk) =

K̄n∑

r=0

1{tr ≤ t}
(
βxr,k,0 +

∑

s∈P({1,...,kp′+d0})

∑

j∈Ik,s
φxk,s,j(Ōk)β

x
r,k,s,j

)
.

(24)

In this representation, Ik,s is used to denote the index set for the unique
observed values of Ōk,s. The time-points t0 < · · · < tK̄n are the elements of
the ordered unique sequence of all observed times of changes from Display
(3). Further, βr,k,s,j is the measure that fxk,β assigns to cube j for tr ≤ t and
φk,s,j(Ōk) = 1{mk,s,j ≤ Ōk,s} is the indicator that the support point mk,s,j

is smaller than or equal to Ōk,s.
Corresponding to the representation fxk,β for fxk in (24) we have, by (23),

an equivalent representation fxβ for fx. The variation norm of the finite sum
representation (24) equals the sum of the absolute values of the coefficients.
A HAL estimator for each fx, x = L,A, `, a, d, c, can now be defined as the
solution to the following minimization problem:

f̂xn = argmin
β

PnLx(fxβ ) s.t. ‖β‖1 =
∑

r,k,s,j

|βxr,k,s,j | ≤Mx,(25)

corresponding to L1-penalized (Lasso) regression (Tibshirani, 1996) with the
indicator functions φxk,s,j(Ōk) as covariates and βxr,k,s,j as corresponding co-
efficients. For the log-likelihood loss and the squared error loss functions,
standard software can be used to find the estimators (25), including estima-
tion of Mx by cross-validation. See Table 4 in Appendix C.

6.6. Theoretical results for HAL. We collect here the theoretical results
for HAL estimation. These results rely on Assumptions 3 and 4.

Lemma 2. The canonical gradient can be written as D∗(P ) = D∗(fx :
x = L,A, c, a, `, d). If dḠ∗t /dḠt is uniformly bounded for all t, then

{
D∗(fx : x = L,A, c, a, `, d)

}

is a Donsker class.

Proof. See Appendix B.3.

Theorem 3. For the given loss functions O 7→ Lx(fx)(O), for x = Q,G,
we have that, under Assumptions 3 and 4,

dG(f̂Gn , f
G
0 ) = P0LG(f̂Gn )− P0LG(fG0 ) = oP (n−1/2),

dQ(f̂Qn , f
Q
0 ) = P0LQ(f̂Qn )− P0LQ(fQ0 ) = oP (n−1/2),
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from which it follows that ‖f̂Gn − fG0 ‖P0 = oP (n−1/4) and ‖f̂Qn − fQ0 ‖P0 =
oP (n−1/4).

Proof. See Appendix B.4.

In summary, Theorem 3 combined with Remark 1 implies that using HAL
for initial estimation fulfills condition 1 of Theorem 2. Moreover, under our
nonparametric smoothness assumptions (Assumption 4), condition 2 of The-
orem 2 holds by Lemma 2.

7. Targeting algorithm. Based on the loss functions and submodels
defined in Sections 5.1–5.2, we here present a targeting algorithm for updat-
ing the collection of initial estimators for Z0 for a given estimator Ĝn for G0

on [0, τ ]. We index the initial estimator for Z by k = 0 as follows,

Ẑk=0
n =

(
ẐG

∗
t,k=0, Ẑ

G∗
t,L(t),k=0, Λ̂

`
k=0(t), Λ̂ak=0(t), Λ̂dk=0(t)

)
t∈[0,τ ]

.

Our targeting algorithm involves separate updating steps for current estima-
tors ẐG∗t,L(t),k and Λ̂xk(t), x = a, `, d, from k to k + 1, k = 0, 1, . . ., carried out
simultaneously for all time-points. Our algorithm is overall centered around
the representation of the target parameter by iterated expectations that we
introduced in Section 3, with the separate updating steps ensuring that we
solve the individual terms of the efficient influence curve equation. To de-
scribe the algorithm, recall that, as introduced in Display (3),

0 = t0 < t1 < · · · < tK̄n ,

denotes the ordered sequence of unique times of changes ∪ni=1{Ti,k}Kik=1 across
all subjects of the dataset. Evaluated at time tr, the conditional expectations
ZG

∗
t and ZG∗t,L(t) from Section 3 can be written:

ZG
∗

tr = EPG∗ [Y |L(tr), N
`(tr), N

a(tr), N
d(tr),Ftr−1 ],(26)

ZG
∗

tr,L(tr)
= EPG∗ [Y |N `(tr), N

a(tr), N
d(tr),Ftr−1 ].(27)

Further, at each tr, we need to estimate the sequence of conditional expec-
tations,

EPG∗ [Y |Na(tr), N
d(tr),Ftr−1 ],(28)

EPG∗ [Y |Nd(tr),Ftr−1 ],(29)
EPG∗ [Y | Ftr−1 ].(30)
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Based on current estimators Ẑk
n, we construct estimators for (26)–(30) for

all r = 1, . . . , K̄n, which further yield estimators for ĥ`tr,k, ĥ
a
tr,k

, ĥdtr,k for the
clever covariates h`tr , h

a
tr , h

d
tr . A more detailed description of this procedure is

given in Appendix C.2. Estimators ĥG∗tr , r = 1, . . . , K̄n, for the clever weights
are obtained by substituting the estimator Ĝn for G in (15).

7.1. Updating the estimator for ZG∗tr,L(tr)
. The updating step for the time-

sequence (ẐG
∗

tr,L(tr),k+1)1≤r≤K̄n of estimators for the conditional expectations
(27) is defined according to the loss function and submodel from Section 5.1,
given the estimated clever weights (ĥG

∗
tr )1≤r≤K̄n , as:

ˆ̄ZG
∗

τ,L(τ),k+1 := ˆ̄ZG
∗

τ,L(τ),k(ε̂n).

Here, ε̂n is estimated from the data by,

ε̂n := argmin
ε

Pn L̄ ˆ̄ZG
∗

τ,k

( ˆ̄ZG
∗

tr,L(tr),k
(ε)
)
,

and the now updated estimators ˆ̄ZG
∗

τ,L(τ),k+1 =
(
ẐG

∗
tr,L(tr),k+1

)
1≤r≤K̄n solves

the desired part of the efficient influence curve equation,

Pn

∫ τ

0
ĥG
∗

t

(
ẐG

∗
t,k − ẐG

∗
t,L(t),k+1

)
dN `(t) = 0.

Notably, this updating step is carried out only at subject-specific time-points
tr ∈ {T `1 , . . . , T `N`(τ)

}, where changes in L(t) are observed.

7.2. Updating the estimators for the intensities. For each of x = `, a, d,
the updating step for the current estimator Λ̂xk for the intensity Λx uses
the estimated time-sequence of clever weights (ĥG

∗
tr )1≤r≤K̄n and the time-

sequence (ĥxtr,k)1≤r≤K̄n of current estimators for the relevant clever covariate.
Based on the loss function and submodel as defined in Section 5.2, ε̂x is now
estimated from the observed data by:

ε̂x := argmax
ε

Pn Lx
(
Λ̂xk(· ; ε)

)
.

We denote the corresponding updated intensity by Λ̂xk+1 = Λ̂xk(· ; ε̂x), which
now solves,

Pn

∫ τ

0
ĥG
∗

t ĥxt,k
(
dNx(t)− dΛ̂xk+1(t)

)
= 0,

the equation of interest.
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7.3. Iterating the targeting steps. The updated estimators for ZG∗t,L(t) and
the intensities across time yield updated estimators for the sequence of condi-
tional expectations (26)–(30) and thus for the clever covariates. This process
constitutes the targeting iteration from k to k + 1, corresponding to updat-
ing Ẑk

n into Ẑk+1
n . The process is now repeated iteratively for k = 0, 1, 2, . . .,

moving from a current collection of estimators Ẑk
n to an updated collection

of estimators Ẑk+1
n . At each step k, the efficient score equation is evaluated,

PnD
∗(Ẑk

n, Ĝn) = Pn

(
ẐG

∗
0,k +

∫ τ

0
ĥt
(
ẐG

∗
t,k − ẐG

∗
t,L(t),k

)
dN `(t)

+
∑

x∈{a,`,d}

∫ τ

0
ĥt ĥ

x
t,k

(
dNx(t)− dΛ̂xk(t)

))
−ΨG∗(Ẑk

n),

and the iterations from k to k + 1 are continued until,

|PnD∗(Ẑk
n, Ĝn) | < sn,

for some choice of stopping criterion sn = oP (n−1/2). We can for example
use sn = σ/(n−1/2 log n), where σ2 is the variance of the efficient influence
function which we can estimate by substituting the current estimators Ẑk

n.
Letting k∗ := min(k : |PnD∗(Ẑk

n, Ĝn) | < sn), we denote the final estimator
by Ẑ∗n = Ẑk∗

n , where,

Ẑk∗
n =

(
ẐG

∗
t,k∗ , Ẑ

G∗
t,L(t),k∗ , Λ̂

`
k∗(t), Λ̂

a
k∗(t), Λ̂

d
k∗(t)

)
t∈[0,τ ]

.

8. Inference for the targeted substitution estimator. We have
shown in Section 6.1 that there exist initial estimators that fulfill the regu-
larity conditions of Theorem 2. In Section 7 we have presented a targeting
algorithm that maps the initial estimator Ẑk=0

n into a targeted estimator Ẑ∗n
that solves the efficient influence curve equation (14). In the end we estimate
the target parameter by,

ψ̂G
∗

n = Pn Ẑ
G∗
t=0,k∗ ,

but we note that ψ̂G∗n is equal to the substitution estimator ΨG∗(P̂ ∗n), where
P̂ ∗n is characterized by (Z∗n, Ĝn). Specifically, the components of Ẑ∗n are com-
patible with a probability distribution P̂ ∗n whose conditional expectations of
Y given the relevant histories coincide with those of Ẑ∗n.

Theorem 2 implies asymptotic efficiency of ψ̂G∗n , and we can use the asymp-
totic normal distribution,

√
n
(
ΨG∗(P̂ ∗n)−ΨG∗(P0)

) D→ N (0, P0D
∗(P0)2),



26 RYTGAARD, H. C., GERDS, T. A., AND VAN DER LAAN, M. J.

to provide an approximate two-sided confidence interval. Here,

σ̂2
n := Pn{D∗(P̂ ∗n)}2,(31)

can be used to estimate the variance of the TMLE estimator.

9. Empirical study. We demonstrate our methods by describing the
application to simulated data, using the proposed algorithm to estimate the
contrast between a treatment rule that sets A(t) = 1 and a treatment rule
that sets A(t) = 0. One could think of a randomized trial where subjects
in the study population are initially randomized to receive treatment or no
treatment, but may switch treatment over time depending on the value of
time-varying covariates. This is a setting where a standard Cox regression,
as mentioned in Section 1.1, does not apply. Our focus is here to confirm our
theory by evaluating the targeting algorithm, and, further, to compare our
new algorithm to the existing longitudinal TMLE (LTMLE).

We consider a setting where subjects of a population are followed for τ
days of follow-up time. On any given day, any subject may change treatment,
covariates, may be lost to follow-up (right-censored) or may experience the
outcome of interest. Both the treatment and the censoring mechanisms are
subject to time-dependent confounding. The data are simulated such that
the number of monitoring times per subject are approximately the same
across different τ . Thus, the larger τ is, the less events are observed at single
monitoring times. Throughout we let n = 1, 000.

9.1. Setup. In all simulations, we generate data from a sequence of logis-
tic regressions allowing time-varying treatment and covariates to affect one
another, keeping effects time-constant. Throughout, we let L0 ∈ {1, . . . , 6},
A0 ∈ {0, 1}, A(t) ∈ {0, 1} and L(t) ∈ {0, 1}. We draw observations L0 such
that large values increase the probability of treatment with A0. Subjects for
which A0 = 0 and with current covariate value equal to 1 are more likely
to begin treatment by time t. Further, current treatment increases the prob-
ability of L(t) = 1. Both the baseline treatment A0 and the time-varying
treatment A(t) have a negative main effect on the outcome process Nd(t).
Moreover, A0 has a different effect within levels of L(t), and L(t) has a pos-
itive main effect. At last, the censoring process N c(t) depends on both A0

and current covariates. Our code for the simulations is available on github
(https://github.com/helenecharlotte/continuousTMLE).

9.2. Parameter of interest. Our parameter of interest is the contrast be-
tween the intervention-specific mean outcomes under the regime that im-
poses A(t) = 1 (subjects adhering to treatment) to the regime that imposes
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A(t) = 0 (subjects adhering to no treatment). Both regimes also impose
no censoring throughout follow-up. Thus, our interventions are specified as
follows, following Definition 1:

Intervention 0: dG0
t (O) =

(
1−A(t)

)Na(dt)(
1−N c(t)

)
,

Intervention 1: dG1
t (O) =

(
A(t)

)Na(dt)(
1−N c(t)

)
.

We let ψ1 denote the intervention-specific mean outcome under Intervention
1 and ψ0 the intervention-specific mean outcome under Intervention 0. Our
target parameter is the corresponding difference:

Ψ(P ) =

∫
Y dPQ,G1 −

∫
Y dPQ,G0 = ψ1 − ψ0.

As usual, the true value is denoted by ψ0 = Ψ(P0). There is no unmeasured
confounding, so that our parameter can be interpreted causally as the treat-
ment effect we would see in the real world if subjects had between treated
(A(t) = 1) compared to not (A(t) = 0). Note that ψ0 < 0 reflects a protect-
ing effect of the treatment. Throughout, we estimate ψ1

0 and ψ0
0 separately

and report results for the estimated difference ψ0 = ψ1
0 − ψ0

0.

9.3. Simulations. Overall, we seek to investigate the following:

1. The distribution of
√
n (ψ̂∗n − ψ0) under correctly specified parametric

models for initial estimation of the nuisance parameters.
2. Comparison to LTMLE estimation when data are given on a discrete

grid with small τ .
3. Robustness properties of our TMLE estimator: What happens when

we misspecify the distribution of, for example, the outcome process.

We use σ2
ic to denote the variance of the canonical gradient and σ̂2

ic its
estimator. We are generally interested in the coverage of confidence intervals
based on σ̂2

ic and further in the mean squared error (MSE) of our estimator
across the simulation repetitions relative to the variance of the canonical
gradient, or, equivalently,

√
MSE/σic.

Comparison to LTMLE. For small τ , we can compare our estimation
procedure to the results from the existing LTMLE implementation (Lendle
et al., 2017). We note that the interventions that we consider correspond to
dynamic rules in the LTMLE framework that only intervene on A(t) at jumps
of Na(t). Table 1 shows the results of estimating the contrast ψ0 = ψ1

0 − ψ0
0

when τ = 5 and when τ = 50, using LTMLE and using our algorithm. The
table illustrates the increasing bias of LTMLE when τ increases. Moreover,
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for the simulations with τ = 50, the estimated standard error from LTMLE
is completely off.

LTMLE τ = 5 τ = 30 τ = 50

ψ0 -0.135 -0.138 -0.148
ψ̂ltmle
n,M -0.137 -0.133 -0.117
Bias -0.002 0.005 0.031

Cov (95%) 0.970 0.968 1.000√
MSE 0.044 0.092 0.080
σ̂n,M 0.049 0.108 0.648

contTMLE τ = 5 τ = 30 τ = 50

ψ0 -0.135 -0.138 -0.148
ψ̂∗n,M -0.137 -0.138 -0.147
Bias -0.002 0.000 0.001

Cov (95%) 0.942 0.940 0.942√
MSE 0.041 0.060 0.099
σ̂n,M 0.039 0.058 0.101

Table 1
Presented are results from a simulation study with τ = 5, τ = 30 and τ = 50 days of

follow-up. In the left table, results from applying existing LTMLE software are shown. In
the right table, results from applying our algorithm (contTMLE) are shown. Note that
ψ̂tmle
n,M and σ̂n,M denote averages of estimates across the M = 500 simulation repetitions.

For τ = 50, LTMLE did not run at all for 7% of the simulations.

Performance of estimation and double robustness. We investigate the dis-
tribution of

√
n (ψ̂∗n − ψ0) under correctly specified and misspecified para-

metric models used for the initial estimation. For the latter, we leave out
all time-varying variables when estimating the outcome distribution. Table 2
shows the results of estimating the contrast ψ0 = ψ1

0−ψ0
0 with τ = 30, 50, 100

days of follow-up. In the last setting, LTMLE cannot be applied due to too
few events at single monitoring times. The results in the table illustrate that
our algorithm achieve appropriate coverage across τ , and that the targeting
step of our algorithm removes bias from the initial estimation.

9.4. Conclusions on the empirical findings. Based on our simulations we
draw the following conclusions:

1. The confidence intervals based on the estimate of the efficient influence
curve have valid coverage in the simulations when the initial estimation
is correctly specified.

2. Our new estimation algorithm produces similar results to the existing
LTMLE for the settings where LTMLE applies. When τ gets larger,
and thus observation sparsity increases, LTMLE breaks down.

3. Misspecification of the Q-part of the likelihood, such as the distribution
of the outcome process, leads to biased initial estimation. This bias is
corrected for by our targeting procedure.
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Correctly specified initial estimation

τ = 30 τ = 50 τ = 100

ψ0 -0.138 -0.148 -0.130
ψ̂init
n,M -0.127 -0.141 -0.129

ψ̂∗n,M -0.138 -0.147 -0.129
Bias (init) 0.011 0.007 0.001
Bias (tmle) 0.000 0.001 0.001
Cov (95%) 0.940 0.942 0.956√

MSE 0.060 0.099 0.032
σ̂n,M 0.058 0.101 0.035

Misspecified initial estimation

τ = 30 τ = 50 τ = 100

ψ0 -0.138 -0.148 -0.130
ψ̂init
n,M -0.086 -0.125 -0.119

ψ̂∗n,M -0.138 -0.147 -0.128
Bias (init) 0.052 0.023 0.011
Bias (tmle) 0.000 0.001 0.002
Cov (95%) 0.946 0.956 0.976√

MSE 0.060 0.099 0.030
σ̂n,M 0.058 0.101 0.035

Table 2
Presented are results from a simulation study with τ = 30, τ = 50 and τ = 100 days of

follow-up. The initial estimator is denoted ψ̂init
n and the targeted estimator is denoted ψ̂∗n.

In the left table, results from applying our algorithm with correctly specified initial
estimation are shown. In the right table, results from applying our algorithm with

misspecified initial estimation are shown. As desired, the targeting algorithm corrects the
bias of the initial estimator. Note that ψ̂∗n,M , ψ̂init

n,M and σ̂ic,M denote averages of
estimates across the M = 500 simulation repetitions.

10. Discussion. The current paper lays the groundwork for targeted
minimum loss based estimation of intervention-specific mean outcomes based
on a continuous-time counting process model. Our generalization of the
TMLE methodology is motivated by the problems arising when estimat-
ing interventional effects from observational data, where observations are
made without a schedule and potentially over very long time horizons. We
have developed our TMLE based on a continuous-time model to cover any
time-scale. The advantage is that we can track the information of changes in
continuous time, hereby preserving the original time-order of treatment and
covariates.

We have derived the efficient influence function for the estimation prob-
lem, and we have proposed a particular targeting algorithm to construct an
estimator that solves the efficient influence curve equation. Contrary to the
existing discrete-time longitudinal TMLE method (LTMLE) that involves a
regression step separately for every time-point, even if nothing is observed at
that time-point, our proposed TMLE algorithm allows us to smooth infor-
mation across time. In a sense, the estimation procedure we have presented
amounts to doing a sequential regression for each infinitesimal time interval,
but simultaneously by pooling over all t.

A substantial advantage of the proposed setting for estimation of inter-
ventional effects is that it provides a framework for studying various types of
interventions. In this paper, we have focused on interventions on censoring
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(Λc) and treatment decision (πt), and in our simulations we considered only
an intervention that imposed ‘no treatment’. As discussed in Section 1.1 and
Section 2.2, other interventions on treatment decision and interventions on
the treatment monitoring intensity Λa are possible within the same frame-
work: The targeting procedure remains the same, although, for the latter, Λa

is taken out of the non-interventional part, and thus out of the targeting pro-
cedure. In future work we will consider stochastic and optimal interventions
(Murphy, 2003, 2005; Hernán et al., 2006; Zhang et al., 2013, 2012) both on
the treatment decision and on the treatment monitoring. One intervention
of interest could be to replace Λa by Λa,∗ that only depends, for example, on
the time since last treatment monitoring to ensure a regime where subjects
are monitored regularly.

It is evident from the general analysis of TMLE that the performance
of the final estimator depends on how well the nuisance parameters are es-
timated. In the continuous-time setting, the nuisance parameters comprise
regressions of the intensity of changes and regressions of the time-dependent
means. We have shown that we can construct HAL estimators for all required
components such as to fulfill the conditions needed for asymptotic efficiency.
To improve the estimation of nuisance parameters, it is desirable to set up
large libraries consisting of flexible models and estimators for the conditional
means and intensities that can then be fed into the super learner. In gen-
eral, one should adapt the choices to the application at hand, considering
the length of the time interval, the marginal intensity rates of the changes
of action and covariates as well as the sample size and outcome prevalence.

We further point out that our presented method to get Z is to use the
conditional density of L(t) to estimate the conditional expectations. How-
ever, we are not committed to using the conditional density. The fact is that
our targeting algorithm does not depend on µt, and it can be a big advan-
tage to avoid estimation of µt altogether. In future work we discuss in more
detail how to construct an estimator based on inverse probability weighted
regression which we map into an estimator that fulfill the representation in
terms of iterated expectations from Section 3.

Future work will deal with a general implementation of our TMLE pro-
cedure, beyond the simple settings of our simulation study. In addition to
the applications outlined in Section 1.1, another important area of applica-
tion is that of randomized trials where subjects crossover, start additional
treatment and drop out. Here our methods can be applied to supplement the
intention-to-treat analysis.
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SUPPLEMENTARY MATERIAL

APPENDIX A: ANALYSIS OF THE ESTIMATION PROBLEM

This appendix is concerned with the derivation of the canonical gradi-
ent (Bickel et al., 1993; van der Vaart, 2000; Tsiatis, 2007) as presented in
Theorem 1.

In the following, we let MG be the submodel of M with known G-part,
and we let TQ(P ) be the tangent space at P inMG. We derive the canonical
gradient of ΨG∗ in the full modelM by projecting the influence curve of any
regular and asymptotically linear (RAL) estimator of ΨG∗ in the smaller
model MG onto TQ(P ). Indeed, the factorization of any P ∈ M into the
G-part and the Q-part implies that the tangent space of the G-part in M
is orthogonal to the tangent space of the smaller modelMG (van der Laan
and Robins, 2003).

Noting the following representation of the target parameter, for any P ∈
M,

ΨG∗(P ) = EPG∗
[
Y
]

=

∫
y R
t∈[0,τ ]

dQt(o) dG
∗
t (o) =

∫
y dḠ∗τ (o)

dḠτ (o)

dḠτ (o)
dQ̄τ (o)

=

∫ (
y
dḠ∗τ (o)

dḠτ (o)

)
dḠτ (o) dQ̄τ (o) = E

[
Y
dḠ∗τ (O)

dḠτ (O)

]
,

we can estimate ΨG∗ : MG → R with an inverse probability of action
weighted (IPAW) estimator,

ψ̂G
∗

n,IPAW(o) := Pn Y dG
∗
0/dG0 =

1

n

n∑

i=1

yi dḠ
∗
τ (oi)/dḠτ (oi).(32)

The IPAW estimator as written in (32) is a sample mean. It follows then di-
rectly that it is a linear (and thereby also an asymptotically linear) estimator
at any P ∈MG with influence curve,

DG∗
IPAW(P )(O) =

dḠ∗τ (O)

dḠτ (O)
Y −ΨG∗(P ).(33)

Since DG∗
IPAW(P ) is an influence curve of a RAL estimator of ΨG∗ inMQ, we

can derive the canonical gradient by projecting DG∗
IPAW(P ) onto TQ(P ).

A.1. Tangent space. In the following we characterize the tangent space
TQ(P ). Again we use the fact that the probability distribution of the ob-
served data factorizes. Indeed, the log-likelihood of (4) consists of separate
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terms for each of µL0 , (µt)t≥0 and Λx, x = a, `, d, and the tangent space TQ

is thus given as the orthogonal sum of the individual tangent spaces,

TQ = Tµ0 ⊕Tµ ⊕TΛa ⊕TΛ` ⊕TΛd .(34)

In the following, L2(P ) is used to denote the Hilbert space of measurable
functions h : O → R with Ph2 <∞. The following lemmas characterize the
relevant tangent spaces. The notation h ∈ σ(X), for some random variable
X, means that h is measurable with respect to the σ-algebra generated by
X, and can thus be written as a function of X.

Lemma 3. The tangent space TµL0
associated with the density µL0 of L0

is given by,

TµL0
(P ) =

{
h ∈ F0 : EP

[
h
]

= 0
}
∩ L2(P ).

Proof. We put no restrictions on the density µL0 , so the corresponding
tangent space TµL0

is the entire Hilbert space of measurable functions of L0

with mean zero (van der Vaart (2000), Example 25.16).

Lemma 4. The tangent space Tµ associated with the conditional density
µt of L(t) is given by,

Tµ(P ) =

{∫ τ

0
htN

`(dt) : ht ∈ σ(L(t),Ft−) ∧ EP
[
ht
∣∣Ft−

]
= 0

}
∩ L2(P ),

that is, the tangent space consists of functions that can be represented as
stochastic integrals with respect to N ` over functions of σ(L(t),Ft−) that
have mean zero conditional on Ft−.

Proof. Consider the parametric submodel,

µt,ε,ht(o) =
(
1 + εht(o)

)
µt(o),

for ε ≥ 0, with ht : O → R such that ht ∈ σ(L(t),Ft−). To ensure that µt,ε,h
for all ε > 0 actually gives rise to a well-defined probability measure, note
that,

∫

O
µt,ε,ht dν

` =

∫

O
µt dν

`

︸ ︷︷ ︸
=1

+ ε

∫

O
ht µt dν

` = 1 if and only if

∫

O
ht µt dν

` = E[ht
∣∣Ft−] = 0.
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The contribution to the log-likelihood is,

log dPε,ht(o) =

∫ τ

0
log
((

1 + εht(o)
)
µt(o)

)
N `(dt),

and we derive the score accordingly,
d

dε
log dPε,ht(o)

∣∣∣∣
ε=0

=
d

dε

(∫ τ

0
log
((

1 + εht(o)
)
µt(o)

)
N `(dt)

)∣∣∣∣
ε=0

=

∫ τ

0
ht(o)N

`(dt).

Thus, the tangent space is given by,

Tµ(P ) =

{∫ τ

0
htN

`(dt) : ht ∈ σ(L(t),Ft−) ∧ EP
[
ht
∣∣Ft−

]
= 0

}
∩ L2(P ).

Lemma 5. The tangent space TΛx associated with the intensity Λx of Nx

is given by,

TΛx(P ) =

{∫ τ

0
ht
(
Nx(dt)− Λx(dt)

)
: ht ∈ Ft−

}
, x = a, `, d,

that is, the space consisting of stochastic integrals over functions of Ft− with
respect to the martingale Mx = Nx − Λx.

Proof. For x = a, `, d, let ht : O → R be such that ht ∈ Ft− and
consider the class of submodels,

λxε,ht(t | Ft−) = exp
(
εht(o)

)
λx(t | Ft−).

These are valid submodels since the truth is contained at ε = 0 and since
λxε,ht(t | Ft−) > 0 for all t. The contribution to the log-likelihood is,

log dPε,ht(o) =

∫ τ

0

(
εht(o) + log λx(t | Ft−)

)
Nx(dt)−

∫ τ

0
exp

(
εht(o)

)
λx(t | Ft−)dt,

and we derive the score,
d

dε
log dPε,ht(o)

∣∣∣∣
ε=0

=
d

dε

(∫ τ

0

(
εht(o) + log λx(t | Ft−)dt

)
Nx(dt)−

∫ τ

0
exp

(
εht(o)

)
λx(t | Ft−)dt

)∣∣∣∣
ε=0

=

∫ τ

0
ht(o)N

x(dt)−
∫ τ

0
ht(o)λ

x(t | Ft−)dt.
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Thus, the tangent space is given by,

TΛx(P ) =

{∫ τ

0
ht
(
Nx(dt)− λx(t | Ft−)dt

)
: ht ∈ Ft−

}
,

for x = a, `, d.

A.2. Projection onto tangent spaces. We denote the projection onto
a tangent space T by Π(· |T ). We need to project DG∗

IPAW(P ) as defined in
(33) onto TQ. The orthogonal sum decomposition of TQ in (34) implies that,

Π(DG∗
IPAW(P ) |TQ(P )) = Π(DG∗

IPAW(P ) |TµL0
(P )) + Π(DG∗

IPAW(P ) |Tµ(P ))

+
∑

x=a,`,d

Π(DG∗
IPAW(P ) |TΛx(P )).

(35)

The projections are given in the following lemmas.

Lemma 6. The projection of DG∗
IPAW(P ) onto the tangent space TµL0

(P )
is given by,

Π(DG∗
IPAW(P ) |TµL0

(P )) = EPG∗ [Y | F0]−ΨG∗(P ).

Proof. The projection of DG∗
IPAW onto TµL0

(P ) is obtained by,

Π(DG∗
IPAW |TµL0

) = E[DG∗
IPAW |L0]− E[DG∗

IPAW] = EPG∗ [Y |L0]−ΨG∗(P ),

noting that F0 = σ(L0).

Lemma 7. The projection of DG∗
IPAW(P ) onto the tangent space Tµ(P ) is

given by,

Π(DG∗
IPAW(P ) |Tµ(P ))

=

∫ τ

0

(
E[DG∗

IPAW(P ) |L(t),Ft−]− E[DG∗
IPAW(P ) | Ft−]

)
N `(dt).

Proof. We note that Π
(
DG∗

IPAW(P ) |Tµ(P )
)
∈ Tµ. What remains to be

shown is that,

E
[(
DG∗

IPAW(P )−Π
(
DG∗

IPAW(P ) |Tµ(P )
))
S
]

= 0,(36)
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for any S ∈ Tµ(P ). Since S ∈ Tµ(P ), we can write,

S =

∫ τ

0
hSt N

`(dt),

for some hSt ∈ σ(L(t),Ft−) such that EP
[
hSt
∣∣Ft−

]
= 0. Now, the second

term of the covariance in (36) can be written as,

E
[
Π
(
DG∗

IPAW(P ) |Tµ(P )
)
S
]

= E

[ ∫ τ

0
E
[(

E[DG∗
IPAW(P ) |L(t),Ft−]− E[DG∗

IPAW(P ) | Ft−]
)
hSt

∣∣∣Ft−
]
N `(dt)

]

= E

[ ∫ τ

0

(
E
[
E[hSt D

G∗
IPAW(P ) |L(t),Ft−]

]
−

E
[
E[DG∗

IPAW(P ) | Ft−] E[hSt | Ft−]︸ ︷︷ ︸
=0

])
N `(dt)

]

= E

[∫ τ

0
hSt D

G∗
IPAW(P )N `(dt)

]
= E

[
DG∗

IPAW(P )S
]
,

where we have used the law of iterated expectations.

Lemma 8. The projection of DG∗
IPAW(P ) onto the tangent space TΛx(P )

is given by,

Π(DG∗
IPAW(P ) |TΛx(P )) =

∫ τ

0

(
E[DG∗

IPAW(P ) |∆Nx(t) = 1,Ft−] −

E[DG∗
IPAW(P ) |∆Nx(t) = 0,Ft−]

)(
Nx(dt)− Λx(dt)

)
.

for x = a, `, d.

Proof. We note that Π
(
DG∗

IPAW(P ) |TΛx(P )
)
∈ TΛx . What remains to be

shown is that DG∗
IPAW−Π

(
DG∗

IPAW(P ) |TΛx(P )
)
is orthogonal to all S ∈ TΛx ,

i.e.,

E
[(
DG∗

IPAW(P )−Π
(
DG∗

IPAW(P ) |TΛx(P )
))
S
]

= 0.(37)

Since S ∈ TΛx(P ), we can write,

S =

∫ τ

0
hSt M

x(dt),
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for some hSt ∈ Ft−, and we see that the second term of (37) involves the
covariance of martingale integrals. First note that,

(
E[DG∗

IPAW(P ) |∆Nx(t) = 1,Ft−]−

= E[DG∗
IPAW(P ) |∆Nx(t) = 0, Ft−]

)(
Nx(dt)− Λx(dt)

)

=
(

E[DG∗
IPAW(P ) |∆Nx(t) = 1,Ft−]−

= E[DG∗
IPAW(P ) |∆Nx(t) = 0, Ft−]

)(
Nx(dt)− Λx(dt)

)

= + E[DG∗
IPAW(P ) |∆Nx(t) = 0, Ft−]

= −E[DG∗
IPAW(P ) |∆Nx(t) = 0, Ft−]

=
(

E[DG∗
IPAW(P ) |∆Nx(t),Ft−]− E[DG∗

IPAW(P ) | Ft−]
)
,

so that,

E
[
Π
(
DG∗

IPAW(P ) |TΛx(P )
)
S
]

= E

[ ∫ τ

0

(
E[DG∗

IPAW(P ) |∆Nx(t),Ft−]− E[DG∗
IPAW(P ) | Ft−]

)
hSt M

x(dt)

]

=

∫ τ

0
E
[
E[DG∗

IPAW(P ) |∆Nx(t),Ft−]hSt M
x(dt)

]
−

E
[
E
[
E[DG∗

IPAW(P ) | Ft−]hSt M
x(dt)

∣∣Ft−
]]

=

∫ τ

0
E
[
E[DG∗

IPAW(P )hSt M
x(dt) |∆Nx(t),Ft−]

]
−

E
[
E[DG∗

IPAW(P ) | Ft−]hSt E
[
Mx(dt)

∣∣Ft−
]

︸ ︷︷ ︸
=0

]

=

∫ τ

0
E
[
DG∗

IPAW(P )hSt M
x(dt)

]
= E

[∫ τ

0
DG∗

IPAW(P )hSt M
x(dt)

]
.

On the other hand,

E
[
DG∗

IPAW(P )S
]

= E

[
DG∗

IPAW(P )

∫ τ

0
hSt M

x(dt)

]

= E

[∫ τ

0
DG∗

IPAW(P )hSt M
x(dt)

]
,

thus verifying (37).
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A.3. Proof of Theorem 1.

Proof. (Theorem 1). Consider first,

E

[
dḠ∗τ
dḠτ

Y
∣∣∣Ft−

]
= E

[(

R
s<t

dG∗s
dGs

)(

R
s≥t

dG∗s
dGs

)
Y
∣∣∣Ft−

]

= R
s<t

dG∗s
dGs

E

[

R
s≥t

dG∗s
dGs

Y
∣∣∣Ft−

]

= R
s<t

dG∗s
dGs

∫
Y R

s≥t

dG∗s
dGs R

s≥t
dQsdGs

= R
s<t

dG∗s
dGs

∫
Y R

s≥t
dG∗sdQs

= R
s<t

dG∗s
dGs

EPG∗
[
Y
∣∣Ft−

]
.

To derive the canonical gradient, we sum the projections of DG∗
IPAW(P ) onto

the individual tangent spaces as stated in (35). The expression in the previous
display together with Lemma 6–8 finishes the proof.

A.4. Corollary 1. The following corollary provides an alternative rep-
resentation of the canonical gradient, that is utilized to analyze the esti-
mation problem in Section A.5. Another utility of this representation is the
fairly direct resemblance to the discrete time counterpart.

Corollary 1 (Canonical gradient). We can rewrite the canonical gra-
dient from Theorem 1 for ΨG∗ : M→ R as follows,

D∗(P ) = EPG∗ [Y | F0]−ΨG∗(P ) +

∫ τ

0

(

R
s<t

dG∗s
dGs

)
ZG

∗
(dt),

where ZG∗(dt) := EPG∗ [Y |L(t), N `(dt), Na(dt), Nd(dt),Ft−]−EPG∗ [Y | Ft−].
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Proof.

EPG∗ [Y |L(t), N `(dt), Na(dt), Nd(dt),Ft−]− EPG∗ [Y | Ft−]

= EPG∗ [Y |N `(dt)L(t), N `(dt), Na(dt), Nd(dt),Ft−]−
EPG∗ [Y |N `(dt), Na(dt), Nd(dt),Ft−]

= + EPG∗ [Y |N `(dt), Na(dt), Nd(dt),Ft−]− EPG∗ [Y |Na(dt), Nd(dt),Ft−]

= + EPG∗ [Y |Na(dt), Nd(dt),Ft−]− EPG∗ [Y |Nd(dt),Ft−]

= + EPG∗ [Y |Nd(dt),Ft−]− EPG∗ [Y | Ft−]

=

(
N `(dt)

(
EPG∗ [Y |N `(dt)L(t), N `(dt), Na(dt), Nd(dt),Ft−]

− EPG∗ [Y |N `(dt), Na(dt), Nd(dt),Ft−]
)

= +
(
N `(dt)− Λ`(dt)

)(
EPG∗ [Y |N `(dt) = 1, Na(dt), Nd(dt),Ft−]

− EPG∗ [Y |N `(dt) = 0, Na(dt), Nd(dt),Ft−]
)

= +
(
Na(dt)− Λa(dt)

)(
EPG∗ [Y |Na(dt) = 1, Nd(dt),Ft−]

− EPG∗ [Y |Na(dt) = 0, Nd(dt),Ft−]
))

= +
(
Nd(dt)− Λd(dt)

)(
1− EPG∗ [Y |Nd(dt),Ft−]

)
.

This gives the integral representation.

A.5. Representation of the second-order remainder R2(P, P0).
We use Ōt− to denote the space where Ō(t−) takes its values and Ōt the
space where

¯
O(t) = {O(s) : t ≤ s ≤ τ} takes its values. We note that,

EPG∗
[
Y | L(t), N `(dt), Na(dt), Nd(dt),Ft−

]
=

∫

Ōt
Y R

s≥t
dG∗s R

s>t

dQs,

EPG∗
[
Y | Ft−

]
=

∫

Ōt
Y R

s≥t
dG∗s dQs,
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so that we can write out P0D
∗(P ) for any P ∈ M using the representation

of the canonical gradient in Corollary 1 as follows,
∫

O
D∗(P ) dP0

=

∫

O

∫ τ

0

dḠ∗t
dḠt

(
EPG∗

[
Y | L(t), N `(dt), Na(dt), Nd(dt),Ft−

]
− EPG∗

[
Y | Ft−

])
dP0

=

∫ τ

0

∫

O

dḠ∗t
dḠt

(
Y R

s≥t
dG∗s R

s>t

dQs R
s<t

dG0,s R
s≤t

dQ0,s−

Y R
s≥t

dG∗s dQs R
s<t

dG0,s dQ0,s

)

=

∫ τ

0

∫

O
Y
dḠ∗t
dḠt R

s<t

dG0,sdQ0,s

(
dQ0,t − dQt

)
R
s≥t

dG∗s R
s>t

dQs

=

∫ τ

0

∫

O
Y
dḠ0,t

dḠt R
s<t

dG∗sdQ0,s

(
dQ0,t − dQt

)
R
s≥t

dG∗s R
s>t

dQs

=

∫ τ

0

∫

O
Y

(
dḠ0,t

dḠt
− 1

)

R
s≤τ

dG∗s R
s<t

dQ0,s

(
dQ0,t − dQt

)
R
s>t

dQs

(∗1)

= +

∫ τ

0

∫

O
Y R

s≤τ
dG∗s R

s<t

dQ0,s

(
dQ0,t − dQt

)
R
s>t

dQs

(∗2)

= R2(P, P0)︸ ︷︷ ︸
(∗1)

+ ΨG∗(P0)−ΨG∗(P )︸ ︷︷ ︸
(∗2)

.
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The relation (∗2) = ΨG∗(P0)−ΨG∗(P ) follows from the Duhamel equation
(Andersen et al., 1993),

ΨG∗(P0)−ΨG∗(P ) = EPG∗0

[
Y
]
− EPG∗

[
Y
]

=

∫

O
Y R

s∈[0,τ ]

dG∗s dQ0,s −
∫

O
Y R

s∈[0,τ ]

dG∗s dQs

=

∫

O
Y R

s∈[0,τ ]

dG∗s

(

R
s∈[0,τ ]

dQ0,s − R
s∈[0,τ ]

dQs

)

=

∫

O
Y R

s∈[0,τ ]

dG∗s

(∫ τ

0 R
s∈[0,t)

dQ0,s

(
dQ0,t − dQt

)
R

s∈(t,τ ]

dQs

)

=

∫ τ

0

∫

O
Y R

s∈[0,τ ]

dG∗s R
s∈[0,t)

dQ0,s

(
dQ0,t − dQt

)
R

s∈(t,τ ]

dQs.

This now implies that,

ΨG∗(P )−ΨG∗(P0) = −P0D
∗(P ) +R2(P, P0),(38)

with the second-order remainder R2(P, P0) given by (∗1) above,

R2(P, P0)

=

∫ τ

0

∫

O
Y

(
dḠ0,t

dḠt
− 1

)

R
s≤τ

dG∗s R
s<t

dQ0,s

(
dQ0,t − dQt

)
R
s>t

dQs

=

∫ τ

0

∫

O
Y

1

ḡt

(
ḡ0,t − ḡt

)
R
s≤τ

dG∗s R
s<t

dQ0,s

(
dQ0,t − dQt

)
R
s>t

dQs.

A.6. Proof of Lemma 1.

Proof. Our target parameter is:

ΨG∗(P ) =

∫
Y R

t≤τ
dQt dG

∗
t ,

Recall that the product integral is defined as the limit of the product of dΛ
and densities over small intervals forming a partition of (0, τ ], 0 = t0 < t1 <
· · · < tM = τ , maxm |tm − tm−1| → 0 (Andersen et al., 1993, Section II.6).
We will here use the notation dGtm and dQtm to refer to the measure over
(tm−1, tm]. Now we can write:

ΨG∗(P ) = lim
maxm |tm−tm−1|→0

∫
Y

∏

0=t0<t1<···<tM
dQt dG

∗
t ,
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By Fubini’s theorem, and rearranging the order of integrating, we can
rewrite this in terms of iterated integrals. First,

ΨG∗(P ) = lim
maxm |tm−tm−1|→0

∫ (∫
Y dQtM

) ∏

t≤tM−1

dQt dG
∗
t .

The innermost integral is the expectation of Y with respect to conditional
distribution dQtM of the non-interventional part, conditional on the past
FtM−1 . Accordingly, we can write:

ΨG∗(P ) = lim
maxm |tm−tm−1|→0

∫
EPG∗ [Y | FtM−1 ]

∏

t≤tM−1

dQt dG
∗
t .

We again rewrite this by use of Fubini’s theorem:

ΨG∗(P )

= lim
maxm |tm−tm−1|→0

∫ (∫
EPG∗ [Y | FtM−1 ] dG∗tM−1

) ∏

t≤tM−1

dQt
∏

t≤tM−2

dG∗t .

Here we note that the innermost integral is:

ZG
∗

tM−1
= EPG∗ [Y |L(tM−1), N `(tM−1), Na(tM−1), Nd(tM−1),FtM−2 ].

In a similar manner, we next write ΨG∗(P ) as an integral over,

ZG
∗

tM−1,L(tM−1) = EPG∗ [Y |N `(tM−1), Na(tM−1), Nd(tM−1),FtM−2 ],

and next as an integral over EPG∗ [Y | FtM−2 ], i.e.,

ΨG∗(P ) = lim
maxm |tm−tm−1|→0

∫
EPG∗ [Y | FtM−2 ]

∏

t≤tM−2

dQt dG
∗
t .

Here we have integrated out each non-interventional component over the
interval (tM−2, tM−1] according to its conditional distribution, which, for the
monitoring process Nx, is uniquely characterized by the intensity measure
Λx. By backwards induction, applying the process above for all the intervals
backwards through time, we last reach the final expectation over the marginal
distribution of L0, corresponding to the desired intervention-specific mean
outcome Ψ(P ) = ZG

∗
0,L(0).
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APPENDIX B: HIGHLY ADAPTIVE LASSO (HAL)

In Section 6.1 we presented a particular parametrization of the interven-
tional part, the non-interventional intensities and the conditional expecta-
tions. In the following, we first restate our parametrizations of likelihood com-
ponents (Section B.1), next we review the integral representation of càdlàg
functions and the HAL estimator (Section B.2), then we prove Lemma 2
(Section B.3) and finally we present the HAL proof that shows that the
HAL estimator has the right rate of convergence (Section B.4).

B.1. Parametrizations and loss functions. We here elaborate on
the parametrizations used in Section 6.4. Recall the notation,

Ōk =
{(
L0, s, dN

a(s), A(s), dN `(s), L(s), dNd(s), dN c(s)
)

: s ∈ {Tj}kj=0

}
.

We can use a hazard rate factorization of the conditional distribution of A(t),
and further parametrize it in terms of a function fA,

λA(a |A(t) ≥ a, Ō(t)) = expit(fA(a, t, Ō(t))), a ∈ A,
which we represent in terms of a sum over functions (a, t, Ōk) 7→ fAk (a, t, Ōk)
with values in R,

fA(a, t, Ō(t)) =

K∑

k=0

1{Kt = k} fAk (a, t, Ōk).(39)

To keep the notation simpler here, we assume that L(t) is discrete-valued as
well and use an equivalent parametrization:

λL(` |L(t) ≥ `, Ō(t)) = expit(fL(`, t, Ō(t))),

which we represent in terms of a sum over functions (`, t, Ōk) 7→ fLk (`, t, Ōk)
with values in R,

fL(`, t, Ō(t)) =

K∑

k=0

1{Kt = k} fLk (`, t, Ōk).(40)

For the absolutely continuous case, we parametrize the intensity process λx

for which Λx(t | Ft−) =
∫ t

0 λ
x(s | Fs−)ds for each x = `, a, d, c as follows,

λx(t | Ō(t)) = exp(fx(t, Ō(t))),

where,

fx(t, Ō(t)) =

K∑

k=0

1{Kt = k} fxk (t, Ōk).
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B.2. Representation of càdlàg functions with finite variation norm.
As stated in Section 6.1, we define the variation norm of f ∈ Dk([0, η]),

‖f‖v = |f(0)|+
∑

s∈P({1,...,k})

∫

(0s,ηs]
|f(dxs, 0−s)|,

where xs = (xj : j ∈ s), x−s = (xj : j 6∈ s) and xs → f(xs, 0−s) is the
s-specific section of f that sets the coordinates in the complement of the
index set s equal to zero. If the variation norm is finite, ‖f‖v < ∞, then f
admits the representation (Gill, van der Laan and Wellner, 1995),

f(x) = f(0) +
∑

s∈P({1,...,k})

∫

(0s,xs]
f(dus, 0−s),

where f(dus, 0−s) is the measure generated by the càdlàg section function
us → f(us, 0−s). Now, particularly, Assumption 4 implies that fxk as a func-
tion of wk = (t, Ōk) admits the representation,

fxk (wk) = fxk (0) +
∑

s∈P({1,...,kp′+d0})

∫

(0s,wk,s]
fxk (dus, 0−s).

B.2.1. Finite sum representation over indicator basis functions. Consider
an approximation of fxk by fxk,h with a finite support. The above integral
representation of fxk,h ∈ Jv,M can be written in terms of a finite linear
combination of indicator basis functions,

fxk,h(wk) = β̃xk,0 +
∑

s∈P({1,...,kp′+d0})

∑

j∈Ĩk,h,s

φ̃xk,s,j(wk)β̃
x
k,s,j .(41)

Here we have used Ĩk,h,s to denote the index set of the support points of
the sth section function. Moreover, β̃k,s,j is the measure that fxk,h assigns to
the cube defined by j and φ̃k,s,j(wk) = 1{m̃h,s,j ≤ wk,s} is the indicator
that the support point m̃h,s,j is smaller than or equal to wk,s. Note that the
variation norm of fxk,h is the sum of the absolute values of its coefficients:

‖fxk,h‖v = ‖β‖1 = |β̃xk,0|+
∑

s∈P({1,...,kp′+d0})

∑

j∈Ĩk,h,s

|β̃xk,s,j |.(42)

A finite sum representation like (41) can be used to approximate any fxk ∈
Jv,Mx , as long as the discretization is chosen fine enough (van der Laan,
2017) and yields the corresponding discrete sum representation of fx:

fxh (t, Ō(t)) =

K∑

k=0

1{Kt = k} fxk,h(t, Ōk).(43)
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B.2.2. The HAL estimator. The HAL estimator is defined by minimizing
the empirical risk over all linear combinations of indicator basis function for
a specific set of support points under the constraint that the variation norm
is bounded by the constant Mx:

f̂xn = argmin
fxh ,‖fxh‖v≤Mx

PnLx(fxh ).(44)

By selecting the particular support defined by the actual n observations
{Oi}ni=1, the minimizer of the finite-dimensional minimization problem (44)
equals the minimizer of the empirical risk over all functions fx with variation
norm smaller than Mx.

Separating the representation of fxk,h in (41) over this support defined by
{Oi}ni=1 into terms involving the time axis and terms involving Ōk gives (24)
in Section 6.5:

fxk,β(t, Ōk) =

K̄n∑

r=0

1{tr ≤ t}
(
βxr,k,0 +

∑

s∈P({1,...,kp′+d0})

∑

j∈Ik,s
φxk,s,j(Ōk)β

x
r,k,s,j

)
,

where, as in Section 6.5, Ik,s is the index set for the unique observed values
of Ōk,s, the s-specific coordinates Ōk, t0 < · · · < tK̄n is the ordered sequence
of unique times of changes from Display (3), βr,k,s,j is the measure that fxk,β
assigns to cube j for tr ≤ t and φk,s,j(Ōk) = 1{mk,s,j ≤ Ōk,s} is the indicator
that the support point mk,s,j is smaller than or equal to Ōk,s.

According to (42), we replace the constraint ‖fxh‖v ≤ Mx in (44) by
‖fxh‖1 ≤Mx, so that we can now define the HAL estimator by,

f̂xn = argmin
fxβ ,‖β‖1≤Mx

PnLx(fxβ ),

corresponding to (25) in Section 6.5.

B.3. Donsker class conditions. We here provide the proof of Lemma
2. Subsequently, we state and prove a Lemma 9 needed for the HAL proof.
To reduce complexity of the presentation as much as possible, we write up
the formulas for binary A(t) and L(t).

Proof. (Lemma 2).
Consider the following representation of the efficient influence curve,

D∗(P ) =

∫ τ

0

(

R
s<t

dG∗s
dGs

)(∫
Y R
s>t

dQs R
s≥t

dG∗s −
∫
Y R
s≥t

dQsdG
∗
s

)
.
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First, we demonstrate that we can represent dḠt = Ps<t dGs in terms of
fG = (fx : x = A, c):

dḠt =

Kt∏

k=0

( (
expit(fAk (1, Tk, Ōk))

A(Tk)
(
1− expit(fAk (1, Tk, Ōk))

)1−A(Tk))∆Na(Tk)

(
exp(f ck(Tk, Ōk)

)∆Nc(Tk)
)

exp

(
−

K̄n∑

r=1

Kt∑

k=0

1{Tk ∈ [tr−1, tr)}
(

min(tr, Tk+1, t)− Tk
)

exp(f ck(Tk, Ōk))

−
K̄n∑

r=1

Kt∑

k=0

1{tr ∈ (Tk, Tk+1]}
(

min(tr+1, Tk+1, t)− tr
)

exp(f ck(tr, Ōk))

)
,

and, in the same way, we represent Ps≥t dGs as:

K∏

k=Kt+1

( (
expit(fAk (1, Tk, Ōk))

A(Tk)
(
1− expit(fAk (1, Tk, Ōk))

)1−A(Tk))∆Na(Tk)

(
exp(f ck(Tk, Ōk)

)∆Nc(Tk)
)

exp

(
−

K̄n∑

r=1

K∑

k=Kt

1{Tk ∈ [tr−1, tr)}
(

min(tr, Tk+1)−max(Tk, t)
)

exp(f ck(Tk, Ōk))

−
K̄n∑

r=1

K∑

k=Kt

1{tr ∈ (Tk, Tk+1]}
(

min(tr+1, Tk+1)−max(tr, t)
)

exp(f ck(tr, Ōk))

)
.

We have equivalent versions of dḠ∗t = Ps<t dG
∗
s and Ps≥t dG

∗
s.

Similarly, we demonstrate that Ps>t dQs can be represented in terms of
fQ = (fx : x = L, `, a, d):

K∏

k=Kt+1

((
expit(fLk (1, Tk, Ōk))

L(Tk)
(
1− expit(fLk (1, Tk, Ōk))

)1−L(Tk))∆N`(Tk)

(
exp(f `k(Tk, Ōk))

)∆N`(Tk)(
exp(fak (Tk, Ōk))

)∆Na(Tk)(
exp(fdk (Tk, Ōk))

)∆Nd(Tk)
)

∏

x∈{`,a,d}
exp

(
−

K̄n∑

r=1

K∑

k=Kt

1{Tk ∈ [tr−1, tr)}
(

min(tr, Tk+1)−max(Tk, t)
)

exp(fxk (Tk, Ōk))

−
K̄n∑

r=1

K∑

k=Kt

1{tr ∈ (Tk, Tk+1]}
(

min(tr+1, Tk+1)−max(tr, t)
)

exp(fxk (tr, Ōk))

)
,
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and, likewise, Ps≥t dQs:

K∏

k=Kt

((
expit(fLk (1, Tk, Ōk))

L(Tk)
(
1− expit(fLk (1, Tk, Ōk))

)1−L(Tk))∆N`(Tk)

(
exp(f `k(Tk, Ōk))

)∆N`(Tk)(
exp(fak (Tk, Ōk))

)∆Na(Tk)(
exp(fdk (Tk, Ōk))

)∆Nd(Tk)
)

∏

x∈{`,a,d}
exp

(
−

K̄n∑

r=1

K∑

k=Kt

1{Tk ∈ [tr−1, tr)}
(

min(tr, Tk+1)−max(Tk, t)
)

exp(fxk (Tk, Ōk))

−
K̄n∑

r=1

K∑

k=Kt

1{tr ∈ (Tk, Tk+1]}
(

min(tr+1, Tk+1)−max(tr, t)
)

exp(fxk (tr, Ōk))

)
.

Notice that there is only a difference between Ps>t dQs and Ps≥t dQs at the
actual jump times.

This shows the first statement of Lemma 2. Since D∗(P ) = D∗(fx : x =
L,A, `, a, c, d) is a sum of functions that are càdlàg and have finite variation
norm and since dḠ∗t /dḠt is uniformly bounded away from zero which pre-
serves the Donsker property of the ratio (van der Vaart and Wellner, 1996),
then

{
D∗(fx : x = L,A, c, a, `, d)

}
is a Donsker class.

Lemma 9. For a set of constants Mx < ∞, x = L,A, a, `, d, c, we have
that

{
Lx(fx)

}
is a Donsker class.

Proof. The log-likelihood loss LA for fA can be written,

LA(fA)(O) =

K∑

k=0

(
−∆Na(Tk)

(
A(Tk) log

(
1 + exp(−fAk (1, Tk, Ōk))

)

+
(
1−A(Tk)

)
log
(
1 + exp(fAk (0, Tk, Ōk))

))
,

and equivalently for log-likelihood loss LL for fL,

LL(fL)(O) =
K∑

k=0

(
−∆N `(Tk)

(
L(k) log

(
1 + exp(−fLk (1, Tk, Ōk))

)

+
(
1− L(k)

)
log
(
1 + exp(fLk (0, Tk, Ōk))

))
.
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For x = c, a, `, d, we write the loss function as:

Lx(fx)(O) =
K∑

k=0

(
∆Nx(Tk)f

x
k (Tk, Ōk)

−
K̄n∑

r=1

1{Tk ∈ [tr−1, tr)}
(

min(tr, Tk+1)− Tk
)

exp(fxk (Tk, Ōk))

−
K̄n∑

r=1

1{tr ∈ (Tk, Tk+1]}
(

min(tr+1, Tk+1)− tr
)

exp(fxk (tr, Ōk))
)
.

By Assumption 4, fxk is uniformly bounded. Also note that inffxk (1+exp(fxk )) ≥
0. Accordingly, fx only ranges over values on which x 7→ exp(x) and x 7→
log x are Lipschitz. Since the set of càdlàg functions with finite variation
norm is a Donsker class and since the Donsker property is preserved under
Lipschitz transformations and also under products and sums (van der Vaart
and Wellner, 1996) we conclude that Lx(fx) for all x = L,A, c, a, `, d is a
Donsker class.

B.4. HAL proof (Theorem 3). We proceed on the basis of the general
HAL proof (van der Laan, 2017). What we need to show is that,

dx(f̂xn , f
x
0 ) = P0Lx(f̂xn )− P0Lx(fx0 ) = oP (n−1/2),(45)

for x = Q,G. By the general HAL proof, we have that dx(f̂xn , f
x
0 ) is bounded

by,

−(Pn − P0)
(
Lx(f̂xn )− Lx(fx0 )

)
.

Since Lx(f̂xn )−Lx(fx0 ) falls in a Donsker class (Lemma 9) we have dx(f̂xn , f
x
0 ) =

OP (n−1/2) which again implies that P0(Lx(f̂xn ) − Lx(fx0 ))2 = OP (n−1/2).
The latter implication relies on (22) stated in Assumption 3, and holds for
the squared error loss and the log-likelihood loss as long as these are uni-
formly bounded (c.f., Assumption 3). It then follows by the Donsker theorem
that −(Pn − P0)(Lx(f̂xn ) − Lx(fx0 )) = op(n

−1/2) which gives dx(f̂xn , f
x
0 ) =

oP (n−1/2).
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APPENDIX C: OVERVIEW

C.1. Overview of notation.

L0 ∈ Rd0 baseline covariate vector
A(t) ∈ A treatment decision at time t
L(t) ∈ Rd covariate vector t
Na(t) counting process recording changes in treatment
N `(t) counting process recording changes in covariates
Nc(t) counting process recording changes in censoring status
Nd(t) counting process recording changes in death status
Λx the cumulative intensity characterizing the compensator of Nx

πt the conditional density of A(t); π0,t(a | Ft−) = P (A(t) = a | Ft−)
µt the conditional density of L(t); µ0,t(` | Ft−)
Kt the subject-specific total number of unique events in [0, t] p. 6
K = Kτ the subject-specific total number of unique events in [0, τ ]
T a1 < · · · < T aNa(τ) the subject-specific jump times of Na

T `1 < · · · < T `N`(τ) the subject-specific jump times of N `

T1 < · · · < TK subject-specific unique event times
O = Ō(τ) subject-specific observed data in [0, τ ] p. 7
P0 ∈M the distribution of O p. 8
M the statistical model containing P0 p. 10

G, g interventional part of P ∈M and its density p. 9
Q, q non-interventional part of P ∈M and its density
G∗, g∗ intervention and its density
PQ,G∗ = PG

∗
the post-interventional distribution defined by the g-computation formula

ΨG∗
: M→ R target parameter for fixed intervention G∗ p. 11

Z Z =
(
ZG

∗
t , ZG

∗
t,L(t),Λ

`(t),Λa(t),Λd(t) : t ∈ [0, τ ]
)

p. 14
ZG

∗
t ZG

∗
t = EPG∗

[
Y
∣∣L(t), N `(t), Na(t), Nd(t),Ft−

]
, t ∈ [0, τ ] p. 13

ZG
∗

t,L(t) ZG
∗

t,L(t) = EPG∗
[
Y
∣∣N `(t), Na(t), Nd(t),Ft−

]
, t ∈ [0, τ ] p. 13

hG
∗

t clever weights, t ∈ (0, τ ] p. 17
h`t, h

a
t , h

d
t clever covariates, t ∈ (0, τ ] p. 17

O1, . . . , On ∼ P0 observed data p. 7
Pn the empirical distribution of {Oi}ni=1

t0 < t1 < · · · < tK̄n
the ordered sequence of unique times of changes ∪ni=1{Ti,k}Ki

k=1 p. 7
K̄n =

∑n
i=1 Ki the total number of observation times for the data {Oi}ni=1

Ĝn estimator for G0 on [0, τ ]

Ẑk
n estimator for Z

P̂ ∗n targeted estimator, characterized by (Z∗n, Ĝn), where Z∗n = Zk=k∗
n

ψ̂G
∗

n = ΨG∗
(P̂ ∗n) TMLE estimator for the target parameter
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C.2. Overview of targeting algorithm. We here provide a more de-
tailed overview of the targeting procedure described in Section 7. As in Sec-
tion 7, we here use the notation:

ZG
∗

tr = EPG∗ [Y |L(tr), N
`(tr), N

a(tr), N
d(tr),Ftr−1 ],(46)

ZG
∗

tr,L(tr)
= EPG∗ [Y |N `(tr), N

a(tr), N
d(tr),Ftr−1 ],(47)

for r = 1, . . . , K̄n. Further, we now introduce:

ZG
∗

tr,N`(tr)
= EPG∗ [Y |Na(tr), N

d(tr),Ftr−1 ],(48)

ZG
∗

tr,Na(tr)
= EPG∗ [Y |Nd(tr),Ftr−1 ](49)

ZG
∗

tr,Nd(tr)
= EPG∗ [Y | Ftr−1 ],(50)

where the subscript ‘Nx(tr)’, x = `, a, d, tells us what was last integrated out
over the interval (tr−1, tr]. Given current estimators Ẑk

n for Z, we construct
estimators,

ẐG
∗

tr,k, Ẑ
G∗
tr,L(tr),k

, ẐG
∗

tr,N`(tr),k
, ẐG

∗
tr,Na(tr),k

, ẐG
∗

tr,Nd(tr),k
,

for (46)–(50). Moreover, given estimators for (46)–(50), we can provide esti-
mators ĥ`tr,k, ĥ

a
tr,k

, ĥdtr,k for the clever covariates h`tr , h
a
tr , h

d
tr by:

ĥ`tr,k =
∑

δ=0,1

(2δ − 1)ẐG
∗

tr,L(tr),k
(N `(tr) = N `(tr−1) + δ),

ĥatr,k =
∑

δ=0,1

(2δ − 1)ẐG
∗

tr,N`(tr),k
(Na(tr) = Na(tr−1) + δ),

ĥdtr,k = 1− ẐG∗tr,Na(tr),k
(Nd(tr) = 0).

Now we can carry out the individual targeting update steps as described in
Section 7 (Sections 7.1 and 7.2). This gives:

ẐG
∗

tr,L(tr),k
7→ ẐG

∗
tr,L(tr),k+1

Λ̂`k 7→ Λ̂`k+1

Λ̂ak 7→ Λ̂ak+1

Λ̂dk 7→ Λ̂dk+1

Starting from ẐG
∗

tr,L(tr),k+1, we use Λ̂`k+1 to integrate out N `(tr) to obtain
the updated ẐG

∗
tr,N`(tr),k+1

. Similarly, we use Λ̂ak+1 to obtain the updated
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ẐG
∗

tr,Na(tr),k+1 from ẐG
∗

tr,N`(tr),k+1
and lastly Λ̂dk+1 to obtain ẐG∗

tr,Nd(tr),k+1
from

ẐG
∗

tr,Na(tr),k+1.
To proceed, recall that ẐG∗

tr,Nd(tr),k+1
estimates EPG∗ [Y | Ftr−1 ], i.e.,

EPG∗ [Y |N c(tr−1), A(tr−1), L(tr−1), N `(tr−1), Na(tr−1), Nd(tr−1),Ftr−2 ].

The distributions of N c(tr−1), A(tr−1) are specified by our intervention G∗,
so that we can now further obtain an updated ẐG∗tr−1,k+1 from ẐG

∗
tr,Nd(tr),k+1

by
integrating out N c(tr−1), A(tr−1) according to dG∗ over (tr−2, tr−1]. For ex-
ample, if our intervention imposes no censoring and sets A(t) to a∗ through-
out (see Equation (6) in Section 2.2), then we have:

ẐG
∗

tr−1,k+1 = ẐG
∗

tr,Nd(tr),k+1(N c(tr−1) = 0, A(tr−1) = a∗).

This means that we now have updated estimators:

ẐG
∗

tr,k+1, Ẑ
G∗
tr,L(tr),k+1, Ẑ

G∗
tr,N`(tr),k+1, Ẑ

G∗
tr,Na(tr),k+1, Ẑ

G∗
tr,Nd(tr),k+1,

for the entire sequence (46)–(50). We can now proceed with the next update
k + 1 to k + 2 exactly as outlined above.
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C.3. Overview diagrams.

Overview: Super learning.

For each of x = L,A, `, a, c, d:

Define loss: (O, fx) 7→ Lx(fx)(O)

Define a library of estimators: O 7→ f̂xn,m(O) indexed by m = 1, . . . ,M

Include in the library a HAL estimator:
f̂xm,n = argmin

β:‖β‖1<Cx
PnLx(fxh )

Let m̂x
n ∈ RM be the loss function based cross-validation selector:

m̂x
n := argmin

m

1
V

∑V
v=1 P1

n,vLx(f̂xm,n(P0
n,v))

(P0
n,v,P

1
n,v denotes the empirical distribution of the training and validation sample,

respectively, in a V -fold cross validation scheme)

Define the (discrete) super learner: f̂Mn := f̂xn,m̂x
n

Table 3
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HAL estimation using R software.

hal9001::fit_hal(X, Y, family=family)

generates a HAL design matrix consisting of basis functions corresponding
to covariates and interactions

makes a call to:
glmnet::glmnet(x=X, y=Y, family=family)

automatically selects a CV-optimal value of this regularization parameter:
glmnet::cv.glmnet(x=X, y=Y, family=family)

Logistic regression:

X HAL design matrix
Y outcome variable (factor with two levels)
family ’binomial’

Squared error loss:

X HAL design matrix
Y outcome variable (real-valued)
family ’gaussian’

Intensity estimation:

X HAL design matrix
Y Number of events observed for each combination of covariates
R The amount of risk time for each combination of covariates

log(R) is included as an offset in the regression formula
family ’poisson’

Table 4
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Abstract: A random forest for survival analysis is a machine learning method that com-
bines bootstrap aggregation with randomized survival trees for right-censored time-to-
event data. The approach does not assume a model and thus provides a flexible alternative
to Cox regression. It can be used to predict the risk of an event for individual subjects in
the presence or absence of competing risks, and for the discovery of risk factors in low-
and high-dimensional settings.

1 Introduction

A random forest for survival analysis is a random forest[1] (see Random Forests) with a time-to-event
outcome. It is an ensemble learner that uses bootstrap perturbations of the data to grow survival trees,
providing a method that can detect marginal and higher-level associations between a potentially high-
dimensional covariate space and survival chances[2]. Inside the box, this machine learning technique relies
on a data-driven algorithm that does not impose a model for the data-generating mechanism, requiring
only that the user selects a number of hyperparameters (Figure 2). A random forest for survival anal-
ysis provides a flexible alternative to parametric and semiparametric survival models such as Cox pro-
portional hazard regression (see Proportional Hazards Model, Cox’s). A key feature is that it works
in high-dimensional settings[3] where the number of predictors exceeds the sample size, for example in
omics data[4] (see Genetics and Genomics, Statistics in). Applications of the method can be found in
multiple fields, such as prediction of credit risk default in economics[5] and risk factor analysis in medical
research[6].

Survival data are characterized by right censoring which means that not all subjects are followed until
the event of interest occurs[7] (see Censored Data Analysis). The observation of a subject is called right-
censored, if the event of interest did not occur within the subject-specific follow-up period. It is then
assumed that the event occurs at a later time, later than (to the right of ) the censoring time. This changes
when there are competing risks[8] (see Competing Risk Analysis). A competing risk is an event after which
the event of interest either cannot occur (e.g., because the subject died) or is for some other reason no
longer of interest for the analysis.
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0Initial state

1 Event of interest

2 Competing event
...

J Competing event

Figure 1. Multistate representation of a situation with competing risks. Each subject is in state 0 at
time 0 and is then followed until the first event occurs. Right-censoring means that the subject is still in
state 0 at the end of follow-up and it is thus not known which event occurs first and when.

We consider a situation with J ≥ 1 mutually exclusive types of events (Figure 1) which includes the spe-
cial case without competing risks ( J = 1). The dataset, in the following referred to as the learning data,
consists of n ∈ ℕ samples,

{(X1,T1, 𝛿1), … , (Xn,Tn, 𝛿n)}

For subject i, the variable 𝛿i ∈ {0, 1, … , J} indicates if the observation is censored (𝛿i = 0) or if the event of
interest has occurred (𝛿i = 1) or, when J> 1, if a competing risk has occurred (𝛿i > 1). Instead of the uncen-
sored time-to-event T∗

i of subject i, observed is only Ti = min(T∗
i ,Ci) ∈ ℝ+, where Ci is the censoring time.

The feature space is spanned by a vector of covariates:

X i = (X1,i, … ,Xp,i) ∈  = 1 × · · · × p ⊆ ℝp

In survival analysis, we operate with parameters such as the event-free survival probability, Sx(t) =
P(T∗ > t | X = x), and the cause-j specific absolute risk function (cumulative incidence),

Fj(t | x) = P(T∗ ≤ t, 𝛿 = j | X = x)

Both quantities can only be estimated for times that satisfy at least 0 ≤ t ≤ 𝜏 = max {T1, … ,Tn}, and both
depend on the cause-specific hazard rates for all J competing causes of the event[8]. The cause-j specific
hazard rate is the instantaneous probability of a cause-j event at time t given no event until just before
time t:

𝜆(t | x) = lim
dt→0

P(t ≤ T∗ < t + dt, 𝛿 = j |X = x)
dt ⋅ Sx(t)

2 Algorithms and Implementations

A random forest for survival analysis essentially consists of an ensemble of randomized survival trees
(Figure 2) (see Regression Trees). There are at least the following different implementations in the
statistical software R[9], in the add-on packages randomForestSRC[10], party[11] and ranger[12].
Furthermore, Mogensen and Gerds[13] pointed out how an implementation of random forest for uncen-
sored data can be combined with pseudo-values obtained with the Kaplan–Meier or the Aalen–Johansen
statistic.

The number of trees is a hyperparameter chosen by the user. The randomization of the trees consists
of the following parts. First, each tree is grown on a bootstrap sample of the learning data, drawing the
bootstrap sample with or without replacement (see Bootstrap with Examples). Second, in the process
of growing the survival trees, the algorithm selects the next binary split using only a random subset
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Right-censored time-to-event outcome
Competing risks

Data

OOB 1 OOB b OOB B

Bootstrap 1 · · ·

· · · · · ·

· · ·Bootstrap b Bootstrap B

mtry nodesize

Survival tree b Survival tree B

Predicted probability
Prediction

error Variable
importance

Survival tree 1

splitrules for
censored data

Figure 2. Illustration of the random forest algorithm for survival analysis. The parameter nodesize
determines the constraint to control when to stop the tree growing process and mtry is the size of  ′.

 ′ ⊆ {1, … , p} of the available covariates. The cardinality of the set  ′ is a hyperparameter which
is usually called mtry. When there are continuous covariates, a third layer of randomization can be
implemented which chooses a random subset of all the available binary splits that one can form based
on the values of a continuous covariate (hyperparameter msplit of randomForestSRC). In random
forests, the trees are typically grown as deep as possible, usually under the constraint that all nodes must
contain a minimum number of observations.

The key to applying random forests in survival analysis consists of a revision of the tree-building process.
For a comprehensive overview of survival trees, see Ref. 14. In general, a tree amounts to a partitioning
algorithm that recursively implements binary splits of the covariate space  into disjoint subspaces. A sur-
vival tree, in particular, uses a specific splitting rule that explicitly takes into account the right-censored
nature of the data. In each split, the partitioning is performed only along a single axis (Figure 3), and optimal
splits are chosen such that, as the tree grows, the regions of the covariate space defined by the subsequent
splits will become more and more similar in terms of survival. The randomization of the process of grow-
ing the trees (mtry, msplit) of a forest increases the variability of the trees. The information obtained
from the terminal nodes of the trees of the forest will thus differ accordingly, and is aggregated to form the
forest ensemble estimates.

There are different variants of the random forest algorithm for survival analysis and also other tree-
based methods applicable to right-censored data, varying with respect to how trees are grown and how
aggregation of tree-specific information is performed. The two major algorithms are the random survival
forests[2] and the conditional inference forests[11,15,16]. Other alternatives are[17,18].
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X2 = 0 X2 = 1

X10 > c1

1

X10 ≤ c1 X4 > c2 X4 ≤ c2

X7 = 0

3

X7 = 1

4

X8 > c4 X8 ≤ c4

5

X1 ≤ c3

2

X1 > c3

X4 > c5

6

X4 ≤ c5

7

X6 = 1X6 = 0

8

X4 > c6

9

X4 ≤ c6

10

Root node

Figure 3. Example of a simple tree with 10 terminal nodes grown on a dataset with covariates
X1, … , X10. For instance, terminal node 1 corresponds to {X2 = 0} ∩ {X10 > c1}.

3 Growing Survival Trees

Splitting rules for growing survival trees are usually based on two-sample tests for right-censored
data[19,20]. In this way, subjects are discriminated according to their expected survival outcome such that
survival within the daughter nodes of the next split is more similar than between daughter nodes. The
particular choice of the test statistic defines the measure of similarity. Other examples of splitting rules
for survival trees are those based on measures of within-node homogeneity such as the distance between
Kaplan–Meier estimates of the survival curves[21,22].

Any nonterminal node of a survival tree corresponds to a subspace  ′ ⊆  . A proposed split of the
node leads to a partition,  ′

l ⊍  ′
r =  ′, into two disjoint daughter nodes {i∶ X i ∈  ′

l } and {i∶ X i ∈  ′
r}.

For each such split, we can perform a statistical two-sample test for survival equivalence or any other
criterion. The standard choice is the log-rank test for the null hypothesis of equal survival probabilities
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(see Logrank Test). We use counting process notation[7] Ni(t) = 𝟙{Ti ≤ t, 𝛿i = 1} and Yi(t) = 𝟙{Ti > t}
and define for the left daughter node,

Nl(t) =
n∑

i=1
𝟙{X i ∈  ′

l )} ⋅ Ni(t), Y l(t) =
n∑

i=1
𝟙{X i ∈  ′

l } ⋅ Yi(t)

and correspondingly Nr(t), Y r(t) for the right daughter node. The Fleming–Harrington’s family of test
statistics[23] can be written as,

ZLR(t) = 1
�̂�LR ∫

t

0
W (s)

Y l(s)Y r(s)

Y l(s) + Y r(s)

(
dNl(s)

Y l(s)
−

dNr(s)
Y r(s)

)
(1)

where W (ti) = 1 corresponds to the standard log-rank test. Varying the weights W (s) in Equation (1) can
be used to put more or less emphasis on early and late time-points. The partitioning into daughter nodes ′

l ,  ′
r =  ′/ ′

l is chosen such that |ZLR(t)| is maximized.
The daughter nodes defined by the split  ′

l ,  ′
r =  ′/ ′

l , are limited to differ only along a single axis of  ,
that is, only according to the values of one of the p covariates. For example, a split performed along the qth
axis, when Xq is continuous or ordinal, is of the form,

 ′
l =  ′ ∩ {Xq < c},  ′

r =  ′ ∩ {Xq ≥ c}

for some value c ∈ ℝ that is based on the observed values of Xq ∈  ′. The choice of splitting criterion can
be used to make splits with certain properties more likely. For instance, the log-rank test statistic is optimal
when the hazard ratio between the daughter nodes is proportional whereas variations over W (ti) can be
used to target splits with either short-term or long-term effects. Notably, the split point selection is also
related to variable selection[18,24].

3.1 Competing Risks

For forests applied to competing risks analysis, different choices of splitting rules have different inter-
pretations in terms of distinguishing variables with direct effect on the hazard of a specific event of
interest and variables also having an indirect effect through the competing events. See also Ref. 8. Let
𝜆j,l(⋅), 𝜆j,r(⋅), and 𝜆j,0(⋅) denote the hazard function in the left daughter, the right daughter, and the parent
node, respectively, and likewise let Fj,l(⋅), Fj,r(⋅), and Fj,0(⋅) denote the cumulative distribution functions.
On the one hand, the log-rank test is based on the test of equal cause-specific hazards,

H0∶ 𝜆j,l(t) = 𝜆j,r(t) = 𝜆j,0(t), t ≤ 𝜏

and thus takes only cause-specific risk factors into account. On the other hand, effects from variables on a
cause-specific event of interest also indirectly through the hazard function of competing events manifest
themselves on the cumulative incidence,

Fj(t | x) = ∫
t

0
S(u − | x) 𝜆j(u | x) du = ∫

t

0
exp

(
−∫

u

0

J∑
k=1

𝜆k(s | x) ds

)
𝜆j(u | x) du

Variables with such effects can be distinguished by use of Gray’s test[25] instead, which is the test of the null
hypothesis

H0∶ Fj,l(t) = Fj,r(t) = Fj,0(t), t ≤ 𝜏
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4 Ensemble Prediction

We first note the difference between making predictions based on an isolated (stand-alone) survival tree
and making predictions based on a forest. When an isolated survival tree is used for the prediction of a
subject with covariate value x, the estimator operates on the part of the learning data which shares the
terminal node with x, and the prediction for any subject sharing this terminal node will be the same. The
intuition is that the terminal nodes of a tree will contain subjects that are similar with respect to their
expected survival outcome. The prediction of a random forest is based on all the learning data (including
possible bootstrap replicates) of all terminal nodes of the B trees in which x falls.

There are different approaches to aggregate the data of the terminal nodes shared with x. For example,
Ref. 16 collects the learning samples of the terminal nodes of x into a new dataset (with possible bootstrap
repetition), and then the ensemble Kaplan–Meier estimate (see Kaplan–Meier Estimator) is computed
from this dataset. This can be written as,

Ŝx(t) =
∏
s≤t

(
1 −

∑n
i=1

∑B
b=1 ni,b ⋅ Li,b(x) ⋅ Ni(ds)

∑n
i=1

∑B
b=1 ni,b ⋅ Li,b(x) ⋅ Yi(s)

)

where the function,

Li,b(x) =
Kb∑

k=1
𝟙{X i ∈ Cb

k}𝟙{x ∈ Cb
k}

indicates which subjects of the learning data share the terminal node with x in the bth tree, and ni,b ≥ 0
is the number of times sample i is used in the tree. In Refs 2 and 8, on the other hand, Nelson–Aalen
(see Nelson–Aalen Estimator), Kaplan–Meier, and Aalen–Johansen (see Aalen–Johansen Estimator)
estimates are computed for each survival tree separately based on the learning data that share the terminal
node with x, and then these estimates are averaged over trees.

5 Predictive Accuracy

Traditionally, the machine learning community uses predictive accuracy to validate their models[26]. In
right-censored survival data, standard measures of prediction accuracy are the time-dependent area under
the receiver operating characteristic[27–29] and the time-dependent Brier score and time-dependent log-
arithmic score[30,31]. When the aim is to assess the prediction performance of a random forest, one can
use the out-of-bag data[8]. When the aim is to compare the performance of the random forest model
with other survival prediction models, one needs an outer cross-validation loop to estimate the prediction
accuracy[32].

6 Variable Importance

Random forests can be used to rank covariates in terms of their association with the survival outcome,
their variable importance (VIMP)[2,33], and for the investigation of pairwise variable interactions. The most
commonly used measures of VIMP are based on predictive accuracy. The idea is to compare a measure of
prediction performance when the forest is grown first with and then without each variable separately. To
avoid fitting a new forest p times, in implementations this is often accomplished by growing the forest with
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a “noised-up” version of the variable. When the prediction performance is decreasing more for a noised-
up version of one variable than for a noised-up version of another, the former is concluded to be more
important than the latter.

A different approach to measuring VIMP is the so-called minimal depth[34]. For any variable Xj, this
is defined as the shortest distance between the root node of the tree and a node that splits on Xj, a so-
called Xj-subtree. In Figure 3, for example, the minimal depth of variable X2 is 0 and the minimal depth of
variable X4 is 2. The randomness resulting from sampling ′ in each split is averaged out over the trees, and
hence the earlier a variable is used for a split, the more important it is for discriminating survival outcome.
Thus, the minimal depth is directly linked to the choice of splitting criterion, and, accordingly, variations
of the splitting rule can be used to target different interpretations of the minimal depth in order to, for
instance, distinguish variables with long- or short-term effects on outcome. Note also that Xj-subtrees
for different variables Xj can be used to extract information on interactions, by considering second-order
subtrees. In particular, variables interacting with Xj can be identified from other variables’ subtrees within
Xj-subtrees[34].

7 Asymptotic Properties

Asymptotic properties of random forest estimators are a concern of more recent research. Consistency
has been studied for different variants of random forests and is proved for the survival forest ensemble
under the assumption of a discrete covariate space  [35]; for quantile regression forests[36] and classifica-
tion forests[37], consistency is proved under the more general assumption of a continuous  . Asymptotic
normality has been looked into more recently in Ref. 38, for a particular variant of regression forests.
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Abstract: We are interested in estimating treatment effects on the absolute
risk of an event in a survival analysis setting. The particular approach taken
in this paper is based on the generalized random forest (GRF) [2] methodology
that we adapt to right-censored data. We formulate the estimation problem in
terms of counterfactual outcomes where both treatment and censoring act as
a coarsening on the underlying survival time, and define our target parameter
as the solution to an inverse probability weighted estimating equation. To
grow the forest, we use a partitioning scheme (splitting criteria) based on the
influence function for our target parameter. The result is a nonparametric
estimator for the treatment effect on survival.

Keywords: Survival analysis, random forests, causal inference, treatment
effects, censored data.

1 Introduction

Estimation of average treatment effects by means of machine learning methods
has applications in fields such as biostatistics and econometrics and is a
popular alternative to parametric and semiparametric methods. This article
is concerned with the adaption of the generalized random forest (GRF) [2]
framework, a recent extension of the original random forest [4] based on
subsampling and honesty, to estimation of treatment effects based on right-
censored data. The GRF methodology is formulated in terms of estimating
equations of the form,

E
[
ψθ(x),ν(x)(O) |X = x

]
= 0, (1)
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for estimation of a parameter θ(x) based on data (Xi, Oi) ∈ X ×O, X ⊆ Rp

where ψθ(x),ν(x)(·) is a scoring function and ν(x) is an optional nuisance
parameter. GRFs have been applied to estimation of heterogeneous treatment
effects [12, 2] but not for censored time-to-event outcomes.

A random forest consists of trees where each tree recursively splits sub-
samples of data using a specific partitioning scheme. Central to the GRF
algorithm is that the partitioning scheme targets specifically the estimation
of θ(x). The idea is to label subjects with the influence function of a local
estimator for the target parameter. Then a split is implemented such as
to maximize heterogeneity in the labeled subjects. By averaging over the
neighborhoods defined by each tree, the forest outputs a weighting function
that can be used to find solutions to the estimating equation (1).

To adapt the GRF methodology to the survival analysis setting we consider
a specific estimation equation that involves a Kaplan-Meier integral for which
we derive the influence function. The forest weights define a kernel function
based on which we construct an estimator that solves the estimating equation
of interest. That way, we obtain a nonparametric estimator, allowing for
covariate-dependent censoring, that is targeted directly towards the treatment
effect on survival.

2 Setting and notation

Suppose we make n ∈ N independent and identically distributed observations
of,

X ∈ Rp, O = (A, T̃ ,∆) ∈ {0, 1} × R+ × {0, 1},

where T̃ is a continuous time-to-event outcome observed under right-censoring,
∆ ∈ {0, 1} is an indicator of event, X ∈ X ⊆ Rp is a vector of baseline
covariate values, and A ∈ {0, 1} is a binary treatment assigned at baseline.
We represent the observed data (X,A, T̃ ,∆) as a many-to-one mapping on the
full data structure (X,T 0, T 1) induced by a coarsening by (A,C) [10, 9]. Here,
C is the censoring time and T a is the uncensored counterfactual event time
that would result if treatment had been set to A = a. The observed survival
outcome variables are then given as T̃ = TA ∧ C and ∆ = 1{TA ≤ C}.

Our interest is in the counterfactual distributions F a(t |x) = P (T a ≤ t |X =
x) for a = 0, 1. We further use the notation F (t, a |x) = P (T ≤ t, A = a |x),
G(t, a |x) = P (C > t,A = a |x), Hδ(t, a |x) = P (T̃ ≤ t,∆ = δ, A = a |X =
x) for δ = 0, 1 and H(t, a |x) = P (T̃ ≥ t, A = a |X = x). We assume
coarsening at random (CAR) [10, 6] and positivity, P (C > t0, A = a |X) >
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η > 0, a.s. for a = 0, 1 and a fixed timepoint t0 > 0. We note that, under
these assumptions, the conditional density of an observation O (with respect
to an appropriate dominating measure) can be expressed as,

P (T̃ ∈ dt,∆ = 1, A = a |X = x)
= P (T a ∈ dt |X = x)P (C > t |A = a,X = x)P (A = a |X = x),

and we have the following relations,

F a(dt |x) = H1(dt, a |x)
G(t, a |x) , G(t | a, x) = R

s∈(0,t]

(
1− H0(ds, a |x)

H(s, a |x)

)
, (2)

where P denotes the product integral [1].

3 Kernel estimation

We are concerned with estimation of θ(x) = θ1(x)− θ0(x), where,

θa(x) =
∫ ∞

0
1{t > t0} dF a(t |x), a = 0, 1. (3)

The dependence on the timepoint of interest, t0, is implicit in the notation for
θa(x). We note that θa(x) is defined as a functional of the distribution F a of
the unobservable T a. By CAR and positivity, we can rewrite (3) using (2) as,

θa(x) =
∫ ∞

0
1{t > t0}

H1(dt, a |x)
G(t, a |x) , a = 0, 1. (4)

This corresponds to an inverse probability weighted estimating equation of
the form,

E

[ ∑

a∈{0,1}
(2a− 1)

(∫ ∞

0
1{t > t0}

1{T̃ ≤ t,∆ = 1, A = a}
G(t, a |x)

)
− θ(x)

∣∣∣∣X = x

]
= 0,

with nuisance parameters (H1, G). We consider the following estimators, for
a kernel weighting function K(x, x′) ≥ 0,

Ĥδ
K(t, a |x) =

n∑

i=1
K(x, xi) 1{T̃i ≤ t,∆i = δ, Ai = a}, for δ = 0, 1,

ĤK(t, a |x) =
n∑

i=1
K(x, xi) 1{T̃i > t,Ai = a}.
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The kernel function K(x, x′) is used to place more weight on observations in
the covariate space X that are close to x. We define the estimators,

θ̂K,a(x) =
∫ ∞

0
1{t > t0}

Ĥ1
K(dt, a |x)
ĜK(t, a |x)

, ĜK(t | a, x) =
∏

s≤t

(
1− Ĥ0

K(ds, a |x)
ĤK(s, a |x)

)
.

In the GRF framework we replace the kernel weighting function K(x, x′) by
forest-based weights as we will show in the following.

4 GRF for survival analysis

A random forest consists of a set of B ∈ N trees that each provides a parti-
tioning of the covariate space. The following outlines the tree building process
for the bth tree in the GRF framework.

1. Subsampling. An index set Jb of size sn < n is sampled randomly from
{1, . . . , n} without replacement.

2. Honesty. The index set Jb is divided randomly into J 1
b
·∪ J 2

b of sizes
bsn/2c and dsn/2e.

3. Splitting. The tree is grown by recursively implementing binary axis-
aligned splits of the covariates space based on the samples {i : i ∈ J 1

b }.
We describe the particular splitting rule used for estimation of our target
parameter below.

The randomness induced by subsampling together with randomly selecting
a smaller set of variables as candidates for a split ensures diversity of the
different trees of the forest.

Splitting is central to the tree building scheme. In the GRF framework,
splitting rules are targeted specifically towards the target parameter θ(x).
Particularly, the idea is to implement splits of a mother node M ⊆ X into
daughters D1 ·∪D2 = M so as to maximize,

L(D1, D2) ≡
2∑

j=1
P (X ∈ Dj |X ∈M) E

[(
θ̂Dj
− θ(X)

)2 |X ∈ Dj

]
. (5)

Here, θ̂Dj
is the estimate of the target parameter in the jth daughter node,

corresponding to the kernel weight KDj
(x, x′) = 1{x′ ∈ Dj}. As proposed in

[2], we will approximate the splitting criterion in (5) in the following way. Let
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θ̂M be the estimator for the target parameter, corresponding to the kernel
weight KM (x, x′) = 1{x′ ∈M}. Define,

Ψa(H1, G) =
∫ ∞

0
1{t > t0}

H1(dt, a)
G(t, a) .

The influence function of the estimator θ̂M = Ψ(Ĥ1
M , ĜM ) may be derived as

the Gâteaux derivative of the functional Ψ(H1, G) = Ψ1(H1, G)−Ψ0(H1, G)
in direction of δOi [5, 11]. This influence function is given as IF(H1, G) =
IF1(H1, G)− IF0(H1, G), where, for a = 0, 1,

IFa(H1, G)(Oi) =
(

1{T̃i > t0,∆i = 1, Ai = a}
G(T̃i, a |Xi)

+ 1{Ai = a}×
(

1−∆i

H(T̃i, a |Xi)

∫ ∞

T̃i

1{t > t0}
H1(dt, a |Xi)
G(t, a |Xi)

−
∫ ∞

0
1{t > t0}

H1(dt, a |Xi)
G(t, a |Xi)

(∫ t∧T̃i

0

H0(ds, a |Xi)(
H(s, a |Xi)

)2

)))

−Ψa(H1, G).

Now, we can approximate the splitting criterion defined in (5) by,

L̃(D1, D2) ≡
∑

j=1,2

1∑n
i=1 1{Xi ∈ Dj}

( ∑

{i:Xi∈Dj}
IF(Ĥ1

M , ĜM )(Oi)
)2

. (6)

The estimated influence function IF(Ĥ1
M , ĜM )(Oi) represents the rate of

change in θ̂M in direction of Oi ∈ Dj , and the criterion defined by (6) seeks to
separate samples in a way such that the estimates in the daughter nodes, θ̂Dj ,
j = 1, 2, differ as much as possible from the estimate in the mother node, θ̂M .

Node M specific estimation and the approximation by (6) is defined locally
for X ∈ M . When the splitting process is repeated iteratively, we move
through smaller and smaller neighborhoods defined by each current mother
node. We let Lb(x) ⊆ X denote the terminal node of the bth tree that contains
x ∈ X . Forest weights are obtained by averaging over the neighborhoods
Lb(x), b = 1, . . . , B,

αi(x) = 1
B

B∑

b=1
αb,i(x), where, αb,i(x) = 1{Xi ∈ Lb(x), i ∈ J 2

b }∑n
k=1 1{Xk ∈ Lb(x), k ∈ J 2

b }
. (7)



GRF for survival analysis PPP

Our forest estimator for θ(x) is defined as,

θ̂α(x) =
∑

a∈{0,1}
(2a− 1)

∫ ∞

0
1{t > t0}

dĤ1
α(t, a)

Ĝα(t, a)
,

using the kernel function defined by the forest K(x, xi) = αi(x). The terminal
nodes shrinking around x for n→∞ implies that K(x, xi) = αi(x)→ δx for
n→∞.

5 Discussion

In this paper we have demonstrated how the GRF methodology can be
adapted to right-censored data. We have proposed a forest-based kernel
weighted estimator of the treatment effect on the absolute risk and derived
the influence curve to be used for the recursive splitting scheme. That way,
estimation is targeted directly towards the treatment effect and optimized for
the timepoint of interest.

We note that this stands in contrast to the existing random forest algorithms
for survival analysis, see for instance [7, 8]. For these, splitting rules are
typically based on two-sample tests for right-censored data focusing on survival
estimation over the whole time range. Our approach will be useful in the
application of average treatment effects as a variable importance measure.
Another extension of interest deals with competing risks analysis. Here our
methods could be used to rank a list of treatments in terms of their effect on
hospitalization with depression or bipolar disorder in presence of the competing
risk of death.
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Abstract

In this paper we present a data-adaptive estimation procedure for estimation of average treatment effects in a
time-to-event setting based on generalized random forests. In these kinds of settings, the definition of causal effect
parameters are complicated by competing risks; here we distinguish between treatment effects on the crude and
the net probabilities, respectively. To handle right-censoring, and to switch between crude and net probabilities,
we propose a two-step procedure for estimation, applying inverse probability weighting to construct time-point
specific weighted outcomes as input for the forest. The forest adaptively handles confounding of the treatment
assigned by applying a splitting rule that targets a causal parameter. We demonstrate that our method is effective
for a causal search through a list of treatments to be ranked according to the magnitude of their effect. We further
apply our method to a dataset from the Danish health registries where it is of interest to discover drugs with an
unexpected protective effect against relapse of severe depression.
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1 Introduction
Drug repurposing is an important low-cost method for drug discovery which is typically based on a data-driven
experimental approach. In this paper, our general aim is the ability to rank a list of treatment variables according
to their effect on a time-to-event outcome. We consider average treatment effect estimation based on generalized
random forests in a time-to-event setting with competing risks. We find two aspects particularly important when
having to search through a potentially large list of treatments. First, our methods should be as flexible as possible; if
we have many treatments, it will be impossible to correctly specify parametric models for the outcome distribution
and for all treatment propensities with main effects and interactions. Second, we need a real-valued measure to be
used for ranking that should have a sensible interpretation. Compared to other methods for average treatment effect
estimation in right-censored and competing risks settings (see, e.g., Ozenne et al., 2019), the methods presented in
this paper do not require specification of models for treatment propensity and outcome distribution. Further, we
discuss the choice between different causal parameters in the competing risks setting when the aim is to identify
new active substances.

Our motivation comes specifically from a large-scale observational registry study on drug purchases and de-
velopment of psychiatic disorders. Here the goal is to discover if drugs that are already in clinical use may have
a protective effect against depression. Psychiatric disorders is a field where the pharmaceutical industry has sub-
stantially withdrawn from developing new drugs; thus, in the absence of new randomized clinical trials, and to
supplement the expensive and time-consuming generation of data from clinical trials, a systematic search through
all drug purchases in the registry data is a cost-efficient way to identify new treatments as well as to discover
adverse side-effects. Specific findings can then subsequently be further investigated in randomized trials.

A random forest (Breiman, 2001) is a popular data-driven algorithm that can be used for variable importance
analysis, i.e., to rank variables according to their association with the outcome of interest (Ishwaran et al., 2007;
Strobl et al., 2008). Mostly, these variable importance measures are based on prediction performance and target
the difference in prediction error for a forest that uses the observed version of a specific variable (for which we
measure the importance) compared to a forest that uses a randomized version of that variable (Breiman, 2001;
Ishwaran et al., 2007). Another measure is the minimal depth (Ishwaran et al., 2010, 2011) which utilizes the
distance from the root node of a tree to the first node where there is a split on the variable of interest. The smaller
the minimal depth for a given variable, the more important that variable is considered to be.

Our approach in this paper is different in that we consider the use of causal treatment effect parameters as a
variable importance measure. Similar approaches have also been considered in the context of high-dimensional
biomarker discovery, see, for example, Tuglus and van der Laan (2008); Bembom et al. (2009); Wang and van der
Laan (2011). In a counterfactual framework (Neyman, 1923; Rubin, 1974), treatment effect parameters are for-
mally defined as a difference between expected counterfactual outcomes. Under a set of structural and distribu-
tional assumptions the parameters are linked to the observed data. We formulate causal parameters in terms of
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average differences of event probabilities at pre-specified time horizons of interest, allowing us to report a time-
point specific measure of the effect of a particular treatment.

Generalized random forests (GRFs) (Wager and Athey, 2018; Athey et al., 2019) are a recent extension of
Breiman’s random forests that have been applied to provide nonparametric inference for heterogeneous treatment
effects in settings with real-valued and uncensored outcomes of interest. The GRF algorithm is implemented
to optimize estimation of the causal treatment effect specifically. Here we implement GRFs for time-to-event
outcomes by using inverse probability weighting to make the GRF implementation directly applicable to our setting
with right-censoring and competing risks. In the competing risks setting, we further discuss the distinction between
treatment effects on crude and net probabilities. These considerations are closely related to the work of Young et al.
(2018).

For proof of concept and illustration, we analyze Danish registry data on all Danish citizens who have a first
time diagnosis with depression registered. We follow these patients until depression relapse, onset of other men-
tal disorders, death without relapse, or right-censoring. We consider all drugs purchased by any patient in the
eight weeks between the depression diagnosis and the start of follow-up. We then apply our two-step procedure
separately to each drug and rank the drugs according to the magnitude of their treatment effects.

The article is organized as follows. In Section 2 we introduce the setting and notation for survival and com-
peting risks data. In Section 2.1 we define our target parameters in terms of counterfactual outcomes, and we
discuss the distributional assumptions under which we can identify the parameters from the observed data. In Sec-
tion 3 we review the generalized random forest methodology and present our weighting approach for making the
methodology applicable to time-to-event data. In Section 4 we introduce and discuss the use of average treatment
effects specifically for the purpose of variable importance analysis. In Section 5 we study the performance using
simulated data. In Section 6 we analyze Danish registry data. We close with a discussion in Section 7.

2 Setting and notation
In time-to-event settings subjects are observed from study entry to the occurrence of an event of interest or a
competing event. If no event of any kind is observed within the subject-specific follow-up time, the subject is
right-censored. Specifically, we consider a competing risks situation with J ≥ 2 mutually exclusive types of
events. For sake of presentation, we assume throughout that J = 2. We denote by Ti the uncensored event time,
by ∆i ∈ {1, 2} the event type and by Ci the censoring time, such that the observed data are T̃i = min(Ti, Ci) and
∆̃i = 1{Ti ≤ Ci}∆i. Moreover, Xi ∈ X ⊆ Rp is a vector of baseline covariates and Ai = (A1,i, . . . , AK,i) ∈
{0, 1}K is a vector of K ∈ N binary treatment variables. The data consist of n ∈ N independent samples,{

(X1,A1, T̃1, ∆̃1), . . . , (Xn,An, T̃n, ∆̃n)
}

. We are interested in estimating the effect of the treatment variable
Ak ∈ {0, 1} on the probability of events of type j = 1. We refer to the other type of events (j = 2) as competing
events, or competing risks.

We define our target parameter in terms of counterfactuals, using a notation with superscripts to define inter-
ventions. In particular, we define T a as the uncensored counterfactual event time and ∆a as the corresponding
event indicator that would result from setting treatment Ak to a. Further, for j = 1, 2, we use T j,a to denote the
uncensored counterfactual event time of type j that would result if treatment Ak had been set to a in a hypothetical
world where cause j is the only cause. Lastly, we denote by πk(x) = P (Ak = 1 |X = x) the propensity score
of treatment Ak conditional on X = x, x ∈ X . Note that we distinguish between the counterfactual event time
variable T a with a single superscript and the counterfactual event time variable T j,a with double superscript. Note
also that when studying the treatment Ak, the other treatments can enter the vector of baseline covariates.

2.1 Treatment effects in presence of competing risks
2.1.1 The competing risks problem revisited

As a motivation for our later discussions on causal parameters for treatment effect ranking, we here briefly revisit
the problems with causal inference in competing risks settings. In particular, in presence of competing risks, the
one-to-one correspondence between the cause-specific hazard and the absolute risk is lost (Andersen et al., 2012),
and the effect of variables on the cause-specific hazard may be quite different from their effect on the absolute risk
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(Gray, 1988). Specifically, variables may have an indirect effect on the absolute risk only through its effect on the
cause-specific hazard of the competing event. Consider the following example.

Example 2.1 Suppose that it is of interest to rank two treatments,A1 andA2, according to their effect on the event
of interest. Assume that the cause-specific hazard rates are given by:

λ1(t |A1, A2) = e−0.2A1−0.2A2 ,

λ2(t |A1, A2) = e−0.2A1 ,

for the event of interest (λ1) and the competing event (λ2). Clearly, A1 and A2 have the same effect on the hazard
of the event of interest. Nonetheless, the cause-specific cumulative incidence of the event of interest also depends
on the hazard rate of the competing event:

F1(t | A1, A2) =

∫ t

0

λ1(s | A1, A2)e−
∫ s
0

∑
j=1,2 λj(u|A1,A2)duds

=
e−0.2A1−0.2A2(1− e−t(e−0.2A1−0.2A2+e−0.2A1 ))

e−0.2A1−0.2A2 + e−0.2A1
.

Now, assume that A1 and A2 are both Bernoulli variables with P (Ak = 1) = 0.5, k = 1, 2. This implies that:

E[F1(1 | 1, A2)− F1(1 | 0, A2)] = −0.0137,

E[F1(1 | A1, 1)− F1(1 | A1, 0)] = −0.061,

i.e., the average treatment effects on the cause-specific risk beyond t = 1 are very different. Likewise, we see at
t = 2 that:

E[F1(2 | 1, A2)− F1(2 | 0, A2)] = −0.0049

E[F1(2 | A1, 1)− F1(2 | A1, 0)] = −0.0586,

i.e., there is almost no effect of treatment A1 but a considerable effect of A2. Thus, in this example, due solely to
the effect that A1 has on the competing cause-specific hazard rate, we would conclude very different effects of the
two treatments on the cumulative risk of cause 1.

Recall that our goal is variable importance and the ability to rank a list of treatment variables according to their
effect on a specific time-to-event outcome. Example 2.1 illustrates the interpretational issues with absolute risks
in the presence of competing risks, and the question is if we would like to conclude different effects for the two
treatments A1 and A2. This problem is not solved by analyzing the cause-specific hazard rates alone. Specifically,
these are defined conditional on post-treatment mechanisms and therefore cannot be ascribed an interpretation as
a measure of a causal treatment effect (Hernán, 2010; Martinussen et al., 2018).

In the following we distinguish between effects on crude and net probabilities, respectively, to characterize the
effect of a treatment variable Ak on the occurrence of events of type j = 1. We emphasize that the choice between
crude and net effects corresponds to the choice between different causal parameters, and altogether depends upon
the goal of the analysis. In summary, we argue that:

1. Causal effects on crude probabilities are used for describing the real world; crude probabilities allow us to
infer on treatment effects that would actually occur in a given population.

2. Causal effects on net probabilities are defined in hypothetical worlds without competing risks, and reflect
effects of etiological nature. They allow us to infer treatment effects directly on the event type of interest
without interference from indirect effects on the competing event time.

Different assumptions on the underlying data-generating mechanisms are necessary when focus is on crude or on
net probabilities as we describe in Sections 2.2.1 and 2.3.1, respectively. Importantly, the assumptions needed to
identify net probabilities are considerably more ambitious. In Section 2.2, we start by discussing treatment effects
on crude probabilities. In Section 2.3, we present treatment effects on net probabilities. In Section 4 we consider a
variable importance analysis where the subject matter interest is not in the treatment effects on the crude probability
scale; rather, we want to assess treatment effects only directly on the occurrence of type j = 1 events.
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2.2 Effects on crude probabilities
Recall that the random variables T 0 and T 1 denote the uncensored counterfactual event times that would result if
treatment had been set to Ak = 0 or Ak = 1, respectively. The conditional treatment effect of Ak on the crude risk
of events of type 1 before a fixed time horizon t0 > 0 is defined as

θcrude(x) = P (T 1 ≤ t0,∆1 = 1 |X = x)

− P (T 0 ≤ t0,∆0 = 1 |X = x),
(1)

for x ∈ X . The parameter in (1) has a corresponding average,

θ̄crude = E[θcrude(X)]

= P (T 1 ≤ t0,∆1 = 1)− P (T 0 ≤ t0,∆0 = 1),
(2)

the average treatment effect (ATE) on the crude risk at time t0. The quantities P (T a ≤ t0,∆
a = 1), a = 0, 1,

in (2), referred to as the crude probabilities, are the cumulative incidence functions (Gray, 1988) of the event of
interest for a hypothetical treated and a hypothetical untreated population, respectively. These crude probabilities
also depend on the hazard rate of the competing event, since, at any time, the event of interest can only occur
for subjects who have survived all risks so far. A treatment which reduces the hazard rate of the competing risk
increases the event-free survival probability and thereby indirectly increases the crude risk of the event of interest,
and vice versa (see also Ishwaran et al., 2014). Particularly, as also illustrated in Example 2.1 of Section 2.1.1,
a treatment effect reflected in a non-zero value of θ̄crude will occur also if there is only an indirect effect of the
treatment on the outcome of interest via the hazard rate of the competing event.

2.2.1 Identifiability of treatment effects on crude probabilities

The average treatment effect on crude probabilities θ̄crude is defined in terms of counterfactual random variables
such that identifying θ̄crude from the observed data requires some distributional assumptions (Hernan and Robins,
2020). First, an assumption of consistency entails that the event time under treatment Ak = a, T a, corresponds
to the event time we would observe for a subject who was actually observed to be given treatment Ak = a. This
requires that the treatment Ak can only be administered in one way. Second, an assumption of no unmeasured
confounding relates both to the treatment and the censoring mechanism. We assume that, conditional on covariates
X , the counterfactual outcome (T a,∆a) is independent of the observed treatment Ak. Further, we assume that,
conditional on covariates X and observed treatment Ak, the outcome (T,∆) is independent of the censoring time
C. Lastly, we assume positivity, that P (C ≥ t0 |Ak = a,X) (πk(X))a(1 − πk(X))1−a > η for a = 0, 1 and
some η > 0.

2.3 Effects on net probabilities
Recall that the counterfactual random variables T 1,0 and T 1,1 are the (uncensored) counterfactual event times that
would have been observed in a hypothetical world in which cause j = 1 is the only cause and where treatment
had been set to Ak = 0 and Ak = 1, respectively. Particularly, T 1,0 and T 1,1 are latent times that are not always
observed in the real world due to cause j = 2 events and due to right-censoring. We emphasize that, opposed to the
crude risks P (T a ≤ t0,∆

a = 1), a = 0, 1, in Equation (2), the net risks P (T 1,a ≤ t0), a = 0, 1, are not affected
by the (indirect) effect that a treatment may have on the hazard rate of the competing risk. They are interpreted as
net probabilities for the event of interest in a hypothetical world where the competing event cannot happen. The
conditional treatment effect of Ak on the net risk of events of type 1 is defined as follows,

θnet(x) = P (T 1,1 ≤ t0 |X = x)− P (T 1,0 ≤ t0 |X = x), (3)

for x ∈ X , with the corresponding average,

θ̄net = E[θnet(X)] = P (T 1,1 ≤ t0)− P (T 1,0 ≤ t0), (4)

which is the average treatment effect (ATE) on the net probability. Notably, a treatment effect reflected in a non-
zero value θ̄net will only occur if the studied treatment has a direct effect on the event of interest, whereas a
treatment effect reflected in a non-zero value θ̄crude will occur also if there is an indirect effect of the treatment on
the outcome of interest via the hazard rate of the competing event.
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2.3.1 Identifiability of treatment effects on net probabilities

Identification of θ̄net from observed data requires additional assumptions to the ones stated in Section 2.2.1. No-
tably, θ̄net are formulated in terms of an extra layer of counterfactual reasoning, as it is defined in terms of coun-
terfactual event times T 1,a we would had seen has there been no occurrences of competing events. Consistency
requires that the counterfactual time to event j = 1, T 1,a, corresponds to the actual event time for a subject who
remained uncensored, free of competing events and was observed to be given treatment Ak = a. Positivity ad-
ditionally includes the probability of competing events being bounded away from zero: P (T 2,Ak ≥ t0 |Ak =
a,X) > η′, for a = 0, 1 and for some η′ > 0. Most critical is the additional assumption of no unmeasured
confounding for the competing event time T 2,Ak ; it is needed that T 1,Ak and T 2,Ak are conditionally independent
given covariates X and treatment Ak. As previously mentioned, we stress that this is a very strong assumption:
Whether Ak and X together include all factors that we believe to be predictive of both event types depends very
much on the nature of the competing events and how rich the measured set of covariates is.

3 Generalized random forests with inverse probability weighted outcomes
Generalized random forests (GRFs) (Athey et al., 2019) are a recent generalization of the original random forest al-
gorithm (Breiman, 2001), a machine learning tool that adaptively searches the covariate space by recursive sample
splitting.

Generally, a forest consists of B ∈ N randomized trees, where the bth tree of the forest is grown by recursively
splitting the covariate space according to some split criterion. GRFs provide a data-adaptive approach to estimation
of average treatment effects for uncensored data, particularly, for a generic outcome variable Y ∈ R,

θ(x) = E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x].

A key part of the generalized random forest algorithm is the splitting rule that targets specifically the estimation
of the quantity of interest θ(x). Each tree applies a splitting rule that adaptively makes binary partitions of the
covariate space such as to maximize heterogeneity in θ(x). By averaging over neighborhoods defined by the trees,
the forest produces a neighborhood function that is used as a kernel for the estimation of θ(x). In the Supplemen-
tary Material (Appendix C) we describe the local gradient-based criterion for making splits and the kernel-based
estimator for θ(x) as proposed by Athey et al. (2019), and we further review the structural model formulation of
treatment effects of Athey et al. (2019, Section 6) and its relation to our setting with the counterfactual formulation.

The problem in our setting is that we do not observe the actual outcomes of interest. For the parameter θ̄crude,
for example, we do not observe Y := 1{T ≤ t0,∆ = 1} due to right-censoring. In this section we assume that
we are given a conditional distribution function G such that G(t |Ak,X) = P (C > t |Ak,X). Based on G, we
define the inverse probability weighted outcome,

Ỹ :=
1{T̃ ≤ t0, ∆̃ = 1}
G(T̃− |Ak,X)

. (5)

For this outcome, we show in Section 3.1 below that

θcrude(x)

= P (T 1 ≤ t0,∆1 = 1 |X = x)− P (T 0 ≤ t0,∆0 = 1 |X = x)

= E
[
Ỹ
∣∣X = x, Ak = 1

]
− E

[
Ỹ
∣∣X = x, Ak = 0

]
.

The idea is that we can apply GRFs directly to our weighted outcome Ỹ . This provides an estimator θ̂crude(x) for
θcrude(x) and thereby an estimator for the corresponding average effect

ˆ̄θcrude =
1

n

n∑

i=1

θ̂crude(Xi). (6)

This leads to the following two-step approach:
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Step 1. The conditional distribution function G is estimated based on the full dataset and is used to construct
the weighted outcome Ỹ as defined by Equation (5).

Step 2. A generalized random forest is applied with Ỹ as outcome, yielding estimates θ̂crude(x), x ∈ X , and
the ATE is then estimated simply by averaging as in Equation (6).

An equivalent two-step approach is utilized to estimate the effect on net probabilities. We note that this requires,
in addition to an estimator for the conditional distribution G, an estimator for the conditional distribution function
G2 such that G2(t |Ak,X) = P (T 2,a > t |Ak,X), and construction of the inverse probability weighted outcome

Ỹ ′ :=
1{T̃ ≤ t0, ∆̃ = 1}

G(T̃− |Ak,X)G2(T̃− |Ak,X)
. (7)

Thus, to construct the weights, we need to model the survival functions of both the latent time to a competing risk
event and the censoring time.

3.1 Identifiability by inverse probability weighting
The assumptions stated in Section 2.2.1 allow us to link the distribution of the counterfactual variables to the
observed data distribution. Since,

E
[
Ỹ
∣∣X, Ak

]
= E

[
1{T̃ ≤ t0, ∆̃ = 1}
G(T̃− |Ak,X)

∣∣∣∣X, Ak

]

= E
[
1{T ≤ t0,∆ = 1} |Ak,X

]
,

it follows that,

θ̄crude(x)

= P (T 1 ≤ t0,∆1 = 1 |X = x)− P (T 0 ≤ t0,∆0 = 1 |X = x)

= P (T ≤ t0,∆ = 1 |X = x, Ak = 1)

− P (T ≤ t0,∆ = 1 |X = x, Ak = 0)

= E[Ỹ |X = x, Ak = 1]− E[Ỹ |X = x, Ak = 0].

Similarly, we identify θnet(x). More details can be found in the Supplementary Material (Appendix B).

3.2 Estimation of inverse probability weights
To implement our two-step approach, we need consistent estimators for the nuisance parameters G and G2 on
[0, t0]. We here describe an approach based on the reverse Kaplan-Meier estimator stratified on a subset of cate-
gorical covariates Z ⊂ {Ak,X}. This approach is appropriate in our illustrative data example (Section 6), whereas
other settings may require more sophisticated approaches as we discuss in Section 7. Based on the Kaplan-Meier
approach, we estimate the censoring survival distribution function G, conditional on Z, as follows,

Ĝ(t | z) =

∏

tk≤t

(
1−

∑n
i=1 1{Ti = tk,∆i = 0,Zi = z}∑n

i=1

(
1{Ti ≥ tk} − 1{Ti = tk,∆i > 0,Zi = z}

)
)
.

We handle ties in the event times with the usual convention that the event of interest happens before competing
events and censoring events. Similarly, we may estimate G2 with Kaplan-Meier estimator for the competing event
time conditional on Z,

Ĝ2(t | z) =

∏

tk≤t

(
1−

∑n
i=1 1{Ti = tk,∆i = 2,Zi = z}∑n

i=1(1{Ti ≥ tk} − 1{Ti = tk,∆i 6= 2,Zi = z})

)
.

7



Under the working assumption that G(t |Ak,X) = P (C > t |Ak,X) = P (C > t |Z), standard arguments
(e.g. Andersen et al., 1993) lead to Ĝ(t|Z) → G(t|Z) a.s. as n → ∞ for all t ≤ t0, and likewise for Ĝ2(t|Z).
However, violation of the working assumption may lead to asymptotic bias in Step 1 of our two-step approach
which may also lead to bias in the ranking of the treatment variables. In Section 7, we discuss the bias-variance
trade-off and how one may relax the working assumptions.

4 Variable importance
Suppose we have a list of treatments, A1, A2, . . . , AK , K ∈ N, that we would like to rank according to either their
crude or their net effect. We assume that the treatments are binary variables with Ak = 1 indicating treatment and
Ak = 0 no treatment, k = 1, . . . ,K.

We will consider the use of our data-adaptive generalized random forest estimation procedure to rank the list
of treatment variables. Specifically, we continue our discussion from Section 2.1.1 to distinguish between crude
and net probabilities for the purpose of ranking. The problem with crude probabilities is that they reflect a mixture
of effects on the hazard rate of the event of interest and effects on the hazard rate of the competing risks. Net
probabilities, on the other hand, describe a hypothetical world without competing events and have thereby been
criticized (Andersen and Keiding, 2012). Nevertheless, they allow us to study the effect of a particular drug in a
way that is independent of the effect that this drug may have on the hazard rate of the competing events. We argue
that for the purpose of drug discovery, it may be desirable to restrict the search to drugs that would have an effect
in the hypothetical world where all competing causes are eliminated.

To obtain a ranking of the treatments, we apply the two-step approach of Section 3 which yields estimates
ˆ̄θnet,k for the treatment effects on the net probability scale for all drugs Ak, k = 1, . . . ,K. For comparison and
illustration, we also compute estimates ˆ̄θcrude,k for the treatment effect on the crude probability scale. A standard
delta method argument using the standard errors σ̂n(x) for the conditional estimates (as provided by Athey et al.,
2019, Theorem 5 and Section 6) yields asymptotic normality of the forest estimators ˆ̄θnet,k, ˆ̄θcrude,k for the average
treatment effects, based on which we construct confidence intervals. Generally, we say that a treatment Ak has a
protective effect if the upper confidence limit is below zero, a harmful effect if the lower confidence limit is above
zero, and a neutral effect if zero is contained in the confidence interval.

Clearly, the asymptotic standard error also contains a contribution from the uncertainty of the weights con-
structed in Step 1 of our procedure. However, in our experience, these contributions are often very small in real
data applications. In our simulations and illustrative data analysis, we only show confidence intervals which ignore
the statistical uncertainty due to Step 1 and thus rely solely on the theory that applies for construction of confidence
intervals for forest estimation without this step. Despite these shortcomings, we note that in our simulation studies
(Section 5), the coverage of the confidence intervals lies nicely around 95%.

5 Simulation study
To evaluate the performance of our proposed methodology, and as a proof of concept, we test our algorithm on
simulated data. Our simulations further illustrate the difference between treatment effects on the crude and net
probability scales. We here explain the design of the simulations. Further details in the form of R-code can be
found on github, see Section 8. We start by simulating covariates, X = (X1, . . . , X6). We let X1, X4, X5, X6

be uniformly distributed on the unit interval (0, 1), X2 be categorical with three ordered categories, and X4 be
categorical with four ordered categories. We consider a setting where we compare K = 10 treatment variables
drawn from Bernoulli distributions that are all dependent on one of the covariates, E[Ak |X] = expit(βk0+βk1Xlk),
with lk ∈ {1, . . . , 6}.

Given treatments and covariates, three latent event times T 1, T 2, C are simulated according to Weibull distri-
butions. The Weibull distribution of the latent censoring time is specified independently of covariate and treatment
variables. The Weibull distribution of the latent time to the event of interest is specified with a shape parameter
dependent onX1, X3 andA1. The Weibull distribution of the latent competing event time is specified with a shape
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parameter dependent on X1, X2 and A2. Our simulation design can thus be summarized as follows:

Event of interest: T 1 ∼ A1 +X1 +X3

Competing event: T 2 ∼ A2 +X1 +X2

Censoring: C ∼ 1

We simulate counterfactuals such that we know the true value of the average treatment effect parameters,
θ̄net, θ̄crude: That is, we draw from the distributions in the hypothetical scenarios where we control treatment
assignment and occurrence of censoring and, for the net effects, competing risk events.

Throughout this section, we focus on three of the treatment variables: A1 that has a direct effect on the event
of interest, A2 that has an effect only on the competing event, and A3 that has no effect at all. The true values of
θ̄net,Ak

, θ̄crude,Ak
, k = 1, 2, 3, are as follows:

Effects on net probabilities: θ̄net,A1
= −0.113,

θ̄net,A2
= 0,

θ̄net,A3
= 0.

Effects on crude probabilities: θ̄crude,A1
= −0.083,

θ̄crude,A2
= −0.047,

θ̄crude,A3
= 0.

Our aim is to show that weighting yields unbiased estimation of the ATEs and further to explore the effect of
confounding and sample size. Our simulations consist of the following two parts:

1. Effect estimation and coverage. We simulate M = 1000 datasets with sample size n = 1000 from the data-
generating distribution. We look at effect estimates and coverage of the confidence intervals based on the
standard error estimates provided by the forest.

2. Ranking effectiveness. For sample sizes n ∈ {100, 200, 500, 1000, 1500, 2000}, we simulate M = 500
datasets from the data-generating distribution. For each dataset, we use our algorithm to estimate the variable
importance of the treatments A1, . . . , A10, in form of estimates ˆ̄θmnet,Ak

and ˆ̄θmcrude,Ak
for k = 1, . . . , 10 and

m = 1, . . . ,M . For Ak, k = 1, . . . , 10, we define,

RMnet(Ak) :=
1

M

M∑

m=1

∏

k′ 6=k
1{ ˆ̄θmnet,Ak

≤ ˆ̄θmnet,Ak′
}, (8)

RMcrude(Ak) :=
1

M

M∑

m=1

∏

k′ 6=k
1{ ˆ̄θmcrude,Ak

≤ ˆ̄θmcrude,Ak′
}, (9)

as the fraction of simulation repetitions (out of M = 500) where the treatment variable Ak is ranked “most
important” among A1, . . . , A10 in terms of the effect on net and crude probabilities, respectively. We report
the ability of our method to, for instance, detect treatment A1 as the “most important” variable among
A1, . . . , A10.

We consider three different adjustment schemes for the inverse probability weight estimation:

(a) Weight estimators Ĝ, Ĝ2 that are adjusted for A2, X1 and X2, i.e., Z = {A2, X1, X2}.
(b) Weight estimators Ĝ, Ĝ2 that are adjusted only for A2, i.e., Z = {A2}.
(c) Weight estimators Ĝ, Ĝ2 that are unadjusted, i.e., Z = {1}.

The weight estimators are constructed outside the forest in Step 1 of our two-step procedure as described in Section
4. Based on the weights, a separate (GRF) forest is applied for each treatment variable Ak to estimate θ̄net,Ak

and
θ̄crude,Ak

, for k = 1, . . . , 10. We use B = 1000 trees to construct each GRF estimate. The parameters θ̄net and
θ̄crude are defined with time horizon t0 = 0.5. For n = 1000 we had on average (across M = 1000 datasets) 394
competing events, 145 censoring events and 129 events of interest observed before time t0.
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5.1 Simulation results
5.1.1 Effect estimation and coverage

Figure 2 shows mean estimates across M = 1000 simulated datasets using adjustment schemes (a)–(c) for esti-
mation of inverse probability weights. Using adjustment scheme (a), treatment A1 is correctly shown to have a
protective effect, both on the scale of net probabilities and on the scale of crude probabilities. On the other hand,
whether we conclude a protective effect of A2 depends on whether we focus on the net probabilities or on the
crude probabilities. Confidence intervals all have a coverage around 95% despite the fact that the standard errors
do not take the uncertainty of the weight estimation into account. This result was further challenged using varying
sample size and for a varying amount of censored observations, but we found no systematic relationship (results
not shown).

In adjustment scheme (b) the weights are only adjusted for A2, but Figure 2 shows that we still achieve 95%
coverage with our confidence intervals. Comparing the results for adjustment schemes (b) and (c) in Figure 2
shows that it is crucial to include treatment A2 in Z in the weight estimation for estimating θ̄net: Adjustment
scheme (c) uses unadjusted estimators for the inverse probability weights and incorrectly estimate a protective
effect of treatment A2 on the net probabilities.

Estimation of θ̄crude is hardly affected across the weighting schemes (a)–(c) since the censoring times were
generated independent of all treatment and covariate variables. Of course, we can produce biased results for
θ̄crude with the unadjusted weighting scheme if we let the censoring mechanism depend on treatment variables and
covariates.

Across all adjustment schemes (a)–(c), the treatment A3 is correctly shown to have no effect both in terms
of crude and net probabilities. Furthermore, the treatment A1 is correctly shown to have a protective effect. The
coverage of the confidence intervals for these two treatment variables are hardly affected by varying the adjustment
set Z for constructing weight estimators.

5.1.2 Ranking effectiveness

Figure 2 shows the fractionsRMnet(A1) andRMcrude(A1) as defined in Equations (8) and (9) across different sample
sizes. We show only the results from using adjustment scheme (b) and adjustment scheme (c) for estimating the
inverse probability weights, as the results for weighting scheme (a) and (b) are similar.

Recall that RMnet(Ak) is the fraction of simulation repetitions (out of M = 500 total repetitions) where Ak is
ranked most important among A1, . . . , A10 in terms of their effect on the difference in net probabilities. Likewise,
RMcrude(Ak) is the fraction of simulation repetitions where Ak is ranked most important among A1, . . . , A10 in
terms of their effect on the difference in crude probabilities. Figure 2 shows RMnet(Ak) and RMcrude(Ak) for each
of the three treatment variables A1, A2 and A3. We would like RMnet(A1),RMcrude(A1) to be close to one, and
RMnet(A2),RMcrude(A2),RMnet(A3),RMcrude(A3) to be close to zero. We further expectRMcrude(A2) to be larger than
RMnet(A2), due to the effect of A2 on the competing risk event.

Figure 2 shows that both RMnet(A1) and RMcrude(A1) approach one as the sample size n increases: The larger
the sample size, the more certain we are to detect the important variable A1. On the other hand, it also shows that
RMnet(A1) and RMcrude(A1) are both rather small for n = 100 and n = 200. Evidently, we need a certain sample
size to be able to detect important variables with high probability.

Across all sample sizes we have that RMnet(A3),RMcrude(A3) are both very small, consistent with the fact that
A3 has no effect at all (θ̄net,A3

= θ̄crude,A3
= 0). The same is seen for RMnet(A2), except in the scenario where

we fail to adjust for A2 in the estimation of inverse probability weights. At last we note thatRMcrude(A2) is overall
larger thanRMnet(A2), as we would expect.

6 Registry study
We apply our method to our motivating example in which it is of interest to study whether the use of any particular
drug decreases the absolute risk of relapse of depression resulting in psychiatric hospitalization. Our aim is to
discover new active substances; here net probabilities will allow us to rank drugs according to their direct effect
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Figure 1: Results of simulation studies. Shown are the results from estimation of θ̄net,Ak
and θ̄crude,Ak

, k = 1, 2, 3,
across M = 500 repetitions (all with sample size n = 500). The true values are marked by the dashed gray lines.
Note that A2 has an effect on the difference in crude probabilities (true effect θ̄crude,A2

= −0.0487 through
the effect on the competing risk event whereas it has no effect on the difference in net probabilities (true effect
θ̄net,A2 = 0). The right column shows the coverage, i.e, the fraction of simulations where the confidence interval
constructed based on the forest estimate of the standard error contains the true value. In weighting scheme (a)
and (b) we used weights that were adjusted for Z = {A2, X1, X2} or Z = {A2}, both resulting in unbiased
estimators. In weighting scheme (c) we used unadjusted weights (Z = {1}), inducing severe bias in the estimate
of θ̄net,A2

. We do not show the results for A4, . . . , A10 as these are similar to those for A3.

on depression, isolating this effect from what effect that drug may have on competing events. We compare our
estimates of effects on the net probabilities to those on the crude probabilities to investigate their difference.

6.1 Description of data
Data are obtained by linking Danish population-based registers that contain data on all prescribed medical pur-
chases at pharmacies since 1995 and data on all patients treated at hospitals since 1977. A total of 78,700 patients
were included who all had a first-time admission with depression after 2005.

Figure 3 illustrates our design. The date of first contact with depression is defined as the index date. Patients
with a psychiatric hospitalization in the eight weeks window following the index date are excluded. We group ATC
drug codes after their first three digits and define binary exposure variables with the value 1 if there was at least one
prescribed purchase within the ATC group in the eight weeks window. Information on conmorbidity is collected
during a ten year period before the index date and included as covariates in the analysis, along with sex and age at
the index date. Subjects are followed for five years from the end of the exposure window until depression relapse
(∆ = 1), a competing event (∆ = 2), or loss to follow-up (∆ = 0). Summary statistics on comorbidities, exposure
and number of events can be found in the Supplementary Material (Appendix D).

6.2 Analysis of data
To estimate the treatment effect of each considered treatment Ak on the net and crude probabilities, θ̄net,Ak

and
θ̄crude,Ak

, we adjust the inverse probability weights for sex, age group and the treatment Ak itself. In the forest we
use B = 200 trees, and we include sex, age group and all comorbidities as covariates.
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Figure 2: Results of simulation studies. Shown are the fraction of times that each the three treatment variables
A1, A2, A3 was ranked most important (across M = 500 simulation repetitions) in terms of either the effect on the
difference in net probabilities (θ̄net) or the effect on the difference in crude probabilities (θ̄crude). In the left plot,
estimation of the inverse probability weights were adjusted for A2 (weighting scheme (b)). In the right plot, we
used unadjusted estimators (weighting scheme (c)) for the inverse probability weights.

6.3 Results
Figure 4 shows the causal forest estimates of the effect on net probabilities, θ̄net, and of the effect on crude
probabilities, θ̄crude, for each drug group. We distinguish between a protective effect (if the upper confidence
limit is below zero), a harmful effect (if the lower confidence limit is above zero), and a neutral effect (if zero is
contained in the confidence interval). The size of the estimates allows us to rank the treatment groups according to
their effect on relapse with depression.

Specifically, recall that θ̄net is the treatment effect in the hypothetical world without competing events and
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Figure 3: Illustration of our study design. The date of first contact with depression is defined as the index date.
Patients with a psychiatric hospitalization in the eight weeks window following the index date are excluded. ATC
drug codes are grouped after their first three digits to define binary exposure variables with the value 1 if there was
at least one prescribed purchase within the ATC group in the eight weeks window. Information on comorbidity is
collected during a ten year period before the index date and included as covariates in the analysis, along with sex
and age at the index date.

θ̄crude the treatment effect in the real world. When looking for new active substances, we do not wish to report a
large treatment effect of a particular drug if this drug effect only came through an effect on a competing risk event.
Rather, we would like to rank the drugs according to the direct effect that the drugs may have as represented by the
parameter θ̄net. As we saw in the simulation study, as well as in Example 2.1, there can be a substantial difference
between θ̄net and θ̄crude.

Here we see in Figure 4, as well, that the estimates of the two parameters lead to slightly differing conclusions.
Consider, for example, the drug group ‘A12’ (mineral supplements). This drug group is ranked higher in terms of
net probabilities than in terms of crude probabilities (although the effect remains insignificant in both cases). On
the other end of the spectrum, some drug groups are deemed harmful in terms of their effect on crude probabilities
and neutral in terms of their effect on net probabilities: ‘A10’ (antidiabetics) and ‘C10’ (lipid modifying agents).

7 Discussion
In this paper we have considered average treatment effect estimation in a time-to-event setting for the purpose of
ranking treatments according to their effect on a specific outcome of interest. Particularly, we have discussed the
use of two different parameters in the presence of competing risks, defined in terms of net and crude probabilities,
respectively, with different interpretations.

In the present paper, we have implemented a data-adaptive estimation method based on generalized random
forest, where inverse probability weights are constructed to move from a crude to a net interpretation and to make
the forest implementation directly applicable to the time-to-event setting.

Our method makes no parametric model restrictions and benefits from the flexibility of the generalized random
forest which adaptively adjusts the propensity of treatment for covariates. However, a weakness of our presented
analysis is the use of the Kaplan-Meier method for constructing the inverse probability weights. This may work in
large scale registry data where most variables are categorical and a large amount of data are available to estimate
the weights separately in all strata defined by the covariates. However, in other applications it may be necessary to

13



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B03

M05

A06

C10

A10

N03

R06

N02

H03

R01

R03

N05

A02

G03

C09

G04

C08

N04

D01

J01

D07

N06

B01

C07

R05

A03

S01

A12

H02

N07

M01

C03

C01

0

treatment effect

9.50 (5.20; 14.00)

7.50 (−12.00; 27.00)

6.90 (1.20; 12.00)

6.60 (1.30; 12.00)

5.30 (−0.01; 11.00)

4.30 (2.40; 6.30)

4.30 (1.70; 7.00)

3.10 (1.10; 5.00)

2.70 (−2.00; 7.30)

1.80 (−1.40; 5.10)

1.10 (−1.10; 3.40)

1.00 (0.23; 1.80)

0.88 (−1.20; 3.00)

0.76 (−5.50; 7.00)

0.13 (−4.80; 5.00)

−0.17 (−8.50; 8.20)

−0.67 (−7.60; 6.20)

−2.20 (−8.10; 3.80)

−2.20 (−5.30; 0.86)

−3.00 (−4.30; −1.70)

−3.40 (−5.90; −0.92)

−3.80 (−4.60; −3.00)

−3.80 (−12.00; 3.90)

−4.20 (−8.80; 0.35)

−4.30 (−8.20; −0.38)

−5.20 (−9.20; −1.30)

−5.30 (−7.80; −2.90)

−5.70 (−12.00; 0.96)

−5.80 (−11.00; −0.97)

−5.80 (−9.50; −2.10)

−7.70 (−9.50; −6.00)

−8.70 (−14.00; −3.80)

−11.00 (−21.00; 0.16)

Causal forest estimates in hypothetical world with no competing risks (θ̂net)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B03

M05

C10

R06

N03

A10

A06

N02

H03

G04

R01

C09

G03

R03

A02

N05

C08

N04

D01

J01

R05

D07

C07

A12

N06

S01

B01

H02

A03

N07

M01

C03

C01

0

treatment effect

21.00 (13.00; 29.00)

17.00 (−4.10; 38.00)

12.00 (4.20; 19.00)

9.40 (5.60; 13.00)

8.70 (5.90; 11.00)

8.30 (1.60; 15.00)

8.20 (0.38; 16.00)

8.10 (5.10; 11.00)

7.50 (0.33; 15.00)

7.30 (−4.60; 19.00)

6.50 (1.80; 11.00)

4.40 (−3.20; 12.00)

3.00 (−6.20; 12.00)

2.20 (−0.92; 5.40)

2.20 (−0.73; 5.10)

0.76 (−0.31; 1.80)

−0.79 (−8.30; 6.80)

−1.80 (−12.00; 8.10)

−3.40 (−7.50; 0.79)

−4.60 (−6.40; −2.90)

−5.50 (−11.00; 0.15)

−6.00 (−9.20; −2.80)

−7.40 (−13.00; −1.80)

−7.50 (−16.00; 1.20)

−8.00 (−9.00; −7.00)

−8.00 (−11.00; −4.80)

−8.40 (−17.00; 0.22)

−9.20 (−16.00; −2.90)

−9.50 (−14.00; −4.50)

−12.00 (−16.00; −7.00)

−12.00 (−14.00; −9.60)

−13.00 (−19.00; −6.20)

−19.00 (−30.00; −6.90)

Causal forest estimates in real world (θ̂crude)

● ● ●harmful neutral protective

Figure 4: Left: Causal forest estimates of θ̄net (using adjusted weights to construct weighted outcomes). Right:
Causal forest estimates of θ̄crude (using adjusted weights to construct weighted outcomes). For each ATC group
(marked on the x-axis) the plot shows the estimates and the estimated confidence intervals (numbers written on the
right). The colors indicate the direction of the effect.

allow that several continuous covariates affect the distributions G and G2. Semiparametric theory tells us to use a
flexible model and to include all covariates that affect the event time to improve robustness and efficiency (van der
Laan and Robins, 2003). However, to achieve proper bias-variance trade-off for the target parameter in the second
step, the random survival forest used for the weights must be undersmoothed.Another idea for improvement is to
handle the weight estimation inside the forest in a one-step approach. Indeed, we may improve upon the current
setting by implementing the splitting rule based on the efficient influence function (Robins and Rotnitzky, 1992;
van der Laan and Robins, 2003), extending the methods of Rytgaard (2019) to the competing risks setting. In
future work we follow this route and revise the implementation of GRFs to adapt it to the event history analysis
setting as proposed by Rytgaard (2019).
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As an illustration, we have considered a particular application where it is of interest to rank a list of treatments
according to their effect on depression. Here we argue for the use of treatment effects on net probabilities: When
discussing variable importance and discovering new drugs to treat a disease, it is not of interest to conclude that
a variable has a causal effect on the event of interest if that effect is only due to an increased risk of competing
events. On the other hand, we emphasize that treatment effects on crude probabilities should be considered if
interest is in the real world and the aim is to predict for a given patient. Importantly, net probabilities are meant for
ranking drugs when looking for new active substances as part of a drug discovery study, but they are not sensible
interpreting the size of the effect, e.g., when counseling a patient.

Another potential future avenue for defining causal effects in the competing risks setting was proposed recently
by Stensrud et al. (2019). In their paper, they discuss a different parametrization with a similar aim to isolate the
direct effect on the event of interest. Particularly, they assume that the treatment mechanism can be split into
two parts, of which only one affects the event of interest and the other only the competing event, such that they
can consider a hypothetical scenario in which only the former part of the treatment is changed. However, in our
application where the event of interest is depression and the competing risk events include a diagnosis of bipolar
disorder, it may very well be the case that the treatment mechanism affecting the one is in fact the same as the one
affecting the other.

8 Supplementary Material
R code is available on github (https://github.com/helenecharlotte/grfCausalSearch). The
supplementary material consists of Appendices A–D.
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Appendix A
We here detail the identifiability assumptions for the effect on net probabilities and the effect on crude probabilities,
respectively.

A.1 Identifiability assumptions for the effect on net probabilities, θnet(x)
Identification of θnet(x) in terms of the observed data distribution depends on three untestable causal assumptions:
Consistency, coarsening at random and positivity.

First, the assumption of consistency entails that the counterfactual event time T 1,a corresponds to the observed
event time for those subjects who were actually uncensored, free of event type j = 2 and were exposed to the
treatment level Ak = a. Particularly, consistency provides the counterfactual variables as follows:

T = min(T 1,Ak , T 2,Ak), and that, T 1,a = T 1,Ak on the event that Ak = a for a = 0, 1. (1a)

Here T 2,Ak is the uncensored counterfactual event time of type j = 2 under the observed treatment.
The second assumption of coarsening at random is characterized as follows. The full data we would have

liked to observe are (X, T 1,0, T 1,1). These are not fully observed due to censoring, the competing event and the
treatment decision Ak, and we observe only the coarsened data (X, Ak, T̃ , ∆̃) (Gill et al., 1997; van der Laan and
Robins, 2003; Tsiatis, 2007). To identify (X, T 1,0, T 1,1) from the data, we need coarsening at random (CAR) (Gill
et al., 1997; van der Laan and Robins, 2003, Section 1.2.3), i.e., that the coarsening mechanism only depends on
the full data structure (X, T 1,0, T 1,1) through the observed data structure (X, Ak, T̃ , ∆̃). Coarsening at random
is implied by the following conditional independence conditions:

T 1,a ⊥⊥ Ak |X,

T 1,Ak ⊥⊥ (C, T 2,Ak) |Ak,X,
(1b)

for a = 0, 1, also refer to as “no unmeasured confounding”.
The last assumption of positivity requires for the coarsening mechanism that

P (min(C, T 2,Ak) ≥ t0 |Ak,X) (πk(X))Ak(1− πk(X))1−Ak > η > 0, (1c)

almost surely.
Under Assumptions 1a, 1b and 1c, we can link the distribution of the counterfactual variables to the observed

data distribution as follows:

P (T̃ ∈ dt, ∆̃ = 1, Ak = a,X ∈ dx)

= P (∆̃ = 1 |T 1,Ak = t, Ak = a,X = x)P (T 1,Ak ∈ dt, Ak = a,X ∈ dx)

= P (min(C, T 2,Ak) ≥ t |T 1,Ak = t, Ak = a,X = x)P (T 1,Ak ∈ dt |Ak = a,X = x)

P (Ak = a |X = x)P (X ∈ dx)

= P (min(C, T 2,Ak) ≥ t |Ak = a,X = x)P (T 1,a ∈ dt |X = x)P (Ak = a |X = x)P (X ∈ dx).

(10)

Particularly, the first line of Assumption 1b together with the Assumption 1a of consistency implies that

P (T 1,Ak ∈ dt |Ak = a,X ∈ dx)
1b
= P (T 1,a ∈ dt |Ak = a,X = x)

1a
= P (T 1,a ∈ dt |X = x),

whereas the second line of Assumption 2a yields that

P (min(C, T 2,Ak) ≥ t |T = t,∆ = 1, Ak = a,X = x) = P (min(C, T 2,Ak) ≥ t |Ak = a,X = x).

Assumption 1c ensures that the right hand side of (11) is non-zero and well-defined.
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A.2 Identifiability assumptions for the effect on crude probabilities, θcrude(x)
The assumptions needed to identify θcrude(x) are less restrictive than those needed for θnet(x) and correspond to
the standard setting for right-censored survival times. The consistency assumption for θcrude(x) can be expressed
as

T = T a and ∆ = ∆a on the event that A = a, for a = 0, 1. (2a)

The full data we would have liked to observe are (X, T 0, T 1,∆0,∆1), but we observe only the coarsened data
(X, Ak, T̃ , ∆̃) due to censoring C and treatment decision Ak. The equivalent of Assumption 1b,

(T a,∆a) ⊥⊥ Ak |X, for a = 0, 1,

(T,∆) ⊥⊥ C |Ak,X,
(2b)

yields coarsening at random. We further make the positivity assumption that,

P (C ≥ t0 |Ak = a,X) (πk(X))a(1− πk(X))1−a > η > 0, (2c)

almost surely, for a = 0, 1.
We can now express the observed data distribution as,

P (T̃ ∈ dt, ∆̃ = 1, Ak = a,X ∈ dx)

= P (∆̃ ≥ 1 |T = t,∆ = 1, Ak = a,X = x)P (T ∈ dt,∆ = 1, Ak = a,X ∈ dx)

= P (C ≥ t |T = t,∆ = 1, Ak = a,X = x)P (T ∈ dt,∆ = 1 |Ak = a,X ∈ dx)

P (Ak = a |X = x)P (X ∈ dx)

= P (C ≥ t |Ak = a,X = x)P (T a ∈ dt,∆a = 1 |X = x)P (Ak = a |X = x)P (X ∈ dx),

(11)

relying on Assumptions 2a, 2b and 2c. Particularly, the first line of Assumption 2b together with the Assumption
2a of consistency implies that

P (T ∈ dt,∆ = 1 |Ak = a,X ∈ dx)
2b
= P (T a ∈ dt,∆a = 1 |Ak = a,X = x)

2a
= P (T a ∈ dt,∆a = 1 |X = x),

whereas the second line of Assumption 2a yields that

P (C ≥ t |T = t,∆ = 1, Ak = a,X = x) = P (C ≥ t |Ak = a,X = x).

Assumption 2c ensures that the right hand side of (11) is non-zero and well-defined.

Appendix B

B.3 Weighted outcome for net probabilities
Define the weighted outcome:

Ỹ ′ =
1{T̃ ≤ t0, ∆̃ = 1}
G′(T̃− |Ak,X)

,

with weights given by

G′(T̃− |Ak,X) = P (min(T 2,Ak , C) ≥ t |Ak,X).

For this weighted outcome we have that,

θnet(x) = P (T 1,1 ≤ t0 |X = x)− P (T 1,0 ≤ t0 |X = x)

= E
[
Ỹ ′
∣∣X = x, Ak = 1

]
− E

[
Ỹ ′
∣∣X = x, Ak = 0

]
.

(12)
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This follows straightforwardly by the identification in, and just after, Equation (10); indeed, we note that

E[Ỹ ′ |X, Ak] = E

[
1{T̃ ≤ t0, ∆̃ = 1}
G′(T̃− |X, Ak)

∣∣∣∣X, Ak

]

= E

[
E

[
1{T 1,Ak ≤ t0}1{∆̃ = 1}

G′(T̃− |X, Ak)

∣∣∣∣T 1,Ak ,X, Ak

] ∣∣∣∣X, Ak

]

= E
[
1{T 1,Ak ≤ t0} |X, Ak

]
E

[
E[1{∆̃ = 1} |T 1,Ak ,X, Ak]

G′(T 1,Ak− |X, Ak)

]

= E
[
1{T 1,Ak ≤ t0} |X, Ak

]
E
[
G′(T 1,Ak− |X, Ak)

G′(T 1,Ak− |X, Ak)

]

= E[1{T 1,Ak ≤ t0 |X, Ak],

and

E[1{T 1,Ak ≤ t0 |X, Ak = a] = E[1{T 1,a ≤ t0} |X, Ak = a] = E[1{T 1,a ≤ t0} |X],

for a = 0, 1, which yields (12).

B.4 Weighted outcome for crude probabilities
For the weighted outcome,

Ỹ =
1{T̃ ≤ t0, ∆̃ = 1}
G(T̃− |Ak,X)

,

we have that,

θcrude(x) = P (T 1 ≤ t0,∆1 = 1 |X = x)− P (T 0 ≤ t0,∆0 = 1 |X = x)

= E
[
Ỹ
∣∣X = x, Ak = 1

]
− E

[
Ỹ
∣∣X = x, Ak = 0

]
.

(13)

This follows straightforwardly by the identification in, and just after, Equation (11); indeed, we note that

E[Ỹ |X, Ak] = E

[
1{T̃ ≤ t0, ∆̃ = 1}
G(T̃− |X, Ak)

∣∣∣∣X, Ak

]

= E

[
E

[
1{T ≤ t0,∆ = 1}1{∆̃ ≥ 1}

G(T− |X, Ak)

∣∣∣∣T,∆,X, Ak

] ∣∣∣∣X, Ak

]

= E

[
1{T ≤ t0,∆ = 1} E

[
1{∆̃ ≥ 1} |T,∆,X, Ak

]

G(T− |X, Ak)

∣∣∣∣X, Ak

]

= E
[
1{T ≤ t0,∆ = 1} G(T− |X, Ak)

G(T− |X, Ak)

∣∣∣∣X, Ak

]

= E
[
1{T ≤ t0,∆ = 1} |X, Ak

]

and

E[1{T ≤ t0,∆ = 1} |X, Ak = a] = E[1{T a ≤ t0,∆a = 1} |X, Ak = a]

= E[1{T a ≤ t0,∆a = 1} |X],

for a = 0, 1, which yields (13).
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Appendix C
To explain the general idea of GRFs, we use a generic (uncensored) random variable Y ∈ R and a corresponding
generic parameter of interest,

θ(x) = E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x],

representing the treatment effect of Ak on Y conditional on X = x . Athey et al. (2019, Section 6) consider a
conditional average partial effect estimation problem which they formulate in terms of a structural model. Below
we demonstrate the equivalence of their setting with the counterfactual formulation and show that the conditional
average treatment effect estimation problem considered here is a special case. In particular, we show that the
parameter θ(x) can be identified in terms of

θ(x) =
cov(Ak, Y |X = x)

Var(Ak |X = x)
. (14)

This means that θ(x) can be estimated by providing estimators for cov(Ak, Y |X = x) and Var(Ak |X = x),
respectively. The forest outputs weights that can be used to define such estimators as follows. First, forest weights
are obtained by averaging over the neighborhoods Lb(x) defined by the trees, b = 1, . . . , B,

αi(x) =
1

B

B∑

b=1

αb,i(x), where, αb,i(x) =
1{Xi ∈ Lb(x)}∑n
k=1 1{Xk ∈ Lb(x)} . (15)

Then, the forest estimator θ̂α(x) is given by,

θ̂α(x) =

(
n∑

i=1

αi(x)
(
Ai − Āk,α

)2
)−1( n∑

i=1

αi(x)
(
Ai − Āk,α

) (
Yi − Ȳα

)
)
. (16)

Here, Āk,α =
∑n
i=1 αi(x)Ai and Ȳα =

∑n
i=1 αi(x)Yi are estimators for the propensity score πk(x) = E[Ak |X =

x] and for E[Y |X = x], respectively. Athey et al. (2019, Theorem 5 and Section 6) provide conditions under
which θ̂α converges in distribution to a normal distribution centered around the true θ(x). They further propose an
estimator σ̂n(x) for the standard deviation of the asymptotic distribution.

A key part of the generalized random forest algorithm is the splitting rule that targets specifically the estimation
of the quantity of interest θ(x). Each split starts with a mother node M ⊂ X , corresponding to a subset of
X , that is to be split into two daughter nodes D1 ·∪ D2 = M . For l = 1, 2, let θ̂Dl

be the daughter node
local estimate of θ(x) given by (16) with αi(x) = 1{Xi ∈ Dl} that simply gives weight one to all samples
falling in the respective daughter node. To derive their approximate criterion for picking good splits, Athey et al.
(2019) use a gradient-based approximation of the mother node estimator θ̂M . In the setting without censoring and
competing risks, as we demonstrate below, it can be seen that the “pseudo-outcomes” used in the “labeling step”
of the splitting rule correspond to mother node specific estimates of the efficient influence function for the target
parameter. Specifically, the split criterion is based on,

ρi = W−1M (Ak,i − ĀM )
(
Yi − ȲM −

(
Ak,i − ĀM

)
θ̂M

)
, (17)

where,

WM =
1

#{i : Xi ∈M}
∑

{i :Xi∈M}
(Ak,i − ĀM )2,

and ĀM , ȲM are mother node averages. Each split of a mother node M into daughter nodes D1, D2 is carried out
such as to maximize,

L̃(D1, D2) =

2∑

l=1

1

#{i : Xi ∈ Dl}

( ∑

i∈{i :Xi∈Dl}
ρi

)2

,

with ρi as defined in (17).
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C.5 Equivalence between counterfactual formulation and structural model formulation
We demonstrate the equivalence of the setting of Athey et al. (2019, Section 6) with the counterfactual formulation
and show that the conditional average treatment effect estimation problem considered in the main paper (Section
4) is a special case hereof.

Accordingly, we here consider observed dataO = (X, Ak, Y ), X ∈ X ,Ak ∈ {0, 1} and Y ∈ R (uncensored).
Further, let Y 1 be the counterfactual outcome that would have been observed under Ak = 1, and Y 0 be the
counterfactual outcome that would have been observed under Ak = 0. The consistency assumption states that

Y = AkY
1 + (1−Ak)Y 0, (18)

and the exogeneity assumption (no unmeasured confounding) that (Y 1, Y 0) ⊥⊥ Ak |X . The conditional treatment
effect is defined as,

θ(x) = E[Y 1 − Y 0 |X = x] = E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x].

The second equality follows under the exogeneity assumption together with the consistency assumption.
Assume on the other hand that,

Yi = ai + biAk + εi, (19)

equivalent to (Athey et al., 2019, Section 6) with our ai + εi collapsed into just εi.
We show that (19) imposes no restriction when Ak is binary. Under consistency, we can express Y as,

Y = AkY
1 + (1−Ak)Y 0

= AkY
1 + (1−Ak)Y 0 +Ak

(
E[Y 1 |X]− E[Y 0 |X]

)
−AkE[Y 1 |X]− (1−Ak)E[Y 0 |X]

+ E[Y 0 |X]

= E[Y 0 |X] +Ak
(
E[Y 1 |X]− E[Y 0 |X]

)
+Ak

(
Y 1 − E[Y 1 |X] + (1−Ak)

(
Y 0 − E[Y 0 |X]

)
.

So if we let,

ai := E[Y 0 |Xi],

bi := E[Y 1 |Xi]− E[Y 0 |Xi], and,

εi := (1−Ak,i)
(
Y 0 − E[Y 0 |Xi]

)
+Ak,i

(
Y 1 − E[Y 1 |Xi]

)
,

we are back on the form in (19).
Further note that,

E[εi |Ak,X] = (1−Ak,i)
(
E[Y 0 |Xi]− E[Y 0 |Xi]

)
+Ak,i

(
E[Y 1 |Xi]− E[Y 1 |Xi]

)
= 0,

so that,

E[Yi |Ak,X] = E[Y 0 |Xi] + θ(x)Ak.

C.6 Identification of the target parameter
We demonstrate that,

θ(x) = E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x] =
cov(Ak, Y |X = x)

Var(Ak |X = x)
. (20)
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This follows since Ak ∈ {0, 1}, so that we have:

cov(Ak, Y |X = x) = E[AkY |X = x]− E[Ak |X = x]E[Y |X = x]

= E[AkY |Ak = 1,X = x]πk(x)

+ E[AkY |Ak = 0,X = x] (1− πk(x))− πk(x)E[Y |X = x]

= E[Y |Ak = 1,X = x]πk(x)− πk(x)
(
E[Y |Ak = 1,X = x]πk(x)

+ E[Y |Ak = 0,X = x] (1− πk(x))
)

= E[Y |Ak = 1,X = x]πk(x)(1− πk(x))

− E[Y |Ak = 0,X = x]πk(x)(1− πk(x))

=
(
E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x]

)
πk(x)(1− πk(x)),

=
(
E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x]

)
Var(Ak |X = x),

which yields (20).

C.7 Influence function used for splitting
The influence function used to split in the GRF algorithm for estimation of treatment effects (Athey et al., 2019,
Section 6) is,

ρi = W−1M (Ak,i − ĀM )
(
Yi − ȲM −

(
Ak,i − ĀM

)
θ̂M

)
, (21)

where,

WM =
1

#{i : Xi ∈M}
∑

{i :Xi∈M}
(Ak,i − ĀM )2,

and ĀM , ȲM are mother node averages. Note that ρi in (21) is a mother node specific estimator for,

φ(Y,Ak) =
(
Var(Ak |x)

)−1(
Ak − πk(x)

)(
Y − E[Y |X = x]−

(
Ak − πk(x)

)
θ(x)

)
. (22)

We here demonstrate that φ(Y,Ak) in (22) can also be written,

φ(Y,Ak) =

(
Ak
πk(x)

− 1−Ak
1− πk(x)

)(
Y − E[Y |Ak,X = x]

)
, (23)

which we recognize as the efficient influence function for estimation of the parameter θ(x) = E[Y |Ak = 1,X =
x]− E[Y |Ak = 0,X = x] (Scharfstein et al., 1999; Rosenblum and van der Laan, 2011).

First note that Var(Ak |x) = (1 − πk(x))πk(x) since Ak is binary. Next, by iterated expectations, we have
that,

E[Y |X = x] = E[Y |Ak = 1,X = x]πk(x) + E[Y |Ak = 0,X = x] (1− πk(x)).

Moreover, we can write (Ak − πk) = Ak (1− πk) + (1−Ak)πk. Also recall that θnet(x) = E[Y |Ak = 1,X =
x]− E[Y |Ak = 0,X = x].

Now rewrite,

Ak
πk(x)

− (1−Ak)

1− πk(x)
=

Ak(1− πk(x))

πk(x)(1− πk(x))
− (1−Ak)πk(x)

(1− πk(x))πk(x)

=
(
Ak − πk(x)

) (
Var(Ak |x)

)−1
,
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and,

E[Y |Ak = 1,X = x]

= πk(x)E[Y |Ak = 1,X = x] + (1− πk(x))E[Y |Ak = 1,X = x]

= E[Y |X = x]− E[Y |Ak = 0,X = x](1− πk(x)) + (1− πk(x))E[Y |Ak = 1,X = x]

= E[Y |X = x]− (1− πk(x))
(
E[Y |Ak = 0,X = x]− E[Y |Ak = 1,X = x]

)

= E[Y |X = x] + (1− πk(x))
(
E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x]

)
,

and likewise,

E[Y |Ak = 0,X = x]

= πk(x)E[Y |Ak = 0,X = x] + (1− πk(x))E[Y |Ak = 0,X = x]

= E[Y |X = x] + E[Y |Ak = 0,X = x]πk(x)− πk(x)E[Y |Ak = 1,X = x]

= E[Y |X = x]− πk(x)
(
E[Y |Ak = 0,X = x]− E[Y |Ak = 1,X = x]

)

= E[Y |X = x] + (0− πk(x))
(
E[Y |Ak = 1,X = x]− E[Y |Ak = 0,X = x]

)
.

Collecting the above, we rewrite (23) as,

φ(Y,Ak) =

(
Ak
πk(x)

− 1−Ak
1− πk(x)

)(
Y − E[Y |Ak,X = x]

)

=
(
Ak − πk(x)

) (
Var(Ak |x)

)−1(
Y − E[Y |X = x]− (Ak − πk(x)) θ(x)

)
,

which yields (22).

Appendix D
We here collect descriptive statistics for our data analysis.

Figure 5 shows unadjusted Aalen-Johansen estimators (Aalen and Johansen, 1978) for the risk of readmission
with depression and risk of death without relapse, respectively.

Table 1 shows the number of subjects in each age group and in each comorbidity group. Table 2 shows the
number of subjects exposed to the different drug groups in the exposure window. Table 3 shows the number of
relapse with depression within five years, along with number of subjects who die without depression.

To illustrate the effects of covariates for the estimation of our target parameters, we compare our forest esti-
mates of θ̄crude to the naive Aalen-Johansen estimates of crude probabilities stratified on each treatment variable
(that leaves out all covariate information), i.e., the nonparametric and unadjusted estimator of,

P (T ≤ t0,∆ = 1 |Ak = 1)− P (T ≤ t0,∆ = 1 |Ak = 0).

The naive Aalen-Johansen estimates along with confidence intervals and the corresponding causal forest esti-
mates of the treatment effect on the crude probabilities, θ̄crude, are shown in Figure 6. We see that the treatment
effect estimates for some drug groups differ quite a lot for the two methods. Considering these differences, we
deduce that there is a covariate effect to be taken into account.
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Figure 5: Aalen-Johansen estimators for the risk of readmission with depression (top) and risk of death without
relapse (bottom), respectively. We are interested in readmissions within 1 year which is marked on the upper plot.
The number of subjects at risk is shown below the plots.
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Figure 6: Left: Naive Aalen-Johansen estimates of the risk difference, i.e., the difference in crude probabilities
stratified on the respective treatment. Right: Causal forest estimates of the effect on crude probabilities, θ̄crude
(using unadjusted weights to construct weighted outcomes). For each ATC group (marked on the y-axis) the plot
shows the estimates and the estimated confidence intervals (numbers written on the right). The colors indicate the
direction of the effect.
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