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Preface
This thesis constitutes my PhD dissertation at the University of Copenhagen. It has been sub-
mitted to the Graduate School of Health and Medical Sciences, University of Copenhagen.
The work included here was carried out between August 2016 and December 2022, under
the supervision of Prof. Claus Thorn Ekstrøm (University of Copenhagen) and Prof. Haja
Kadarmideen (Technical University of Denmark). It was funded through Styrelsen for Forskn-
ing og Innovation and the Section of Biostatistics, Department of Public Health, University of
Copenhagen.

The thesis is broadly concerned with statistical genetics, with contributions to the method-
ologies of interactions and multivariate outcome. Motivating applications are primarily to be
found in genetics fields.
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Summary

Improvement of feed efficiency (FE) is an important goal in pig production. Multi-omics
experiments including genomics and systematic integration of omics data and modelling (sys-
tems biology) is a very promising approach to detect causal genetic and regulatory mechanisms
underlying FE. The practical motivation for this PhD project is to investigate if genomic and
metabolomic profiles are different in genetically efficient and inefficient pigs for feed utilisa-
tion in a systems biology experiment. Thus, we are in search of testable biomarkers for FE.
This motivates the development and application of statistical methods for genomic prediction
and selection methods for FE given the genetic architecture and biological information.

In Chapter 1, we give an overview of the research project and its contributions, and the main
subjects of study are introduced. The Manuscripts I–III are self-contained manuscripts con-
taining the main results of the research project.

It is characteristic for genomic or multi-omics data that the number, p, of features is (much)
larger than the number, N , of observations, and when analysing such data we are concerned
not only with identifying relevant features but also with identifying more complex relation-
ships such as interactions, e.g., gene-gene or gene-environment interactions. However, the
introduction of interactions rapidly increases the complexity of the statistical methodology,
since the total number of possible pairwise interactions is

(
p
2
)

= 1
2 p(p − 1). For example,

when a microarray is used to detect the expression of thousands of genes at the same time, the
number of potential pairwise gene-gene interactions easily exceeds a million. Fitting a regres-
sion model to such data is computationally challenging and expectedly very time consuming.
Furthermore, it is not clear exactly how to consistently include features which are interacting
in regularised regression models which are useful when p > N . In Manuscript I we develop
a computationally tractable two-step procedure for identifying pairwise interactions in a linear
regression model subject to lasso regularisation under different assumptions of hierarchy: No
hierarchy allowing for all interactions being included at once; weak hierarchy allowing for the
inclusion of only interactions between at least one pre-selected main effect and another main
effect; strong hierarchy allowing for the inclusion of only interactions between pre-selected
constituent main effects. We have motivated our approach by modelling pairwise interactions
for quantitative variables and experimented with explicitly applying (and not applying) penal-
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ties on the main effects and interactions, thereby obtaining interpretable models. We compare
our method with existing approaches on real data as well as simulated data and find that under
the assumption of uncorrelated features in a “reasonably” sized data set our method outper-
forms existing methods in computational cost.

When analysing genomic data or multi-omics data, information on a set of multiple, simulta-
neously measured traits is often collected in populations sampled for genome-wide association
studies (GWASs). While single-trait GWASs have found numerous novel loci associated with
complex diseases, simultaneously measured traits are often correlated and, therefore, require
a joint modelling approach. However, applying the tools of quantitative genetics to high-
dimensional, highly correlated datasets presents considerable analytical and computational
challenges. These are the subject of Manuscript II, where we propose a method for utilis-
ing polygenic scores (PGSs) as a means for inferring a genetic relationship among multiple,
simultaneously measured and potentially correlated traits in a multivariate GWAS. By esti-
mating clusters of correlated traits that share some genetic component we are able to analyse
the data combined in clusters and increase precision and power and gain computational ad-
vantages. We compare the method with fully parametric multivariate techniques on simulated
data using R and illustrate the utility of the method by examining a heterogeneous stock mouse
data set from the Wellcome Trust Centre for Human Genetics. We demonstrate that the method
successfully identifies clusters and increases precision, power and computational efficiency.

In Manuscript III we extend the method proposed in Manuscript I to the multiple outcome
setting. One of the major challenges in GWASs is the lack of power to detect main effects,
and power to detect interactions is even more challenging. However, when multiple potentially
correlated traits are available a joint modelling approach can be used to increase precision
and power. We propose a method for selecting pairwise interactions in a multivariate regres-
sion model which involves only a subset of the features and interactions. The procedure uses
(sparse) group lasso and adaptive lasso for screening for interactions and fitting multivariate hi-
erarchical pairwise interaction models. This way interactions (and features) are simultaneously
estimated and selected while hierarchical restrictions are taken into account. This ensures in-
terpretability of the model (in terms of interactions) and should improve computing time. We
consider the scenario which assumes that there is an unknown subset of the features which
affect the outcome, but this subset is not preserved across all components of the outcome. As
a special case, we consider the scenario which assumes that there is an unknown subset of the
features which affect the outcome, and this same subset is preserved across all components of
the outcome.



Resumé

Forbedring af foderudnyttelse (FDU) er et vigtigt mål i kommerciel svineproduktion. Multi-
omics eksperimenter, herunder genetik og systematisk integration af omicsdata og modellering
(systembiologi), er meget lovende fremgangsmåder til at påvise kausale genetiske og regula-
toriske mekanismer, der ligger til grund for FDU. Den praktiske motivation for dette ph.d.-
projekt er at undersøge, om genetiske og metaboliske profiler er forskellige i genetisk effektive
og ineffektive grise for FDU i et systembiologisk eksperiment. Vi leder dermed efter testbare
biomarkører for FDU. Dette motiverer udviklingen og anvendelsen af statistiske metoder for
genetisk prædiktions- og selektionsmetoder for FDU, givet den genetiske arkitektur og tilgæn-
gelig biologisk information.

I Kapitel 1 giver vi et overblik over forskningsprojektet og dets hovedbidrag, og vi introducerer
de hovedemner, som projektet omhandler. Manuskripterne I–III er selvstændige manuskripter
og indeholder projektets hovedresultater.

Det er karakteristisk for genetisk data eller multi-omics data, at antallet, p, af kovariater er
(meget) større end antallet, N , af observationer, og når man analyserer denne slags data,
er man ikke kun interesseret i at identificere relevante kovariater men også i at identificere
mere komplekse relationer såsom vekselvirkninger, for eksempel gen-gen eller gen-miljø vek-
selvirkninger. Ved at introducere vekselvirkninger øger man dog kompleksiteten af de statis-
tiske metoder betragteligt, da det samlede antal af mulige parvise vekselvirkninger er

(
p
2
)

=
1
2 p(p − 1). Hvis, for eksempel, en microarray er anvendt til at påvise genekspressionen af
tusindvis af gener på samme tid, så vil det potentielle antal parvise vekselvirkninger nemt
overstige en million. At fitte en regressionmodel til den slags data er beregningsmæssigt
udfordrende og forventeligt meget tidskrævende. Det er desuden ikke klart, præcist hvor-
dan man konsistent inkluderer kovariater som vekselvirker i en regulariseret regressionsmodel,
som er anvendelig når p > N . I Manuskript I udvikler vi en beregningsmæssigt håndterbar
to-trinsprocedure til at identificere parvise vekselvirkninger i en lineær regressionsmodel un-
derlagt lasso regularisering under forskellige antagelser af hierarki: Intet hierarki som tillader
alle vekselvirkninger at indgå; svagt hierarki som kun tillader vekselvirkninger mellem mindst
en forudbestemt hovedeffekt og en anden hovedeffekt; og stærkt hierarki som kun tillader vek-
selvirkninger mellem tilhørende forudbestemte hovedeffekter. Vores tilgang er motiveret af at
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modellere parvise vekselvirkninger for kvantitative variable og eksperimentere med eksplicit
at pålægge (og ikke pålægge) regulariseringer på hovedeffekterne og vekselvirkningerne for
dermed at opnå fortolkelige modeller. Vi sammenligner vores metode med eksisterende frem-
gangsmåder på rigtigt data såvel som simuleret data og finder, at vores metode, under an-
tagelsen af at kovariaterne i et “rimeligt” stort datasæt er ukorrelerede, overgår eksisterende
metoder hvad angår beregningsmæssige omkostninger.

Når man analyserer genetisk data eller multi-omics data, er der ofte indsamlet information fra
flere samtidigt målte træk. Selvom enkelt-træks genome-wide association studier (GWAS’er)
har fundet flere nye loci, associeret med komplekse sygdomme, så er træk, som er målt sam-
tidig, ofte korrelerede, og en simultan modelleringsmetode er derfor krævet. At anvende
metoderne for kvantitativ genetik på højdimensionelle, stærkt korrelerede datasæt, medfører
dog betragtelige analytiske og beregningsmæssige udfordringer. Dette er emnet i Manuskript
II, hvor vi foreslår en metode til at anvende polygenic scores (PGSs) til at udlede genetiske rela-
tioner mellem flere, samtidigt målte og potentielt korrelerede træk i et multivariat GWAS. Ved
at estimere clusters af korrelerede træk, der deler nogle genetiske komponenter, er vi i stand
til at analysere data kombineret i clusters og derved øge præcision og power og opnå beregn-
ingsmæssige fordele. Vi sammenligner metoden med fuldt parametriske multivariate teknikker
på simuleret data ved at anvende R og illustrerer anvendelsen af metoden ved at undersøge het-
erogent musedatasæt fra the Wellcome Trust Centre for Human Genetics. Vi demonstrerer,
at metoden med succes identificerer clusters og øger præcision, power og beregningsmæssig
effektivitet.

I Manuskript III udvider vi metoden foreslået i Manuskript I til rammerne for multiple out-
come. En af de store udfordringer i GWAS’er er den manglende power til at påvise hov-
edeffekter, og power til at påvise vekselvirkninger er endnu mere krævende. Når multiple,
potentielt korrelerede træk er tilgængelige, kan en samlet modellering dog anvendes til at
øge præcision og power. Vi foreslår en metode til at udvælge parvise vekselvirkninger i
en multivariat regressionsmodel, som kun involverer en delmængde af kovariaterne og vek-
selvirkningerne. Proceduren anvender (sparse) gruppe lasso og adaptive lasso til at screene
for vekselvirkninger og fitte en multivariat hierarkisk parvis vekselvirkningsmodel. På den
måde bliver vekselvirkninger (og hovedeffekter) samtidigt estimeret og udvalgt, mens der
bliver taget højde for hierarkiske restriktioner. Dette sikrer fortolkning af modellen (hvad
angår vekselvirkninger) og burde forbedre beregningstiden. Vi betragter scenariet, der antager,
at der er en ukendt delmængde af kovariaterne, der påvirker outcome, men denne delmængde
er ikke bevaret henover komponenterne af outcome. Som et specialtilfælde betragter vi scena-
riet, der antager, at der er en ukendt delmængde af kovariaterne, der påvirker outcome, og at
denne samme delmængde er bevaret henover alle komponenter af outcome.
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Chapter 1

Introduction

The objective of statistical genetics is the development and application of statistical meth-
ods for drawing inferences from genetic data. In the following sections we propose a line of
research along two subfields of statistical genetics. The subfields consider the analysis of inter-
actions of high-dimensional features, e.g., gene-gene or gene-environment interactions, and of
multivariate outcome, e.g., from a multivariate genome-wide association study (GWAS). In the
study of interactions we focus, in particular, on regularised regressions, which are extremely
convenient when the number of features measured is larger than the number of observations.
In the endeavour to extend the framework to a multivariate outcome we were inspired to study
the prospects of inferring a genetic relationship among multiple, simultaneously measured and
potentially correlated traits in a simpler framework: we consider the standard linear regres-
sions, where the exploitation of polygenic scores and various estimation techniques for linear
regression allow us to draw inference.

Both the move from additive effects to interaction effects and the move from univariate to mul-
tivariate outcome represents a major increase in mathematical complexity. But not only that;
with the increasing sophistication of measuring devices, extraordinary amounts of multiomics
data are available today. Thus, the question of efficient computation is of key importance in
integrative statistical genetics.

In this introductory chapter, we give an overview of the contributions of the thesis. The first
step towards this is an introduction to the data generated as part of the FEEDOMICS study,
which motivated the thesis. This is given in Section 1.2. The second step is a discussion of the
objectives of the thesis, presented in Section 1.3, where a description of the research project is
laid out in the context of motivational data examples. The results of the thesis can be divided
into two subjects:

3



4 CHAPTER 1. INTRODUCTION

- Regularised regression with hierarchical interactions

- Multivariate modelling with polygenic scores

These subjects are covered separately in Section 1.4 and Section 1.5, where we both outline the
basis for and results obtained under each headline, as well as discuss our findings and apply
the developed methodology to evaluate the FEEDOMICS data. In Section 1.6 the goal of
Section 1.4 is extended to a multivariate setup, and we outline the background and framework
of the subject as well as discuss our findings. In Section 1.7 we review perspectives for future
research based on the results obtained here. Section A summarises the manuscripts.

As mentioned in the summary, the thesis consists of an introduction and three manuscripts,
each of which comprises a stand-alone scientific contribution. Table 1.1 gives an overview of
the publication status of each manuscript at the time of this writing.

Manuscript I Under revision in Statistical Applications in Genetics and Molecular
Biology

Manuscript II Submitted to the Journal of the Royal Statistical Society
Manuscript III In preparation for Statistical Applications in Genetics and Molecular

Biology

Table 1.1: Publication status of manuscript included in the thesis at the time of this writing.

In Manuscript II, we propose a method for inferring a genetic relationship among multiple, si-
multaneously measured and potentially correlated traits in a multivariate GWAS. As our main
contribution we present an alternative to modelling a completely unstructured correlation ma-
trix for the correlation among traits, via an approximation of the problem using polygenic
scores (PGSs).

Manuscript I and Manuscript III are concerned with methods for identifying pairwise interac-
tions in penalised regression models when the number of features measured is larger than the
number of observations and the outcome is univariate and multivariate, respectively. While
similar in their aim, Manuscript III presents particular difficulties due to, among other things,
the potentially different relevance of different features across outcome components. In both
Manuscript I and Manuscript III, different assumptions of hierarchy are taken into considera-
tion by using a two-step procedure.

In all three manuscripts the algorithms provided have been implemented in R, and they are
available online. See Buchardt (2022b) for the implementations related to Manuscript I and
Manuscript III and Buchardt (2022a) for the implementation related to Manuscript II.
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1.1 A short introduction to
genetics

This subsection covers a selection of terms encompassing the spectrum of genetics and other
biological terminology encountered in this thesis. As a brief reference guide intended for
the less experienced genetics audience, fundamental concepts and connections are presented
and related for an improved comprehension of the motivation and application of the statistical
methods developed. The material is derived from Wikipedia articles, specifically the series on
genetics (Genetics, 2021) and biology (Biology, 2021).

1.1.1 Genetics

Genetics is a branch of biology concerned with the study of genes, genetic variation, and
heredity in organisms. We refer to Figure 1.1 for an illustration of the relation between the
following terms.

Figure 1.1: Diagram of genome.

Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as
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monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic
acid (RNA), both of which are essential biomolecules within all life-forms on Earth.

DNA is a molecule composed of two polynucleotide chains (a sequence of nucleotides joined
together) that coil around each other to form a double helix carrying genetic instructions for the
development, functioning, growth and reproduction of all known organisms and many viruses.
Each nucleotide found in DNA is composed of one of four nitrogen-containing nucleobases
(cytosine (C), guanine (G), adenine (A) or thymine (T), a sugar called deoxyribose, and a
phosphate group. They function as the fundamental units of the genetic code.

A chromosome consists of a single, very long DNA helix on which thousands of genes are
encoded. The region of the chromosome at which a particular gene is located is called its
locus. Each locus contains one allele of a gene. An allele is one of two, or more, forms of a
given gene variant. Alleles can come in different extremes of size. At the higher end, it can be
up to several thousand base-pairs long. A base-pair is a fundamental unit of double-stranded
nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. At the
lowest possible size an allele can be a single nucleotide polymorphism (SNP). Members of a
population may have different alleles at the locus, each with a slightly different gene sequence.
For example, at a specific base position in the human genome, the G nucleotide may appear in
most individuals, but in a minority of individuals, the position is occupied by an A. This means
that there is a SNP (a variation of a single nucleotide at a specific position in the genome) at
this specific position, and the two possible nucleotide variations – G or A – are said to be the
alleles for this specific position. This is illustrated in Figure 1.2. SNPs pinpoint differences
in our susceptibility to a wide range of diseases, and the severity of illness and the way the
body responds to treatments are also manifestations of genetic variations caused by SNPs. The
major allele is the most common allele for a given SNP. The minor allele is the less common
allele for a SNP.

The genome is all genetic information of an organism. The genome includes both the or-
ganism’s ensemble of genes (the coding regions) and the non-coding DNA, as well as mito-
chondrial DNA and chloroplast DNA. A gene is a basic unit of heredity and a sequence of
nucleotides in DNA or RNA that encodes the synthesis of a gene product, either RNA or pro-
tein. The transmission of genes to an organism’s offspring is the basis of the inheritance of
phenotypic traits. These genes make up different DNA sequences called genotypes. Geno-
types along with environmental and developmental factors determine what the phenotypes will
be. The genotype is the individual organism’s unique set of all the genes, and genotyping is the
process of determining the genotype at specific positions within the genome of an individual.
The genotype of a diploid organism (an organism with paired chromosomes, one from each
parent) at a single locus on the DNA is described by the words homozygous, heterozygous,
hemizygous, and nullizygous. Homozygous describes a genotype consisting of two identical
alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at
a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene
in an otherwise diploid organism, and nullizygous refers to an otherwise-diploid organism in
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which both copies of the gene are missing.

C T A

G A T
Strand 2

C T G

G A C
Strand 1

SNP

Figure 1.2: DNA strand 1 differs from DNA strand 2 at a single base-pair location.

1.1.2 Metabolomics

Metabolomics is the scientific study of chemical processes involving metabolites, the small
molecule substrates, intermediates and products of cell metabolism.

Metabolism is a set of chemical reactions in organisms with three main purposes: the con-
version of the energy in food to energy available to run cellular processes; the conversion of
food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the
elimination of metabolic wastes (excrements).

Metabolites are intermediate or end products of metabolism. They are small molecules that
take part in metabolic processes.

1.2 Phenotypic, genomic,
and metabolomic data
from Danish pigs

This PhD project is part of a larger research project with the acronym FEEDOMICS funded
by the Danish research councils. The overall objective of the FEEDOMICS project is to im-
prove the feed efficiency (FE) in Danish pig production. Feed costs are the single largest
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expense of raising pigs and the underlying hypothesis of the FEEDOMICS project is that ge-
nomic, transcriptomic and metabolic profiles are substantially different in extremely efficient
and extremely inefficient pigs for feed utilisation. The materials for the project consist of data
obtained from a collaboration between the Pig research centre (VSP) of the Danish Agriculture
& Food Council (L&F), Danish Crown (DC) Herning and the University of Copenhagen.

While we have access to phenotypic, metabolomic, and genomic data as well as a pedigree
database, we focus our presentation on the phenotypic and omics datasets, which have moti-
vated our research project.

We consider data from a randomised controlled trial, tracking 112 randomly chosen pigs from
two breeds, 62 DanBred Durocs (Durocs) and 50 DanBred Landraces (Landraces). Before
the test phase begins the pigs arrive weighing approximately 7 kg and are acclimated. The test
phase begins when the pigs weigh approximately 30 kg and when the pigs weigh approximately
100 kg, they are slaughtered.

Phenotypic data A list of the relevant variables in the phenotypic dataset are presented in
Table 1.2. In the following analyses we focus primarily on the feed efficiency index (and meat
percentage and scanning weight), which we use as outcome variable(s).

Variable name Type Description Missing

ID numeric Unique identifier of each pig. 0
scanning_date character Scanning date (4 categories). 0
scanning_weight numeric Scanning weight (kg). 0
kg_feed_consumed numeric Feed consumed (kg). 0
daily_gain numeric Daily gain (g/day). 4
Feed efficiency numeric Feed efficiency index. 0
meat% numeric Meat %. 0
race character Race (Duroc or Landrace) 0

Table 1.2: Variables in phenotype data.

In Figure 1.3 we display violin plots for the continuous features. The violin plots have been
supplemented with median and interquartile range information. What is most noteworthy is
that whereas the estimated density of the scanning weight is somewhat similar for the two
races, even though the density for Landrace pigs is bimodal and more heavy-tailed, the esti-
mated density of the meat percentage indicates that a higher meat percentage is associated with
the Landraces.

Genomic data We have genomic data for 112 complete-case pigs, including 62 Duroc and
50 Landrace pigs. The pigs were genotyped using the GGP Porcine HD array, specifically
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Figure 1.3: Violin plots of the continuous variables from the phenotype table, showing that the
distribution of several of the lab test variables is skewed, which suggests that a log transform
will be beneficial. The distribution of the scanning weight and the feed consumed of the Lan-
draces both appear bimodal.

chosen for optimal chromosomal spacing and high minor allele frequency values for use in
most commercial breeding lines. Sampling, sequencing, quality control, mapping and read
quantification is described in more detail in Carmelo and Kadarmideen (2020).

For the Durocs, we have access to 31,079 SNPs after SNPs with no variation have been re-
moved; for the Landraces we have access to 35,913 SNPs after SNPs with no variation have
been removed. In the normal cell of a pig, or any mammal, chromosomes occur in distinct
pairs. In contrast to humans, who have 23 chromosome pairs, pigs have 19 chromosome pairs
(18 autosomes and the sex chromosome) for a total of 38 chromosomes. In Figure 1.4 we
show the number of SNPs per chromosome for the Durocs (blue) and Landraces (orange).
We observe that the numbers are not uniform across chromosomes, but they conform with
the chromosome lengths (Ye et al., 2013). In Figure 1.5 we show the (smoothed) density of
the SNP positions for each chromosome for the Durocs (blue) and Landraces (orange). We
observe that, with the exception of the sex chromosome (number 19), the observed SNPs are
generally uniformly positioned within the chromosomes.

Metabolomic data We have metabolite data for 109 complete-case pigs, including 59 Duroc
and 50 Landrace. Blood samples were collected from each pig at two time points, once at
the start of the FE testing phase where the pigs weigh approximately 30 kg, and again 45
days later. Non-targeted metabolomics analysis was performed on blood plasma using liquid
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Figure 1.4: Number of SNPs per chromosome for Durocs (orange) and Landraces (blue).

chromatography–mass spectrometry (LC-MS), and 729 metabolites were identified in the data,
yielding two data sets, metabols_1 and metabols_2.

In Figure 1.6 we show barplots of the average metabolite intensities stratified on races for sam-
ple 1 (upper panel) and sample 2 (lower panel). For an initial overview, we have highlighted
some of the metabolites with high intensities across race and sample.
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Figure 1.5: SNP density for each chromosome for Durocs (orange) and Landraces (blue).
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Figure 1.6: Barplot of average (over pigs) normalised (per pig) metabolite intensities for
Durocs (left panel) and Landraces (right panel) from sample 1 (upper panel) and sample 2
(lower panel).
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1.3 Objectives and
description of the
research project

The aim of statistical genetics is to develop statistical methods for understanding the genetic
basis of diseases and traits in humans and animals. The methods involve large-scale datasets
from candidate-gene approaches, which focus on associations between genetic variation within
pre-specified genes of interest, to genome-wide association studies (GWASs or GWA studies),
which search the entire genome for common genetic variation.

A GWAS is an observational study of a genome-wide set of genetic variants in different in-
dividuals with the aim of detecting potential variants associated with a phenotypic trait. For
example, a GWAS may focus on associations between SNPs and a trait like a major human
disease or another distinct variant of a phenotypic characteristic of any other organism – such
as the FE of pigs. Often, genetic variants are tested for Hardy-Weinberg equilibrium (HWE)
before testing for association, and a genetic model for the association test is specified. The
HWE, also known as the Hardy–Weinberg principle, model, theorem, or law, states that, in the
absence of other evolutionary influences (e.g., migration, mutation, selection, and inbreeding),
allele and genotype frequencies will remain in their equilibrium state over the generations. In
the simplest case of a single locus with two alleles denoted A and a with frequencies f(A) = π

and f(a) = 1 − π, respectively, the expected genotype frequencies under random mating are
f(AA) = π2 for the AA homozygotes, f(aa) = (1 − π)2 for the aa homozygotes, and
f(Aa) = 2π(1 − π) for the heterozygotes Aa and aA. In the absence of selection, mutation,
genetic drift, or other forces, allele frequencies π and 1 − π are constant between generations,
so equilibrium is reached. Hardy-Weinberg equilibrium (HWE) is achieved in one generation
of random mating. We refer to Hartl and Clark (1982) for a comprehensive treatment of the
assumptions that underlie HWE. The principle is important in the context of genetic associa-
tion studies for various reasons. For example, disequilibrium may be the result of genotyping
error, e.g., a confusion of heterozygotes and homozygotes, and tests for HWE may help to
detect (gross) genotyping error. In the FEEDOMICS data at hand, we do, however, know of a
certain degree of inbreeding, and, therefore, HWE is most likely not reached at least for those
loci which are influenced by inbreeding. Therefore, we omit testing for HWE.

A common statistical method for identifying SNPs associated with a quantitative trait is single
SNP association testing with linear regression assuming an additive model. That is, under the
assumption that we have N observations of a univariate outcome y = (y1, . . . , yN ) ∈ RN

(the trait) and one associated feature x ∈ {0, 1, 2}N (a SNP where genotypes are coded as ‘0’
(homozygote major, aa), ‘1’ (heterozygote, Aa and aA), and ‘2’ (homozygote minor, AA)), a



14 CHAPTER 1. INTRODUCTION

univariate simple linear regression model on the form

yi = β0 + xiβ + εi, (1.1)

is fitted. Here β = (β0, β)⊤ ∈ R2 are unknown regression coefficients and ε = (ε1, . . . , εN )
∈ RN is a vector of zero-mean Gaussian random errors – an unobserved random variable
adding noise to the linear relationship between the outcome and features:

ε ∼ NN

(
0N , σ2IN×N

)
,

where 0N ∈ RN is a vector of zeros, IN×N is the N × N identity matrix, and σ2 > 0 is the
same for all errors, under the assumption that errors of the outcome are homoscedastic (they
have the same finite variance) and uncorrelated (reflecting the assumption, that the underlying
observations are independent).

The combination of encoding of x and linearity of the model corresponds to the assumption
that the trait is additive in SNP effect, that is, having two minor alleles (AA coded as ‘2’)
rather than having no minor alleles (aa coded as ‘0’) is twice as likely to affect the outcome
in a certain direction as is having just one minor allele (Aa or aA coded as ‘1’) rather than
no minor alleles. This is unlike the dominance model which assumes that having one or two
minor alleles rather than having no minor allele is twice as likely to affect the outcome in a
certain direction and the recessive model which assumes that having two minor alleles rather
than having no or one minor allele is twice as likely to affect the outcome in a certain direction.
In Figure 1.7 we show scatterplots of FE against SNP number 52044 for the pooled data (left)
and a altered version of the data (right). Specifically, for the altered version, we have added
0.2 to the FE of pigs with no minor alleles and subtracted 0.05 to the FE of pigs with just
one minor allele. The alterations are purely for illustrative purposes. We have added a linear
regression line and group means. Bearing in mind that eyeballing whether three points are on a
line is not reliable, it could be argued that the left plot indicates that the additive (minor allele)
model is reasonable, while the right plot indicates a dominant model. Whether the linearity and
additivity assumption is reasonable for all SNPs from a GWAS is questionable. It is, however,
not doable, to investigate the assumption in the case of thousands or millions of SNPs, and in
the following we make the assumption without further investigations.

In the context of GWAS with, say, p SNPs, p univariate simple linear regression analyses are
performed and t-tests are used to test whether to reject the null hypothesis that there is no lin-
ear relationship between a given SNP and the trait. After p-values are calculated for all SNPs,
Manhattan plots are often used to display significant SNPs. In this context, a Manhattan plot
shows the negative logarithm of the p-value for each SNP as a function of genomic location.
Due to the hundreds of thousands to millions of SNPs to be tested, the p-value threshold for
significance needs to be corrected for multiple testing. Bonferroni correction is a simple ap-
proach, which we use in Example 1.3.1 below, where the local significance level is the desired
overall significance level α one aims to control divided by the number of tests performed. For
example, in the case of α = 0.05 and a GWAS where a microarray of one million SNPs is
employed, which is typical in human SNP arrays, the threshold is 5 × 10−8.
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Figure 1.7: Scatterplot of FE plotted against SNP number 52044 (left) and an altered version
of FE plotted against SNP number 52044 (right).

Example 1.3.1. As an example, we consider the data introduced in Section 1.2. We are in-
terested in comparing the DNA of participating pigs of different races, for a particular trait, in
this case FE. If one type of the variant (one allele) is more frequent in feed efficient pigs, the
variant is said to be associated with the FE. The associated SNPs are then considered to mark
a region of the pig genome that may influence the FE.
For each race, Duroc and Landrace, we fit 31,079 and 35,913 univariate simple linear regres-
sion models, respectively, carry out t-tests, and calculate p-values. The resulting Manhattan
plots for the Durocs (top) and Landraces (bottom) are shown in Figure B.1 in Appendix B.
The SNPs with the most significant association stand out on the plot, since the strongest statis-
tical associations have the smallest p-values and their negative logarithms will be the greatest.
The dashed horizontal line represents the threshold for genome-wide significance from the
Bonferroni correction method. The dotted horizontal line represents the conventional thresh-
old 5 × 10−8. We observe only a few strongly associated SNPs for the Landraces (indicated
by ◦) above the dashed line and none for the Durocs, see Table C.1 in Appendix C for a com-
prehensive list. ♢

The standard GWAS method based on simple linear regressions has several obvious limita-
tions; in particular, insufficient sample size and control for multiple testing are common prob-
lems. Standard variable-by-variable hypothesis testing strategies are based on rejecting the null
hypothesis if the likelihood of the observed data under the null hypotheses is low. If multiple
hypotheses are tested, the probability of producing false positives increases. On the other hand,
significance rules, such as Bonferroni correction, can be conservative and might increase the
probability of producing false negatives, that is, reduce the statistical power.

Multiple linear regression is an extension of simple linear regression, which allows us to ex-
plain the variation in the outcome that can be attributed to variation in the features and the
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relative contribution of each of the (multiple) features to the total variance explained. How-
ever, standard multiple linear regression models result in only non-zero estimates which makes
interpretation of the results difficult when the number, p, of features is large. Furthermore, if
the number, N , of observations is not much larger than p, the OLS estimates may exhibit a
lot of variability resulting in almost sure overfitting. Therefore, they are likely to yield poor
predictions. Finally, if p > N the OLS estimates are not unique in which case the method
cannot be used at all. However, in the case of p > N it is unlikely that all features play an
important role, anyway. Therefore, regularised regression methods have been suggested as
an alternative method (also) in GWAS. Different types of regularised regression methods ex-
ist with different (dis)advantages. Here, we focus on lasso or ℓ1-regularised regression and
generalised regularisations, such as the group lasso.

There are many alternatives to OLS and regularisation, for example, subset selection and di-
mension reduction. The subset selection methods use least squares to fit a linear model that
contains a subset of the predictors. While they yield simple and easily interpretable models
it turns out that shrinking the coefficient estimates via regularisation, can significantly reduce
their variance (James et al., 2013). The dimension reduction methods transform the features
and then fit linear regression models by means of least squares using the transformed features.
While these methods reduce the computing time and storage space required, the new features
are not easily interpretable.

While the majority of GWASs used to focus on the effect of individual SNPs, the growing sam-
ple size of GWASs has facilitated the discovery of gene-environment interactions (GxE) and
even gene-gene interactions (GxG), and empirical evidence shows that such interactions may
be an important genetic component underlying complex traits and diseases (Lee et al., 2018;
Schrode et al., 2018; Dong et al., 2017). Gene-gene interactions, or epistasis, is a phenomenon
in genetics in which the expression of one gene is affected by the expression of one or more
independently inherited genes. In other words, there is an interaction, either across genes or
within them, leading to non-linear effects. Thus, there is biological motivation for considering
interactions, when analysing genetic data.

A variety of methods can be used to test for statistical interaction between features that encode
the genotype and an outcome. One approach to modelling interaction effects involves regres-
sion. However, fitting regression models with interactions is challenging even for a moderate-
size number, p, of measured features, as the total number of possible pairwise interactions
is
(

p
2
)

= 1
2 p(p − 1). For example, the genetic FEEDOMICS dataset with approximately 30

thousand SNPs results in approximately 450 million potential pairwise interactions.

In addition, exhaustive genome-wide searches for interactions are difficult, due to a lack of
power in most datasets and the substantial memory and computing time needed. The method-
ology proposed here is the following: If a subset of active features can be identified, imposing
hierarchical restrictions (Bien et al., 2013) in a stepwise manner, may sufficiently reduce the
number of interactions to be included in a regularised regression model. Our proposal in this
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direction is given in Manuscript I and a general overview of the subject is given in Section 1.4.
An overview of a multivariate analogue is given in Section 1.6 and a theoretical proposal is
given in Manuscript III.

The motivation for multivariate modelling is illustrated by the simple case of three outcome
components and one feature:

Example 1.3.2. Assume that we are interested in the impact of the race of a pig on the
FE (Feed efficiency), the meat percentage (meat %), and the weight (scanning
_weight). Pairwise scatterplots of the dataset are shown in Figure 1.8: They indicate a pat-
tern of the race where the race simultaneously influences Feed efficiency and meat

% but not necessarily scanning_weight. This encourages a joint analysis of Feed
efficiency and meat % and an individual analysis of scanning_weight. ♢

Traditional association methods for quantitative traits are mostly designed for use with inde-
pendent traits. However, genetic association studies in practice often involve multiple traits
resulting from a common disease mechanism, and samples for such studies are often stratified
based on some trait outcomes. Using information from multiple, simultaneously measured
and potentially correlated quantitative traits in a common statistical analysis has many poten-
tial advantages (Galesloot et al., 2014), such as increased precision and power (Schmitz et al.,
1998) and computational advantages. In such situations, statistical methods using only one of
the traits may be inefficient and lead to under-powered tests for detecting genetic associations.
On the other hand, estimation and testing procedures for evaluating the shared-association of a
genetic marker on the joint distribution of multiple traits may increase the statistical and com-
putational complexity of the analyses massively. In Manuscript II we develop a method for
understanding the genetic relationship among multiple, simultaneously measured, and poten-
tially correlated quantitative traits. The features may be inaccessible since our methods work
provided that we have access to associated PGSs (polygenic scores) or other summary statis-
tics presumed to be indicative of the correlation structure of the traits. Here, we are interested
in identifying potential clusters of the traits that share some genetic component, and we wish
to be able to predict the outcome for new data points. Thus, we are interested in the pair-
wise “relatedness” of the traits in terms of genetic variation, and for that reason we consider
PGSs, which marginally serves as a prediction for a trait when taking into account variation in
multiple genetic variants.

Linear mixed models (LMMs) have been used in GWASs to model correlated traits. Because
of the computational demands involved in the estimation of the parameters of an LMM, and
due to the complications arising from misspecification of the covariance structure and the chal-
lenges of an unconstrained covariance matrix, we began considering how the problem could
be simplified. Our hope was to be able to identify clusters of multiple, simultaneously mea-
sured quantitative traits sharing genetic characteristics and to predict the outcome for new data
points. Our proposal in this direction is given in Manuscript II. A general overview of the
subject of multivariate modelling with PGSs is given in Section 1.5.
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Figure 1.8: Pairwise scatterplots of pig data with three traits plotted against each other and
coloured according to the value of the single feature, the race of the pig. We have added 90%
confidence ellipses for each group, with the centre being the group mean, the shape the group
covariance matrix, and the radius the square root of the value of the χ2-distribution with two
degrees of freedom at 0.1. Top left: This plot suggests that the race influences both the Feed
efficiency and meat %, since it reveals two clusters of observations complying with the
race in both the direction of Feed efficiency and meat %. Top right: This plot reveals
a more faint clustering in the direction of meat % suggesting that the race influences meat
% and not scanning_weight. Bottom left: This plot reveals no clear relation between
Feed efficiency, scanning_weight, and race.

In the following sections, background, overviews, and discussions of our progress in the re-
search objectives are given, and applications to the FEEDOMICS data are presented.
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1.4 Hierarchical interactions
and regularised regression

In Manuscript I we develop an intuitive method for identifying hierarchical interactions using
regularised regression, with the aim of obtaining interpretable models. In Section 1.4.1 and
Section 1.4.2 we give a more detailed account of existing methods which form the basis of
Manuscript I, in Section 1.4.3 we outline the results of Manuscript I, and in Section 1.4.4 we
discuss our results and review perspectives for future research based on the material covered.

In order to properly understand the context of our work, we begin by motivating and introduc-
ing hierarchical interaction models in a p < N context and regularised regression method when
interactions are not a concern. After doing so, we outline our work on regularised regression
with hierarchical interactions.

1.4.1 Hierarchical interaction
models

As argued in the introductory Section 1.3 biological and statistical incentive for considering in-
teractions in analyses of genetic data exists. In fact, wrongly omitting interaction terms may re-
duce the predictive power of models, bias the estimates, and lead to wrong conclusions. When
to include interactions in a multivariate regression model is, however, not straightforward. In-
terpretations of traditional regression analyses do not encourage including an interaction in
a model without the corresponding main effects, since main effects can be viewed as devia-
tions from the mean and interactions as deviations from the main effects (Bien and Tibshirani,
2014). Furthermore, it can be argued that large main effects are more likely to lead to impor-
tant interactions than small (Cox, 1984). Finally, including “too many” interaction terms may
unnecessarily complicate the model and its interpretation and is likely to be computationally
infeasible. This motivates the notion of hierarchy.

Our work with interactions and hierarchical assumptions concerns the development of these
notions for regularised regression models. As we study the genomes of pigs to assess the FE,
we hope that not all of the 21,640 genes in a pig are directly involved in the process that leads
to higher FE. This prompts an underlying assumption of simplicity, and, in statistical terms,
one form of simplicity is sparsity. We say that a sparse statistical model is one in which only a
relatively small number of parameters (or features) play an important role. The starting point
is the univariate multiple linear regression model. For N observations of a univariate centred
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outcome y = (y1, . . . , yN ) and p associated features xj = (x1j , . . . , xNj), j = 1, . . . , p, the
model takes the form

yi =
p∑

j=1
xijβj + ϵi, (1.2)

for all i = 1, . . . , N , where βj , j = 1, . . . , p are unknown parameters for the main effects
and ϵi, i = 1, . . . , N , are error variables. A popular method for estimating the parameters in
a linear regression model is the ordinary least squares (OLS) method, in which we find the
parameters β which minimise the residual sum of squares (RSS):

RSS(β) =
N∑

i=1


yi −

p∑

j=1
xijβj




2

.

If p > N the system is overdetermined, since the number of equations is smaller than the
number of unknowns, so there is an infinite set of solutions that make the objective function
equal to zero, and these solutions almost surely overfit the data. This motivates the notion of
regularised regression which involves fitting a model involving all p features where coefficients
are shrunken towards (or estimated to be exactly) zero relative to the least squares estimates.

We assume that we have N observations of the univariate outcome y and p associated features
X with pairwise interactions. Here, we consider the situation where the outcome is assumed to
be quantitative (y ∈ RN ) and the error distribution is assumed to be Gaussian. The generalised
linear model (GLM) (Nelder and Wedderburn, 1972) is a generalisation of ordinary linear
regression which, via a link function and by allowing the magnitude of the variance of each
measurement to be a function of its predicted value, allows for the outcome to have an error
distribution which is not Gaussian. While interaction effects are simply imposed through the
link function, it should be noted, that the presence of both the link function and the interaction
terms further complicate the interpretation of the relationship between the outcome and the
features.

If the features are categorical, they are assumed to be represented by dummy variables, and
the pairwise interaction term is formed by multiplying the corresponding variables. In this
case, two features are said to interact if the effect of one feature depends on the level(s) of
the other. Similarly, a categorical and a quantitative feature are said to interact, if the partial
slope corresponding to the quantitative variable depends on the level of the categorical variable.
Estimates and hypothesis tests are calculated similarly for both cases (Ekstrøm and Sørensen,
2014). If the features are quantitative, X ∈ RN×p, the pairwise interaction term is formed
by multiplying the two corresponding features. In this case, testing and interpretation is more
complex. A comprehensive source on the treatment of such interactions in multiple regression
is found in Aiken and West (1991).
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The pairwise interaction model takes the form

yi =
p∑

j=1
xijβj +

p∑

k=1

∑

j<k

xijxikΘjk + ϵi, (1.3)

where β1, . . . , βp are unknown parameters for the main effects, Θ ∈ Rp×p are unknown pa-
rameters for the pairwise interactions, and ε is a random error variable. We let Θ represent a
symmetric matrix, i.e., Θ = Θ⊤. The strict inequality in the interaction summation precludes
over-parametrisation arising from the inclusion of the same effect twice, e.g. including both
xijxik and xikxij .

When aiming to interpret pairwise interaction parameters in a linear regression model it is
necessary to consider the concept of hierarchy. For example, are we to include (both) main
effects when associated pairwise interactions are estimated to be non-zero?

In the following we present model restrictions in a form which makes it possible to specify a
regularised regression procedure which produces sparse interaction models that honour these
different hierarchical restrictions. We define the following hierarchical, anti-hierarchical, and
non-hierarchical restrictions, replicated from Manuscript I:

Strong hierarchy There are interactions only among pairs of non-zero main effects,
HS : Θjk ̸= 0 ⇒ βj ̸= 0 and βk ̸= 0.

Weak hierarchy Each interaction has at least one of its main effects present,
HW : Θjk ̸= 0 ⇒ βj ̸= 0 or βk ̸= 0.

Anti-hierarchy Interactions are only among pairs of main effects which are not present,
HA : Θjk ̸= 0 ⇒ βj = 0 and βk = 0.

Pure interactions There are no main effects present, only interactions,
HI : βj = 0 ∀j = 1, . . . , p.

Pure main effects There are no interactions present, only main effects,
HM : Θjk = 0 ∀j, k = 1, . . . , p.

No hierarchy There are no restrictions to the presence of main effects and interactions,
HN.

While the methods developed in Manuscript I allow for all of the above mentioned hierarchies
an anti-hierarchical or pure interactions structure is not computationally tractable, and often
conceptually unrealistic. A pure main effects structure is irrelevant in our search for interac-
tions. Therefore, we make no further mention of these structures in this section.

In general, we may denote by MH and IH the sets of main effects and interactions, respectively,
to be included in the model subject to one of the hierarchical restrictions. Then, the restrictions
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above result in the following hierarchical pairwise interaction model:

yi =
∑

j∈MH

xijβj +
p∑

k=1

∑

j<k

1{(j,k)∈IH}xijxikΘjk + ϵi. (1.4)

1.4.2 Regularised regression

When we talk about fitting a regularised regression model we refer to a model in which only a
relatively small number of features are active, that is, a model which involves only a subset of
the features. The lasso (least absolute shrinkage and selection operator) is a regression analysis
method (Tibshirani, 1996) which imposes an ℓ1 penalty on their size, thereby, shrinking the
regression coefficients towards (or estimated to be exactly) zero relative to the least squares
estimates.

We assume that we have N observations of a univariate outcome y ∈ RN and p associated
features X . The objective of lasso or ℓ1-regularised regression is to solve an optimisation
problem of the form

minimise
β

1
2N

N∑

i=1


yi − β0 −

p∑

j=1
xijβj




2

subject to
p∑

j=1
|βj | ≤ t,

(1.5)

where t is a parameter determined e.g., by cross-validation, before the estimation process is
initialised. Selecting the value of t is a trade-off between the fit to data and the predictive power
of the model. We recognise the objective function to be minimised over the parameter vector
β as a residual sum of squares (RSS), that is, the lasso coefficients minimise a penalised RSS.
In the left panel of Figure 1.9 we illustrate the estimation for the lasso regression in the case
of two features. The grey ellipses are contours of the RSS function centred at the point β̂

O

which corresponds to the (unconstrained) OLS estimate. The area bounded by the orange lines
is the constraint region |β1| + |β2| ≤ t and the lasso method selects the point on the contour

which first hits the constraint region when expanding the contours from the centre β̂
O

. For
comparison, we illustrate the estimation for the ridge regression in the right panel. It solves an
optimisation problem very similar to (1.5):

minimise
β

1
2N

N∑

i=1


yi − β0 −

p∑

j=1
xijβj




2

subject to
p∑

j=1
β2

j ≤ t2.

(1.6)
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Figure 1.9: Illustration of estimation via lasso regression (left) and ridge regression (right).
The grey ellipses are contours of the residual-sum-of-squares function centred at the point
β̂

O
which corresponds to the OLS estimate and the area bounded by the orange lines is the

constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2, respectively.

We can write the lasso problem in the Lagrangian form

β̂ = arg min
β





1
2N

N∑

i=1


yi − β0 −

p∑

j=1
xijβj




2

+ λ

p∑

j=1
|βj |





. (1.7)

By Lagrangian duality, there is a one-to-one correspondence between the constrained problem
(1.5) and the Lagrangian form (1.7).

The method translates each coefficient by a constant factor λ, truncating at zero: Since the
function |βj | is not differentiable in zero, lasso has the ability to letting coefficients equal zero.
The ℓ1 penalty

∑p
j=1 |βj | makes the solution non-linear in the yi, and it has no closed form

expression. The penalty parameter λ can be determined by a model validation technique such
as cross-validation, and selecting the value of λ translates to selecting a proper amount of
regularisation and is, as such, a trade-off between data fitting and sparsity.

For computational reasons it is recommended that quantitative features are centred before the
optimisation problem is solved, see Aiken and West (1991), such that each column has mean
zero, that is, 1

N

∑N
i=1 xij = 0. If the features are not measured in the same units, it is also

recommended that the features are scaled such that each column has unit variance, that is,
1
N

∑N
i=1 x2

ij = 1. Otherwise the lasso solution depends on the scale since lasso puts constraints
on the size of the coefficients associated to each feature. For the sake of simplicity we assume
in the following that the outcome values are centred before the optimisation problem is solved,
that is, 1

N

∑N
i=1 yi = 0, and the intercept term is omitted from the model. In linear regression

models, this condition is not a restriction, since given an optimal solution, (β̂0, β̂), obtained
from the centred data, an optimal solution, (β̃0, β̃), for the uncentred data is easily recovered:
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β̃ = β̂ and β̃0 = ȳ −∑p
j=1 X̄jβ̃j , where ȳ and X̄j , j = 1, . . . , p, are the original means.

Example 1.4.1. We consider as outcome, y, the FE and as associated features, X, the 31,079
and 35,913 SNPs for the Durocs and Landraces, respectively. We perform lasso regression on
each race separately using the R package glmnet (Friedman et al., 2010). In Figure 1.10 we
display the cross-validation curve (dots), and upper and lower standard deviation curves (grey
bars) along the λ sequence. Two selected λ’s are indicated by the vertical dotted lines. One
is λmin, which is the value of λ that gives minimum mean cross-validated error. The other is
λ1se, which gives the most regularised model such that the error is within one standard error of
the minimum. That is, where λmin selects the best model in terms of mean squared error, λ1se

selects the more parsimonious model with error no more than one standard error above the error
of the best model. Often, a more conservative model is desired, and in that case λ1se used, as it
acknowledges the fact that the cross-validation curves are estimated with error, and errs on the
side of parsimony (Hastie et al., 2009). However, we ought to be liberal when including main
effects to allow more interactions to be considered and avoid them being disregarded because
of low power. Therefore, λmin is used as shrinkage and selection criterion in this example as
well as in the later proposed methods. We observe that 32 SNPs are selected for the Durocs
and 48 SNPs are selected for the Landraces at λmin. A comprehensive list of selected SNPs
is given in Table C.1 in Appendix C. We observe that notably more SNPs are selected by the
lasso than the GWAS method used in Example 1.3.1. In the Manhattan plots in Figure B.1 in
Appendix B we indicate by + SNPs selected by the lasso. ♢

1.4.3 A framework for hierarchical
regularised regression

We are now ready to describe our efforts in developing a method for identifying hierarchical
interactions using regularised regression. Our work is detailed in Manuscript I.

Fitting regression models with interactions is challenging even for a moderate-size number of
measured features p, as the total number of possible pairwise interactions is

(
p
2
)

= 1
2 p(p − 1).

For the genetic dataset presented in Section 1.2 with approximately 25 thousand SNPs, this
results in more than 300 million potential pairwise interactions. Including all these interac-
tions in a regression model is, of course, not meaningful. Therefore, we are interested in
“sufficiently” reducing the number of interactions to be included in a regularised regression
model by imposing hierarchical restrictions in a stepwise manner. The first step in this direc-
tion is extending the lasso optimisation problem to the pairwise interaction model (1.3), such
that a penalty is imposed on the interaction coefficients, thereby shrinking them towards (or
estimated to be exactly) zero. We choose to treat main effects and interactions equally and
impose the same penalty on main effects and interactions, thereby keeping down the number
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Figure 1.10: Cross-validation curves (dots), and upper and lower standard deviation curves
(grey bars) along the λ sequence (bottom axis) and corresponding sequence of number of
selected SNPs (upper axis) for the Durocs (top) and Landraces (bottom). λmin and λ1se are
indicated by the orange dots and vertical dotted lines.

of hyperparameters. The optimisation problem takes the form

minimise
β∈Rp,Θ∈Rp×p



q(β, Θ) + λ

p∑

j=1
|βj | + λ

p∑

k=1

∑

j<k

|Θjk|



 ,
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where q(β, Θ) denotes the loss function

q(β, Θ) = 1
2N

N∑

i=1


yi −

p∑

j=1
xijβj −

p∑

k=1

∑

j<k

xijxikΘjk




2

.

The remaining challenge is now to impose hierarchical restrictions in the lasso optimisation
problem for the pairwise interaction model. Our starting point is the adaptive lasso proposed
by Zou (2006), where adaptive weights are used for penalising different coefficients in the ℓ1
penalty. The adaptive lasso solves an optimisation problem of the form

minimise
β∈Rp





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj




2

+ λ

p∑

j=1
γj |βj |





, (1.8)

where the penalty parameter λ ≥ 0 is determined by cross-validation and the quantity γ ∈ Rp,
γj ≥ 0, j = 1, 2, . . . , p, is a penalty modifier. Inspired by this, we extend the definition of the
adaptive lasso to the framework of interactions. For the pairwise interaction model (1.3) the
adaptive lasso estimates are determined by solving the optimisation problem

minimise
β∈Rp,Θ∈Rp×p





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj −

p∑

k=1

∑

j<k

xijxikΘjk




2

+λ

p∑

j=1
γj |βj | + λ

p∑

k=1

∑

j<k

τjk|Θjk|



 .

Now, defining the penalty modifiers γj ≥ 0 and τjk ≥ 0, j, k = 1, 2, . . . , p, is key for achieving
our objective of constructing a procedure which ensures interpretation in terms of hierarchy.
While, typically, the primary motivation for the adaptive lasso compared to the usual lasso is
that it enjoys the oracle properties (Zou, 2006), we are going to take advantage of the actual
adaptiveness, that is, the possibility of using different weights for penalising coefficients. To
obtain hierarchical interactions, we make the following observations. The method works for
λ = 0 whenever p < N . However, our procedure is targeted towards datasets with p ≫ N ,
and therefore, we consider only λ > 0. When γj = 0, the jth regularisation term disappears.
That is, feature j is not penalised but always included in the model. When γj = ∞ feature
j is always excluded, and for all j = 1, 2, . . . , p for which γj are equal to the same constant
value, the corresponding features are equally penalised. Similar observations can be made for
τjk. By these observations, we are able to formally define, for all j = 1, . . . , p,

γj = 1{j /∈MH},

where MH is the index set of features to be included in the model subject to one of the hierar-
chical restrictions, HS or HW, and for all j, k = 1, . . . , p,

τjk = 1{(j,k)∈IH},
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where IH is the index set of pairwise interactions (pairs of features) to be included in the model
subject to one of the hierarchical restrictions, HS or HW, analogously to (1.4).

Finally, it remains to estimate the sets MH and IH. The following two-step procedure, repli-
cated in a slightly shortened form from Manuscript I, is our proposed method.

Step 1 Assume the pure main effect model,

yi =
p∑

j=1
xijβj + εi,

for which the lasso estimates are determined by solving the optimisation problem

minimise
β∈Rp





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj




2

+ λ1

p∑

j=1
|βj |





,

for some λ1 > 0. Define by S = {k : βk ̸= 0} the set of main effects, that is, the set of non-
zero coefficients, which is estimated by S(λ1) = {k : β̂

(λ1)
k ̸= 0}, that is, the set of non-zero

estimates, corresponding to the main effects selected by lasso.

Step 2 Define by M(λ1)
H and I(λ1)

H the sets of main effects and interactions, respectively, to
be included in the model subject to one of the hierarchical restrictions, HS or HW, for a given
value of λ1. Then, assume the pairwise interaction model,

yi =
p∑

j=1
xijβj +

p∑

k=1

∑

j<k

1{(j,k)∈I(λ1)
H

}xijxikΘjk + εi,

for which the adaptive lasso estimates are determined by solving the optimisation problem

minimise
β∈Rp,Θ∈Rp×p





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj −

p∑

k=1

∑

j<k

1{(j,k)∈I(λ1)
H

}xijxikΘjk




2

+λ2
∑

j /∈M(λ1)
H

|βj | + λ2

p∑

k=1

∑

j<k

1{(j,k)∈I(λ1)
H

}|Θjk|





,

for some λ2 > 0.
We are finally able to identify the set SH = {k : βk ̸= 0} of main effects relevant under the
model and estimated by S(λ2)

H = {k : β̂
(λ2)
k ̸= 0} and the set RH = {j, k : Θjk ̸= 0} of

interactions relevant under the model and estimated by R(λ2)
H = {j, k : Θ̂(λ2)

jk ̸= 0}.

This concludes our exposition of the motivation and framework of Manuscript I. We have fo-
cused on aspects relating to the primary contribution: the proposal of a method for identifying
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pairwise interactions in a regularised regression model under different assumptions of hierar-
chy using the penalty modifier of the adaptive lasso. Example 1.4.2 shows how the method is
used in a concrete case.

Example 1.4.2. We apply the two-step procedure to the SNP data using our R package
ilasso (Buchardt and Ekstrøm, 2021) and apply the method separately for the two breeds
(Duroc and Landrace). In the first step of the procedure the same 32 and 48 SNPs are selected
for the Durocs and Landraces, respectively, as by the lasso in Example 1.4.1. In the second
step, under the assumption of strong hierarchy, no interactions are identified for neither Durocs
nor Landraces. It is not unreasonable to attribute part of the lack of identified interactions to
low statistical power in this case, and we refer to Manuscript I for a real data example in which
interactions are in fact identified by the two-step procedure. ♢

1.4.4 Discussion of the two-step
procedure

The majority of GWASs used to focus on the effect of individual SNPs. However, the growing
sample size of GWASs has facilitated the discovery of gene-environment and gene-gene in-
teractions, and empirical evidence shows that such interactions might be an important genetic
component underlying complex traits and diseases.

How to systematically include interacting features in regularised regression models is not clear.
Including interactions in regularised regression models under hierarchical restrictions will fa-
cilitate simultaneous feature selection, parameter estimation, and interpretation of the results.

We have proposed a two-step regularised regression procedure for identification of pairwise
interactions, when strong or weak hierarchy is assumed. The procedure uses lasso and adaptive
lasso to screen for interactions and fitting hierarchical pairwise interaction models. Bien et al.
(2013) propose a penalised regression method which produces sparse estimates under weak or
strong hierarchy by adding a set of convex constraints to lasso. The method is implemented
in the R package hierNet, but the implemented algorithm is not suitable for large scale
problems. Other methods make use of the group-lasso and overlapped group-lasso to select
interactions and enforce hierarchy (Lim and Hastie, 2015; Meier et al., 2008), and then others
use stepwise procedures (Bickel et al., 2010; Park and Hastie, 2008) and two-step procedures
which always enforces strong hierarchy (Wu et al., 2010).

Through simulation studies (see Manuscript I) we have shown that the computing time for
our method is considerably reduced compared to that of hierNet and is highly satisfactory
even for fairly large data. Furthermore, the two-step procedure works very well, both in terms
of false discovery rate and recall with respect to interactions, under the assumption of strong



1.4. INTERACTIONS AND REGULARISED REGRESSION 29

hierarchy whether the truth is strong or weak hierarchy. Under the assumption of weak or no
hierarchy the recall with respect to interactions is good, however, the false discovery rate is
high. There is no consequence other than unnecessary computing time of imposing a hierar-
chical restriction, when no interactions are present. This was demonstrated in Example 1.4.2
where no interactions were identified, and the same SNPs were identified as by the usual lasso.
The above observations led us to the recommendation of a purpose driven choice of hierar-
chy if the underlying hierarchical structure of data is unknown. Specifically, if controlling the
expected proportion of false interaction discoveries is the main concern, assuming strong hier-
archy is recommended. If discovering the true interaction is prioritised but the false discovery
rate of interactions is still a concern, assuming weak hierarchy is recommended. If discovering
the true interaction is prioritised and neither the false discovery rate of interactions nor the
computing time is any concern, assuming no hierarchy is recommended.

Utilising the (adaptive) lasso proved very useful for simultaneous estimation and variable se-
lection under hierarchical restrictions. However, the two-step procedure has two major draw-
backs. First, it does not necessarily possess the oracle property; that is, we have not shown
that it performs (in terms of feature selection) as well as the true underlying model when the
number of observations goes to infinity. Secondly, it is somewhat indifferent to grouping ef-
fects, that is, the selection among a set of strong but correlated features. The adaptive lasso
yields consistent estimators of the parameters, that is, it is consistent for variable selection
as it includes only the correct subset of variables and for model selection as the MSE of the
parameters is low, while retaining the attractive convexity property of the lasso (Zou, 2006).
However, these optimality properties are likely no longer true, when using cross-validation on
the same data twice. It would be of interest to understand under which conditions leaving some
data out of the selection in the first round to be used for cross-validation in the second round is
reasonable (in terms of power). Nonetheless, our efforts have aided in setting up a framework
which may be helpful for future research efforts. In particular, our current work may be a
stepping stone towards application of the two-step procedure in the case of correlated features:
The doubly regularised technique elastic net proposed by Zou and Hastie (2005) is able to
select groups of highly correlated features, but it does not necessarily possess the oracle prop-
erty. However, the adaptive elastic net proposed by Zou and Zhang (2009) inherits some of the
desirable properties of the adaptive lasso and elastic net. In particular, when the correlations
among the features is high, the adaptive elastic net can significantly improve the prediction
accuracy and has the oracle property under certain regularity conditions. Here, we have treated
the choosing of the regularisation parameter primarily as a means to an end. Choosing the right
penalty parameter is, however, difficult and the cross-validated choices often include too many
features. It would be of interest to apply, e.g., stability selection (Meinshausen and Bühlmann,
2010) for choosing the right penalty parameters in the two-step procedure.
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1.5 Multivariate modelling with
polygenic scores

In Manuscript II we propose a method for utilising polygenic scores (PGSs) as a means for
inferring a genetic relationship among multiple, simultaneously measured and potentially cor-
related traits in a multivariate GWAS. Here, the term “multivariate” refers to multiple outcome
components or responses. In Section 1.5.1 we give a more detailed account of existing methods
which form the basis of Manuscript II, in Section 1.5.2 we outline the results of Manuscript II,
and in Sections 1.5.3 and 1.5.4 we discuss our results and review perspectives for future re-
search based on the material covered.

In order to properly understand the context of our work, we begin by giving a presentation
of some fundamental statistical assumptions and an introduction to polygenic scores. After
doing so, we outline our work on using polygenic scores to infer a genetic relationship among
multiple traits.

1.5.1 Statistical assumptions and poly-
genic scores

As argued in the introductory Section 1.3 there is a statistical incentive for considering infor-
mation from multiple traits in analyses of genetic data. In fact, statistical methods using only
one of simultaneously measured traits may be inefficient and lead to under-powered tests for
detecting genetic associations (Schmitz et al., 1998). Procedures that simultaneously evalu-
ate genetic associations on the joint distribution of multiple traits may, however, immensely
increase the statistical and computational complexity of the analyses. More recently methods
using GWAS summary statistics have been proposed, and our work falls into this category as
we utilise PGSs for inferring genetic correlation between traits.

We focus on linear regression models, which are often suitable when the outcome is quantita-
tive, and when the error distribution is approximately Gaussian. We consider N independent
samples, y1, . . . , yN ∈ Rq , of a q-dimensional random variable distributed according to a
multivariate normal distribution and define a matrix Y = (y1, . . . , yN )⊤ ∈ RN×q from the q

outcome components. We also define a matrix X = (x1, . . . , xN )⊤ ∈ RN×p of N samples of
p associated features. We assume that the data generating process can be described by a linear
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regression model of the form

Y = M + XC + E,

where M = 1N µ⊤ ∈ RN×q is a matrix of intercepts with µ = (µ1, . . . , µq)⊤, C ∈ Rp×q is
a matrix of regression coefficients, and E ∈ RN×q are independent Gaussian random errors.
However, we are interested in a more constrained scenario, where we may not have access to
data on SNP-level; we have access to polygenic scores (PGSs) which are linear transformations
between multiple genetic variants to scores that summarise the estimated effect of, e.g., SNPs.
Typically they are calculated as a weighted sum of trait-associated alleles, which are one of
two, or more, forms of a given gene variant. That is, they are constructed from the “weights”
derived from a GWAS, or from some form of machine learning algorithm. Thus, a PGS reflects
an estimated genetic predisposition for a given trait without taking environmental factors into
account, and it can be used as a numeric predictor for that trait.

PGSs are widely used and available in many fields such as animal breeding and plant breeding,
and they are also used in human genetics. In Manuscript II we allow for a set of PGSs to be
provided from an unrelated GWAS or a public resource. For the purpose of completeness, we
present a simple method of construction here.

In general, the weights used for the PGSs are estimated using some form of regression analysis,
and since the total number of features p is usually larger than the sample size N , one cannot
use OLS for estimating the parameters simultaneously. Various methodologies deal with this
problem as well as how to generate the weights of the SNPs and how to determine which s ≤ p

features should be included (e.g., Euesden et al. (2014); Wray et al. (2014)). To keep the setup
simple we define, for each trait l = 1, . . . , q, weights w1l, . . . , wpl as the marginal effects on
the trait yl, estimated separately from a univariate simple linear regression model of the form
(1.1). This way, we have to do p · q separate univariate simple linear regression analyses but
we avoid making dimensionality reduction of the SNPs before computing the PGSs. That is,
for each outcome component yl ∈ RN , l = 1, . . . , q, and each feature xj ∈ RN , j = 1, . . . , p,
we estimate a univariate simple linear regression model of the form

yl = w0l + xjwjl + el,

where w0l ∈ R is the intercept, wjl ∈ R is a regression coefficient, and el ∈ RN is a vector of
independent Gaussian random errors. For ease of notation, we label all regression coefficients
as elements in a p × q matrix W, which is not to be mistaken for a matrix of coefficients from
a multivariate multiple linear regression.

Finally, we define the PGS for each outcome component l = 1, . . . , q and each individual
i = 1, . . . , N by

zil =
p∑

j=1
xijŵjl,
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where ŵjl is the maximum likelihood estimate of wjl.

In the following we assume that a set of PGSs has been provided, and we use this set of
estimated PGSs as numeric predictors (features). That is, we assume that we have access to N

samples of exactly one feature per trait, Z = (z1, . . . , zN ) ∈ RN×q . Therefore, we consider
applying a statistical model, in particular, a linear regression model of the form

Y⃗ = Z⃗B⃗ + E⃗, (1.9)

where Y⃗ = vec(Y⊤) ∈ RNq denote the row-wise vectorisation of Y obtained by stacking the
columns of the matrix Y⊤, that is,

Y⃗ = (y11, y12, . . . , y1q, y21, y22, . . . , y2q, . . . , yN1, yN2, . . . , yNq)⊤
.

Furthermore, B⃗ = (ξ1, β1, ξ2, β2, . . . , ξq, βq)⊤ ∈ R2q is a vector of unknown intercepts
ξ1, . . . , ξq and regression coefficients β1, . . . , βq and Z⃗ ∈ RNq×2q is a corresponding design
matrix of features, such that the first column of Z⃗ is a column of ones and the second corre-
sponds to the row-wise vectorisation of Z. E⃗ ∈ RNq is a vector of Gaussian random errors,
that is,

E⃗ ∼ NNq (0Nq, Ω) ,

where 0Nq ∈ RNq is a vector of zeros and Ω ∈ RNq×Nq is a general covariance matrix.
Possible structures for Ω may be a multiple of the identity, a diagonal, or a general positive
definite matrix. As mentioned, standard multiple linear regression models assume that the
underlying observations are independent, which is reflected in the assumption that errors of the
outcome are independent, that is, Ω = σ2

rINq×Nq for some σ2
r > 0. Since we are interested in

potentially clustered traits with unequal variability across clusters, we assume that the outcome
components are both correlated and heteroscedastic. Therefore, we assume that the covariance
matrix, Ω ∈ RNq×Nq , is a block diagonal matrix of the form

Ω =




R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


 , (1.10)

where R ∈ Rq×q are the residual covariances among traits within each individual i = 1, . . . , N .

If the among-trait and within-individual correlation, Ω, of the errors is known and Ω ̸= I, the
generalised least squares (GLS) estimator is the best linear unbiased estimator of the unknown
parameters B⃗ in a linear regression model when there is a certain known degree of correlation
between the residuals. In these cases, ordinary least squares (OLS) and weighted least squares
(WLS) can be statistically inefficient (in terms of mean squared error), or even give misleading
inferences (Baltagi, 2008). However, in our case, the covariance matrix Ω is unknown. There-
fore, the methodology proposed is the following: If the structure of Ω can be approximated,
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then we can get a consistent (in terms of structure) estimate using the feasible generalised least
squares (FGLS) estimator. This is one of two fundamental ideas of Manuscript II and it is
further detailed in Section 1.5.2 below. The other fundamental idea of Manuscript II is that the
structure of Ω can be approximated by means of PGSs.

1.5.2 A framework for multivariate mod-
elling with PGSs

We are now ready to describe our efforts in developing a method for utilising PGSs as a means
for inferring a genetic relationship among multiple, simultaneously measured and potentially
correlated traits and for utilising the inferred clusters for simultaneous modelling of clustered
traits.

Our initial motivation for considering PGSs was the presumption that much of the variability
observed in a trait is attributable to genetic differences, i.e., heredity. Therefore, the traits may
be correlated via the PGS, and it may be reasonable to assume that the underlying independence
relations for the traits can be approximated by the relations observed in the PGSs.

Graphs give a powerful way of representing independence relations and computing conditional
probabilities among a set of random variables, and, in order to understand the context of our
work, we introduce some graphical terminology and properties. For finitely many random
variables Z = (z1, . . . , zq) with index set V := {1, . . . , q}, an undirected graph G = (V, E)
on a set of nodes V is a pair (V, E) with E ⊆ V × V, where the elements of E are referred
to as edges. Two nodes i and j are adjacent if either (i, j) ∈ E or (j, i) ∈ E . A path in G is a
sequence of (at least two) distinct nodes i1, . . . , im, such that there is an edge between ik and
ik+1 for all k = 1, . . . , m − 1. A graph Gg = (Vg, Eg) is called a subgraph of G if Vg = V
and Eg ⊆ E , and a connected component of a graph is a maximal subgraph in which there
exists a path between any two nodes.

Now, let G = (V, E) be an undirected graph with V := {1, . . . , q} and corresponding random
variables Z = (Zα)α∈V representing the system of PGSs. Then the PGS for a certain trait is
represented by a node, and an edge represents a pair of traits which are “related” in terms of
PGSs. In Figure 1.11 we show an example of a system of five PGSs in an undirected graph
with the lines indicating two connected components and a singleton.

In order to formalise the "relatedness" we recall the notion of conditional independence.

Definition 1.5.1 ((Lauritzen, 1996), p. 28). If Z1, Z2, and Z3 are random variables with
joint distribution P and joint density with respect to a product measure, we say that Z1 is
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Figure 1.11: Example of a system of six PGSs in an undirected graph (left). The solid lines
indicate two connected components; one containg z1, z2, and z3, another containg z4 and
z5. The heatmap (right) is generated using the sparse precision matrix, where dark colours
indicate large values and light colours represent values closer to zero. A connection between
two nodes i and j indicates a non-zero value for the corresponding element in the estimated
precision matrix.

conditionally independent of Z2 given Z3 under P , and we write Z1 ⊥⊥ Z2 | Z3, if,

fZ1Z2|Z3(z1, z2 | z3) = fZ1|Z3(z1 | z3)fZ2|Z3(z2 | z3),

holds P almost surely.

Next, we recall a result which will help make clustering of traits sharing genetic characteristics
a possibility. We assume that Z follows a multivariate normal distribution with mean µ and
covariance matrix Σ assumed to be regular such that the precision matrix P = Σ−1 is well
defined.

Proposition 1.5.1 ((Lauritzen, 1996), Proposition 5.2). Assume that Z ∼ Nq (µ, Σ), where
Σ is regular. Then it holds for i, j ∈ V with i ̸= j that

Zi ⊥⊥ Zj | ZV\{i,j} ⇔ pij = 0,

where P = {pij}i,j∈V = Σ−1 is the precision matrix of the distribution.

In words, Proposition 1.5.1 states that for a matrix of random variables following a multivari-
ate Gaussian distribution, the ijth component of the corresponding precision matrix is zero
if and only if the variables i and j are conditionally independent, given the others. To better
understand how precision matrices translate to connected graphical models, consider the mock
model of Figure 1.11 with six PGSs. The heatmap (right) is generated using the precision ma-
trix, where dark colours indicate large values and light colours represent values closer to zero.
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A connection between two nodes i and j corresponds to a non-zero value for the corresponding
element in the estimated precision matrix. The precision matrix is divided into two diagonal
blocks of sizes three and two, respectively, corresponding to the two connected components of
the graph (left); one containg z1, z2, and z3, another containg z4 and z5. The two blocks in
the precision matrix consist of large non-zero values and the remaining elements are zero.

Now, under the assumption that the traits are correlated via the PGS, connected component of
the graph G represents a cluster of related traits in terms of genetic characteristics. Therefore,
summing up, a plan for achieving our objective of identifying clusters of traits is to approximate
the precision matrix, P, of the PGSs and further sparsity. This way, we are able to identify
blocks of zeros in the precision matrix, and, thus, potential connected components, which
correspond to clusters of traits sharing some genetic characteristics. Since we aim at estimating
a sparse version of the precision matrix of the PGSs, it makes sense to use the graphical lasso,
proposed by Friedman et al. (2007), which imposes an ℓ1 penalty for the estimation of the
precision matrix, to increase its sparsity.

For computational reasons the PGSs should be centred before the graphical lasso optimisation
problem is solved, such that each column has mean zero. That is, 1

N

∑N
i=1 zil = 0, l =

1, . . . , q. We denote by Σ the q × q positive-definite covariance matrix of the matrix, Z, of
scaled and centred PGSs. From this we estimate a sparse precision matrix using a lasso (ℓ1)
penalty via the graphical lasso. For a precision matrix P and an empirical correlation matrix S
the graphical lasso maximises the penalised log-likelihood

log (det (P)) − tr (SP) − ρ∥P∥1

over non-negative definite matrices P. Here det denotes the determinant, tr denotes the trace,
and ∥P∥1 = (

∑q
i=1 |pi|) is the ℓ1 norm.

In order to show how to infer connected components, we recall the definition of an adjacency
matrix.

Definition 1.5.2 ((Peters et al., 2018), Definition B.3). We can represent a directed graph
G = (V, E) over q nodes with a binary q × q matrix A (taking values 0 or 1):

aij = 1 ⇔ (i, j) ∈ E .

A is called the adjacency matrix of G.

If the graph is undirected, that is, all of its edges are bidirectional, the adjacency matrix is
symmetric. In words, the adjacency matrix of an undirected graph is a symmetric square matrix
with zeros on the diagonal, and the non-zero elements (usually ones) of the matrix represent
pairs of nodes which are adjacent.

We are able to generate an adjacency matrix from the estimated sparse precision matrix, P̂ij

by letting Aij = 1 if P̂ij ̸= 0 for i ̸= j and zero otherwise.
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Example 1.5.1. The result of applying the graphical lasso to the genetic data for the Durocs
is shown in Figure 1.12 and for the Landraces in Figure 1.13, for four different values of the
penalty parameter ρ increasing from top left to bottom right. z1, z2, z3, and z4 corresponds to
PGSs computed for scanning_weight, kg_feed_consumed, Feed efficiency,
and meat%, respectively. We observe that for the smallest value of ρ the graphs are fully con-
nected, which corresponds to one cluster of the PGSs. When ρ increases, the estimated graphs
becomes more sparse. For example, for the Durocs, ρ = 0.3 yields one connected component
of three PGSs (z1, z2, and z4), corresponding to a cluster of the traits scanning_weight,
kg_feed_consumed, and meat% and a singleton containing Feed efficiency. For
the Landrace, ρ = 0.3 yields one connected component of three PGSs (z1, z2, and z3), corre-
sponding to a cluster of the traits scanning_weight, kg_feed_consumed, and Feed
efficiency and a singleton containing meat%. ♢
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Figure 1.12: Genetic data for Durocs: Undirected graphs from the graphical lasso with differ-
ent (increasing from top left to bottom right) values of the penalty parameter ρ.

We note that a sufficiently small penalisation, ρ → 0, most likely results in a dense version
of the precision matrix, corresponding to a fully connected graph with no conditionally inde-
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Figure 1.13: Genetic data for Landraces: Undirected graphs from the graphical lasso with
different (increasing from top left to bottom right) values of the penalty parameter ρ.

pendent random variables. Similarly, a sufficiently large penalisation, ρ → ∞, most likely
results in a sparse version of the precision matrix, corresponding to a graph with no edges and
only conditionally independent random variables. What is considered a good choice of regu-
larisation parameter, however, depends on whether the goal is prediction accuracy, increasing
precision of estimates, gain in power or recovering the right model for interpretation purposes.

In conclusion, by using the graphical lasso we are able to obtain an approximation of the
precision matrix, P̂(ρ), of the PGSs at a grid of values for the regularisation parameter ρ. From
these, we construct corresponding adjacency matrices, Â(ρ), each of which represent a set of
connected components C(ρ).

Let us outline what has been achieved so far. We have defined the notion of PGSs, we have
introduced some graphical terminology and defined the notion of conditional independence in
this context, and we have introduced the graphical lasso, resulting in sparse precision matrices.
The idea behind these concepts is the following. Consider a set of traits and associated PGSs.
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We are able to represent the PGSs and their relations by a graph and approximate a sparse
precision matrix of the PGSs using the graphical lasso. This suggests that, for a given level of
regularisation, the PGSs are represented by connected components. This is what the notion of
conditional independence given in Definition 1.5.1 and the property Proposition 1.5.1 allow us
to formalise, and Example 1.5.1 shows this in action.

The conclusion is that by approximating the precision matrix of the PGSs and further sparsity,
we are able to identify blocks of zeros in the precision matrix, and, thus, potential connected
components, which correspond to clusters of traits sharing some genetic characteristics. Next,
we outline some fundamental concepts for estimating the parameters in the linear regression
model (1.9), and when used in combination, they allow us to exploit the information gained
from clustering the traits for simultaneously modelling traits which share some genetic char-
acteristics.

Ordinary least squares A popular method for estimating the parameters in a linear re-
gression model is the ordinary least squares (OLS) method, in which we find the parameters
b ∈ R2×1 which minimise the residual sum of squares (RSS):

RSS(b) = (y − Zb)⊤ (y − Zb) .

From here onwards, a constant term is included in the matrix of features Z, such that the first
column of Z is a column of ones allowing estimation of the intercept while the following
columns contain the features associated with the corresponding trait values. Since the function
RSS(b) is quadratic in b with positive-definite Hessian, it possesses a unique global minimum

at b̂O
, given by the closed form expression

b̂O =
(
Z⊤Z

)−1 Z⊤y.

Later, we exploit the property that the OLS estimator is consistent when the features are ex-
ogenous (uncorrelated with the random errors in the model).

Weighted least squares Weighted least squares (WLS) is a generalisation of OLS in which
knowledge of the variance of observations is incorporated into the regression. WLS is also a
special case of generalised least squares (GLS). WLS is a technique for estimating the unknown
parameters in a linear regression model when there is no degree of correlation between the
residuals, that is, when all the off-diagonal entries of Ω (the among-trait and within-individual
correlation of the errors in (1.9)) are zero, but the variances of the observations (along the
covariance matrix diagonal) are unequal (heteroscedasticity). In this case a weighted sum of
squares (WSS) is minimised:

WSS(b) = (y − Zb)⊤ W (y − Zb) ,
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where wi is the weight of observation i = 1, . . . , N . Under the assumption that observations
are uncorrelated, the weights should, ideally, be equal to the reciprocal of the variance of the
measurement. The solution is given by the closed form expression

b̂W =
(
Z⊤WZ

)−1 Z⊤Wy,

where W ∈ RN×N is the diagonal matrix of the weights w1, . . . , wN .

Feasible generalised least squares If the among-trait and within-individual correlation,
Ω, of the errors in (1.9) is unknown, it is possible to get a consistent (in terms of structure)
estimate using the feasible generalised least squares (FGLS) estimator.

The FGLS procedure consists of two steps: First, a linear regression model of the form

y = Zb + ε,

is estimated by OLS, and the residuals,

û = y − Zb̂O
,

are used to build an estimator, Ω̂O
of the covariance matrix, Ω, of the errors:

Ω̂O = cov (û) .

Second, using the estimator of the covariance matrix of the errors, the unknown regression
coefficients are estimated by WLS using Ω̂O

as the weights:

b̂F(1) =
(

Z⊤
(

Ω̂O)−1
Z
)−1

Z⊤
(

Ω̂O)−1
y.

The procedure is iterated with the first iteration given by

ûF(1) =
(

y − ŷF(1)
)

Ω̂F(1) = cov
(

ûF(1)
)

b̂F(2) =
(

Z⊤
(

Ω̂F(1))−1
Z
)−1

Z⊤
(

Ω̂F(1))−1
y

where ŷF(1) ∈ RN are the fitted values from the regression:

ŷF(1) = Zb̂F(1)
.

This estimation of Ω is iterated to convergence and we obtain estimates Ω̂F
and b̂F

. The
standard error, SE, of the estimated coefficients are given by

SE =

√√√√diag
((

Z⊤
(

Ω̂F)−1
Z
)−1

)
.
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If the estimator of the covariance matrix of the errors is a consistent estimator, like the OLS,
then the FGLS estimator of the unknown regression coefficients is a consistent estimator (Bal-
tagi, 2008).

The geneJAM method We are now ready to outline the geneJAM method, which estimates
clusters of correlated traits that share some genetic component and analyse data combined in
these clusters. An algorithmic overview, replicated from Manuscript II, of the procedure is
shown in Algorithm 1.

Using the graphical lasso we estimate sparse precision matrices, P̂(ρ), of the PGSs at a grid
of values for the regularisation parameter ρ. For each tried value of ρ, we generate from each
P̂(ρ) a corresponding adjacency matrix from which we conclude a clustering represented by a
graph G(ρ), that is, we infer a set of C(ρ) connected components. We assume that the residual
covariances among traits within each individual, R, exhibit this clustering as well. Then, we
use the information gained from the clusterings to estimate the unknown parameters in (1.9)
via FGLS. For the first step in the FGLS estimation of R we estimate a linear regression model
of the form

yl = Zlbl + el,

for each trait separately, l = 1, . . . , q. Here, Zl ∈ RN×2 are design matrices, where a constant
term is included, such that the first column of Zl is a column of ones allowing estimation of
the intercept while the following column contains the feature associated with the corresponding
trait value. el ∈ RN is a vector of independent Gaussian random errors. The OLS estimates
are

b̂O
l =

(
z⊤

l Zl

)−1 Z⊤
l yl,

for l = 1, . . . , q, and the corresponding estimated residuals are

ûl =
(

Y − ZB̂O
)

l
.

As mentioned, we assume that the structure of the residual among-trait within-individual co-
variance can be approximated by the structure of the covariance of the PGS which is repre-
sented by connected components in the graph G(ρ). Therefore, for each value of the regularisa-

tion parameter ρ, we construct an estimate, R̂O
(ρ), of the covariance of the errors by computing

the covariance of the OLS estimated residuals in the same connected component:

R̂O
g(ρ) = cov

(
Ûg(ρ)

)
,

where R̂O
g(ρ) and Ûg(ρ) are sub-matrices of R̂O

(ρ) and Û = (û1, . . . , ûq) ∈ RN×q , respectively,
corresponding to the connected components g(ρ) = 1, . . . , C(ρ) at a given value of ρ. From
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these we construct an estimate, Ω̂O
(ρ), of Ω of the form (1.10). In the second step in the FGLS

estimation, we build the FGLS estimator, ˆ⃗BF
(ρ) ∈ R2q , using WLS:

ˆ⃗BF
(ρ) =

(
Z⃗⊤
(

Ω̂O
(ρ)

)−1
Z⃗
)−1

Z⃗⊤
(

Ω̂O
(ρ)

)−1
Y⃗.

The procedure is iterated to convergence, see Algorithm 1, and we obtain estimates Ω̂(ρ) and
ˆ⃗B(ρ).

Summing up, we have approximated a sparse precision matrix of the PGSs via the graphical
lasso. Thus, for a given level of regularisation, we are able to identify blocks of zeros in the
precision matrix, and, therefore, potential connected components, which correspond to clusters
of traits sharing some genetic characteristics. Using this clustering structure and FGLS we are
able to build an estimator of the unknown parameters B⃗ and the unknown among-trait and
within-individual correlation, Ω, of the errors in (1.9). That is, we have, through the use of
PGSs, achieved our objective of identifying clusters of traits and analysing the data combined
in these clusters.

In practice, choosing the value of the regularisation parameter ρ is an important issue as it
controls the conditional independence structure of the PGSs, and, thereby, the clustering of the
traits. Since we aim at optimising the precision, we use the standard error of the estimated
coefficients to tune the geneJAM method. In particular, we are interested in optimising the
precision when traits are correlated, and therefore, we use the standard error of traits in con-
nected components of size strictly larger than one. The standard error, SE(ρ), of the estimated
coefficients are given by

SE(ρ) =

√√√√diag
((

Z⃗⊤
(

Ω̂(ρ)

)−1
Z⃗
)−1

)
.

Thus, for a given value, ρ, of the regularisation parameter, we compute the standard error
SE(ρ) ∈ Rq and, for all traits which are in clusters of size strictly larger than one, we compute
the average standard error (SE),

S̄E(ρ) = 1∣∣G(ρ)
∣∣
∑

l∈G(ρ)

SE(ρ)l,

where G(ρ) is the index set of traits in connected components of size strictly larger than one
and

∣∣G(ρ)
∣∣ is the cardinality of G(ρ). We use the smallest value of S̄E(ρ), over all tried values of

ρ, as our selection criterion for the regularisation.

This concludes our exposition of the motivation and framework of the geneJAM method pro-
posed in Manuscript II. We have focused on aspects relating to the primary contribution:
utilising polygenic scores to identify clusters of traits, and, thereby, enabling analyses of data
combined (in said clusters). Example 1.5.2 and Example 1.5.3 show how the method is used
in concrete cases.
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Algorithm 1: The geneJAM algorithm

for l = 1, . . . , q do
Compute b̂O

l and ûl

end
Centre PGSs Z per column
Compute empirical covariance matrix Σ of centred Z
if no sequence of regularisation parameters ρr, r = 1, . . . , R, is provided then

Specify length R of sequence of regularisation parameter ρr

Specify ratio δ between regularisation parameters ρr, r = 1, . . . , R

Choose a sequence of regularisation parameters ρr, r = 1, . . . , R, with maximal
value, ρR, defined by the maximum column sum of Σ and the rest of the sequence
determined by R and δ.

end
for r = 1, . . . , R do

Estimate sparse precision matrices P̂(ρr) to obtain C(ρr) clusters
for g(ρ) = 1, . . . , C(ρr) do

Compute Ω̂O
g(ρ)(ρ)

end

Construct Ω̂O

Compute estimate ˆ⃗BF

Define Ω̂F(1) = Ω̂O

Initialise t → 1
repeat

Compute ûF(t)

for g(ρ) = 1, . . . , C(ρr) do
Compute Ω̂F(t)

g(ρ)
end

Construct Ω̂F(t)

Compute estimate ˆ⃗BF(t+1)

until convergence
end
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Example 1.5.2. We apply the geneJAM method to the SNP data for the races separately. We in-
clude only the four traits scanning_weight, kg_feed_consumed, Feed efficiency,
and meat%. We omit individuals with missing trait and obtain 62 Durocs and 50 Landraces.
For each quantitative trait we generate PGSs as described in Section 1.5.1. The geneJAM
method is applied at a suitable sequence of the regularisation parameters ρ.

In Figure 1.14 we show diagnostics plots for the Durocs (a) and Landraces (b). In the left
panel we show the average SE plotted against the values of ρ used in the fits. The orange
coloured dot indicates the minimum average SE and corresponding regularisation parameter
ρ̂min. We observe that the average SE curve attains a minimum at ρ̂min. In the right panel
we show a visualisation of the estimated adjacency matrix for the clustering corresponding to
ρ̂min. Grey squares represent estimated edges and white space represent no edges. For both
races, we observe that the best precision is obtained when all traits are clustered together. This
is indication that the traits share enough genetic characteristics for a joint analysis of all of
them to be beneficial in terms of precision and power (Schmitz et al., 1998).

In Figure 1.15 we visualise the covariance structure between traits for the Durocs (a) and
Landraces (b). Dark colours indicate large values and light colours indicate small values.
In the left panel we show the structure observed in data and in the right panel we show the
structure estimated by the geneJAM method. We observe very similar structures all around,
that is, a stronger relation between scanning_weight and kg_feed_consumed. This
may be indication of a stronger genetic relationship between these two traits. ♢

Now, the application of the geneJAM method goes beyond the PGSs. In fact, any summary
statistic sharing the characteristics of PGSs can be used. This includes metabolite scores as we
demonstrate in the following example.

Example 1.5.3. We also apply geneJAM to the dataset of 729 metabolites. We include the four
traits scanning_weight, kg_feed_consumed, Feed efficiency, and meat% and
generate metabolomic scores in the same way PGS are produced, see Section 1.5.1.

Figures B.2–B.5 in Appendix B show visualisations of the estimated adjacency matrices at the
tried sequence of values of ρ. In Figure 1.16 we show diagnostics plots for the Durocs from the
first (a) and second (b) sample and for the Landraces from the first (c) and second (d) sample.
We observe that for the second sample from the Durocs and both samples from the Landraces,
the minimum average SE is obtained when all traits are clustered together. This is indication
that the traits share enough metabolomic characteristics for a joint analysis to be beneficial
in terms of precision and power (Schmitz et al., 1998). For the first sample from the Durocs
the minimum average SE is obtained when the first and second trait (scanning_weight
and kg_feed_consumed) are clustered and the remaining traits are singleton clusters. This
is indication that, in the first sample for the Durocs, the traits scanning_weight and kg
_feed_consumed share enough metabolomic characteristics for a joint analysis of these
two traits to have an impact in terms of precision and power (Schmitz et al., 1998), but nothing
is gained by analysing the other traits combined.
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Figure 1.14: Diagnostics plots of the SNP data from the Durocs (a) and Landraces (b). Left
panel: average SE curve as a function of ρ. Right panel: adjacency matrix corresponding to
ρ̂min. Grey squares represent estimated edges and white space represent no edges.

In Figure 1.17 we visualise the covariance structure between traits for the Durocs (a) and
Landraces (b). Dark colours indicate large values and light colours indicate small values.
In the left panel we show the structure observed in data and in the centre and right panel
we show the structure estimated by the geneJAM method for the first and second sample,
respectively. Similarly to Example 1.5.2, we observe very similar structures all around, i.e.,
a stronger relation between scanning_weight and kg_feed_consumed. This may be
indication of a stronger metabolomic relationship between these two traits. ♢
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Figure 1.15: Visualisation of the covariance structure for the SNP data from the Durocs (a)
and Landraces (b). Dark colours indicate large values and light colours indicate small values.
Left: Structure observed in the data. Right: Structure estimated by the geneJAM method.
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Figure 1.16: (Continued on the next page.)



46 CHAPTER 1. INTRODUCTION

(c) 0 40000 80000 120000

0.
00

5
0.

00
7

ρ

S
td

. e
rr

or

1 2 3 4

4
3
2
1

(d)

0 50000 100000

0.
00

45
0.

00
60

ρ

S
td

. e
rr

or

1 2 3 4

4
3
2
1

Figure 1.16: (Continued from the previous page.) Diagnostics plots of the metabolite data for
the Durocs from the first (a) and the second (b) sample and for the Landraces from the first
(c) and second (d) sample. Left panel: average SE curve as a function of ρ. Right panel:
adjacency matrix corresponding to ρ̂min. Grey squares represent estimated edges and white
space represent no edges.
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Figure 1.17: Visualisation of the covariance structure for the metabolite data for the Durocs
(a) and the the Landraces (b). Dark colours indicate large values and light colours indicate
small values. Left panel: Structure observed in the data. Centre panel: Structure estimated
by the geneJAM method for the first sample. Right panel: Structure estimated by the geneJAM
method for the second sample.
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1.5.3 Discussion of the geneJAM
method

Multivariate GWASs have gained attention in genetic studies as they offer several advantages
over analysing each trait in a separate GWAS (Galesloot et al., 2014).

How to simultaneously analyse a large number of simultaneously measured and potentially
correlated traits in a multivariate GWAS in a computationally efficient way is not clear. Iden-
tifying clusters of correlated traits that share some genetic component will facilitate analysis
of the data combined in clusters and increase precision and power and provide computational
advantages.

We have proposed a versatile method for finding clusters of correlated outcomes that share
some genetic component by means of PGSs: by estimating the precision matrix of the PGSs,
we are able to approximate clusters of traits that share some genetic component. From this we
induce the structure of the error covariance matrix of a regression model and use the FGLS
estimator for estimating the unknown parameters in a linear regression model when there is a
certain unknown degree of correlation between the residuals. Existing algorithms for covari-
ance estimation include the traditional restricted maximum likelihood (REML) method and
the recent method of moments (MoM). Compared to REML, MoM approaches are compu-
tationally efficient and require only GWAS summary statistics. However, MoM approaches
can be statistically inefficient, often yielding inaccurate covariance estimates (Zhou, 2017). In
Manuscript II we used the REML method (specifically, the lmer function in the lme4 pack-
age (Bates et al., 2015)) to estimate the parameters in a linear mixed-effects model (LMM)
with an unconstrained covariance structure for the random effects as reference when assessing
the precision and computational performance of our method. Compared to both the simple
linear regression and the LMM the geneJAM method was superior in terms precision of the
estimates of traits on which there are genetic effects. Furthermore, the computing time of the
geneJAM method was highly satisfactory even for large data (lme4 cannot handle a number
of traits q > 26). To improve the computation time of the LMM we could constrain the covari-
ance for the random effects to reduce the number of parameters but this would require a lot of
(data assisted) assumptions.

Key advantages of our framework are that there are no prior assumptions on the structure nor
the sizes of the clusters of traits, information on PGS level is sufficient when data on SNP level
is not available, and, following the clustering and modelling, both clusters and model fit are
readily available. Moreover, the computing time is highly satisfactory even for large data, and
compared to both the simple linear regression and the multilevel models the geneJAM method
is superior in terms precision of the estimates of traits on which there are genetic effects.
Finally, if (independent) environmental factors are available, they are easily adjusted for in the
regression models.
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In practice, a requirement of a more biological nature is that a certain amount of the observed
variability in the traits needs to be due to heredity for the clustering of the PGSs to be a
reasonable approximation of the clustering of the traits.

1.5.4 Perspectives: related individuals

Underlying the framework outlined above is the assumption that individuals are independent.
However, many genetic association studies of complex traits sample related individuals since
samples with relatedness can offer advantages in terms of power over samples which include
only unrelated individuals (Teng and Risch, 1999). Furthermore, including relatives in se-
quencing studies increases power for identifying rare variants with extremely low frequencies
(Kazma and Bailey, 2011). To ensure validity of the association results, familial correlations
must be taken into account when related individuals are included in a genetic association study.
Therefore, it would be of interest to consider extensions of the geneJAM method to the case of
related individuals.

In the following, we give a rough idea of how the matrix normal distribution, introduced by
de Waal and Luttrell (1985), could be used extend the geneJAM method to allow for among-
individual and within-trait correlation.

The matrix normal distribution is a generalisation of the multivariate normal distribution to
matrix-valued random variables. If we define a matrix from the N observations of the q out-
come components, Y = (y1, . . . , yq) ∈ RN×q , the outcome follows a matrix normal (MN )
distribution

Y ∼ MN N×q (M, U, V) , (1.11)

with general location matrix M = 1N µ⊤ ∈ RN×q . The scale matrix U ∈ RN×N specifies the
row (among-individual and within-trait) covariances for each trait, and, the assumption of the
geneJAM method that observations within traits are uncorrelated, that is, rows are independent,
is equivalent to the assumption that U = IN×N . The scale matrix V ∈ Rq×q models the
(among-trait and within-individual) systematic and residual covariances.

Under the assumption that Z = (Z1, . . . , Zq) ∈ RN×q is a matrix of Nq independent samples
of the features (PGSs) from the standard normal distribution, so that

Z ∼ MN N×q (0, IN×N , Iq×q) ,

and letting Y = M + AZB,

Y ∼ MN N×q

(
M, AA⊤, B⊤B

)
,

where A and B can be chosen by Cholesky decomposition or a similar matrix square root
operation.
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Standard multiple linear regression models assume that the underlying observations are inde-
pendent. Under this assumption, A is the N × N identity matrix with AA⊤ = IN×N and the
multivariate linear regression model takes the form

Y = M + ZB + E, (1.12)

where B = diag(β1, . . . , βq) ∈ Rq×q is a matrix of unknown regression coefficients such
that V = BB⊤, and E ∈ RN×q is a matrix of Gaussian random errors. The assumption
that observations are independent is reflected in the assumption that errors of the outcome are
independent, that is,

E ∼ MN N×q

(
0N×q, σ2

rIN×N , σ2
c Iq×q

)
,

where 0N×q is an N × q matrix of zeros, σ2
r > 0 is the among-individual and within-trait

variance, and σ2
c > 0 is the among-traits and within-individual residual variance.

This is essentially a matrix normal representation of the statistical assumptions of the pro-
posed geneJAM method. To allow for among-trait correlation, the geneJAM assumes that
E ∼ MN N×q(0N×q, σ2

rIN×N , Ω), where Ω ∈ Rq×q is a general covariance matrix. Pos-
sible structures for Ω may be a multiple of the identity, a diagonal, or, more importantly, a
general positive definite matrix.

As mentioned earlier, imposing some structure on the covariance matrix Ω is crucial to the
consistency of the FGLS estimator. We approached this by approximating a clustering of the
PGSs and assuming this to be indicative of the structure of the covariance of the traits and,
therefore, of the errors.

It would be of interest to also allow for among-individual and within-trait correlation by as-
suming a general A ̸= I and that E ∼ MN N×q(0N×q, Ψ, Ω) for some general covariance
matrix Ψ ∈ Rq×q .

1.6 Multivariate modelling
and interactions

In Manuscript III we extend the method, developed in Manuscript I, for identifying hierar-
chical interactions using regularised regression to a multivariate setup. In Section 1.6.1 and
Section 1.6.2 we give a more detailed account of existing methods which form the basis of
Manuscript III, in Section 1.6.3 we outline the results of Manuscript III, and in Section 1.6.4
we discuss our results and review perspectives for future research based on the material cov-
ered.
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Our work with interactions and hierarchical assumptions concerns the development of these
notions for multivariate regularised regression models. Our goal is to estimate the outcome
components separately but to use, via regularisation, information across components to infer
subsets of relevant features and interactions. In order to properly understand the context of our
work, we begin by giving a presentation of multivariate hierarchical interaction models in a
p < N context and of multivariate regularised regression methods when interactions are not
a concern. After doing so, we outline our work on multivariate regularised regression with
hierarchical interactions.

1.6.1 Multivariate hierarchical
interaction models

The linear regression model for a single outcome is generalised by the multivariate regres-
sion model for multiple outcome components simply by assuming a linear regression model
for each. Thus, we assume that we have N observations of the multivariate outcome Y =
(y1, . . . , yq) ∈ RN×q and p associated features X = (x1, . . . , xp) with pairwise interactions.
As for the univariate setup, the pairwise interaction term is formed simply by multiplying
the two corresponding features whether quantitative or categorical (represented by dummy
variables). We also assume that each outcome component is centred before the optimisation
problem is solved, and the intercept term is omitted in the following.

Thus, for each observation i = 1, . . . , N and each outcome l = 1, . . . , q the multivariate pure
main effect model takes the form

yil =
p∑

j=1
xijbjl + eil, (1.13)

and the multivariate pairwise interaction model takes the form

yil =
p∑

j=1
xijbjl +

p∑

k=1

∑

j<k

xijxikΘjkl + eil (1.14)

where B = (b1, . . . , bp)⊤ ∈ Rp×q with bj = (b1j , . . . , bqj), j = 1, . . . , p, are unknown
regression parameters for the main effects, Θ ∈ Rp×p×q are unknown parameters for the pair-
wise interactions, and E = (e1, . . . , eq)⊤ ∈ RN×q with el = (e1l, . . . , eNl)⊤, l = 1, . . . , q,
are Gaussian errors. For each l = 1, . . . , q we let Θl ∈ Rp×p represent a symmetric matrix,
i.e. Θl = Θ⊤

l , such that the strict inequality in the interaction summation precludes over-
parametrisation arising from the inclusion of the same effect twice, e.g., including both xijxik

and xikxij .
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As mentioned, when aiming to interpret pairwise interactions in a (multivariate) linear regres-
sion model it is necessary to consider the concept of hierarchy. In the following, we present
model restrictions in a form which makes it possible to specify a regularised regression pro-
cedure, which produces multivariate sparse interaction models that honour these restrictions.
The hierarchical constraint of the pairwise interactions is defined for all outcome components
simultaneously, that is, exactly one of the following hierarchical, anti-hierarchical, and non-
hierarchical restrictions, replicated from Manuscript III, is assumed for all l = 1, . . . , q:

Strong hierarchy There are interactions only among pairs of non-zero main effects,
HS : Θjkl ̸= 0 ⇒ bjl ̸= 0 and bkl ̸= 0.

Weak hierarchy Each interaction has at least one of its main effects present,
HW : Θjkl ̸= 0 ⇒ bjl ̸= 0 or bkl ̸= 0.

Anti-hierarchy Interactions are only among pairs of main effects that are not present,
HA : Θjkl ̸= 0 ⇒ bjl = 0 and bkl = 0.

Pure interactions There are no main effects present, only interactions,
HI : bjl = 0 ∀j = 1, . . . , p.

Pure main effects There are no interactions present, only main effects,
HM : Θjkl = 0 ∀j, k = 1, . . . , p.

No hierarchy There are no restrictions to the presence of main effects and interactions,
HN.

In general, we may denote by IH the index set of pairwise interactions (pairs of features) to
be included in the model subject to one of the hierarchical restrictions. Then, the restrictions
above result in the following hierarchical pairwise interaction model:

yil =
p∑

j=1
xijbjl +

p∑

k=1

∑

j<k

1{(j,k)∈IH}xijxikΘjkl + eil. (1.15)

1.6.2 Multivariate regularised
regression

We are interested in identifying a subset of relevant features by fitting a regularised regression
model for a multivariate setup.

As suggested by Hastie et al. (2015), we approach ℓ1 regularised regression in the multivariate
outcome setting by considering a special case of the univariate group lasso (Yuan and Lin,
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2006) with p groups of equal size q. To better understand the multivariate outcome setting we
begin by introducing the group lasso in the univariate outcome setting: For N samples of a
univariate outcome, y ∈ RN , we assume that we have J ≤ p groups of features, such that, for
j = 1, . . . , J , the matrix Zj ∈ RN×pj represents the pj features in group j. We recommend
scaling each outcome component if they are not measured in the same units and each feature
if these are not measured in the same units. Otherwise the lasso solution depends on the scale.
We denote by Z = (z1, . . . , zJ) ∈ RN×p the collection of features, that is, the features are
grouped by columns, and we require that

∑J
j=1 pj = p, with p the total number of features,

such that there are no overlapping groups. We wish to model the outcome from the collection
of grouped features, and we assume a linear model,

yi =
J∑

j=1
zijbj + ϵi,

where the vector bj ∈ Rpj represents a collection of pj unknown parameters corresponding
to the group of features Zj , j = 1, . . . , J . Please note, that in order to avoid confusion, we
use Zj and bj to represent groups of features and their coefficients, rather than the xj and βj ,
which we use for single features.

The univariate group lasso solves, for all j = 1, . . . , J , the convex optimisation problem

minimise
bj∈Rpj

1
2N

N∑

i=1


yi −

J∑

j=1
zijbj




2

subject to
J∑

j=1
∥bj∥2 ≤ t,

(1.16)

where ∥bj∥2 is the Euclidean norm of the vector bj and t ≥ 0 is a pre-specified tuning
parameter which controls the amount of shrinkage applied to the estimates. We can write the
univariate group lasso problem in the Lagrangian form

minimise
bj∈Rpj





1
2N

N∑

i=1


yi −

J∑

j=1
zijbj




2

+ λ

J∑

j=1
∥bj∥2





, (1.17)

for some penalty parameter λ ≥ 0, and for every value of λ there is a t (and for every value
of t there is a λ) such that solving (1.16) and (1.17) results in the same estimates. The penalty
parameter λ is determined by a model validation technique such as cross-validation, and se-
lecting the value of λ translates to selecting a proper amount of regularisation and is, as such,
a trade-off between data fitting and sparsity. In the following we exclude the trivial case that
λ = 0.

We observe that the group optimisation problem reduces to the ordinary univariate lasso, when
pj = 1 such that all groups are singletons and ∥bj∥2 = |bj |. We also note that, depending on
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λ > 0, all elements of the vector b̂j will be zero or non-zero simultaneously – corresponding
to selecting all or none of the features in group j. Hence, the general univariate group lasso
allows for sparsity with respect to selection of groups but not with respect to the selection of
features within groups. While the univariate sparse group lasso (Simon et al., 2013) allows
for both sparsity of groups and within each group, it is not relevant here. In Figure 1.18 we
display the constraint region for the univariate group lasso (left), the univariate sparse group
lasso (centre), and the univariate lasso (right) regressions in the case of three features divided
into two groups yielding two group coefficients B1 = (B1, B2) ∈ R2 and B2 = B3 ∈ R.

B1

B3

B2

B1

B3

B2

B1

B3

B2

Figure 1.18: The group lasso ball (left) in R3 compared to the sparse group lasso ball (centre)
and the ℓ1 ball (right) in the case of two groups with coefficients B1 = (B1, B2) ∈ R2 and
B2 = B3 ∈ R.

We are now ready to approach the multivariate outcome setting, which we motivate first by the
two examples Example 1.6.1 and later by Example 1.6.3. In Example 1.6.1 we illustrate the
assumption that there is an unknown subset of the features which are relevant and this same
subset is preserved across all q components of the outcome. In Example 1.6.3 we illustrate the
more general assumption that there is an unknown subset of the features which are relevant but
this subset is not preserved across all components of the outcome.

Example 1.6.1. As mentioned before, the overall objective of the FEEDOMICS project is
to improve the FE in the Danish pig production and in this context we are also interested in
the traits weight and meat percentage. Furthermore, we are interested in the effect of race.
That is, we consider an associated binary feature representing the race (Duroc or Landrace).
The assumption, that the relevance of features is preserved across outcome components means
that if, e.g., race is relevant, it affects both meat percentage and feed consumption but not
necessarily with the same effect size. We illustrate this in the two scatterplots in Figure 1.19.
The plots suggest that meat percentage and feed consumption are strongly associated as there
seems to be a positive linear correlation between the two variables. In the left plot, data points
have been coloured according to race (orange for Duroc, blue for Landrace). The plot indicates
that race is not relevant for either of the traits; there is no obvious association between the race
of the pigs and the levels of weight and feed consumption. In the right plot, we have, for
illustrative purposes, coloured the data points artificially. That is, for weights less than 95 kg
and feed consumption less than 130 kg the data points are coloured orange, otherwise they
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are coloured blue. Had this been the actual representation of the race (e.g., orange for Duroc,
blue for Landrace), we would have concluded that Landraces were associated with both higher
scanning weight and larger feed consumption compared to Durocs. That is, race would seem
relevant, and would appear relevant across both components of the outcome. ♢
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Figure 1.19: Scatterplots suggesting that the two traits are strongly associated as there seem
to be a positive linear correlation between them. Left: The data points are coloured according
to the race (orange for Duroc, blue for Landrace) and suggest that race is not relevant for
either of the traits. Right: The data points are artificially coloured, but if we pretend that they
represent the race (again, orange for Duroc, blue for Landrace), they would suggest that race
is relevant for both weight and feed consumption.

The pure main effect model (1.13) can be seen as a coupled collection of q standard regression
problems in Rp, each sharing the same features, in which column l, bl ∈ Rq , of B is the
coefficient vector for the lth problem. If we define the groups by the rows bj ∈ Rq , j =
1, . . . , p, from the full matrix of parameters B ∈ Rp×q , the problem is a special case of the
general group lasso (1.17), in which we have J = p groups of equal size pj = q, j = 1, . . . , p.
Under the assumption that the same set of features are relevant for the modelling across all
q components of the outcome variable, that is, the collection of q outcome components are
regressed on the same N × p matrix of features, we approach the multivariateness by solving
q separate lasso problems, one for each column of the p × q regression matrix B. Thus, for the
multivariate pure main effect model (1.13), the objective of the multivariate lasso is to solve
the regularised least-squares problem

minimise
B∈Rp×q





1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl




2

+ λ

p∑

j=1
∥bj∥2





, (1.18)

for some penalty parameter λ > 0. This way, the collection of q outcome components are
regressed on the same N × p matrix of features and the q linear regression problems are
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coupled together via the regularisation constraint which ensures that all features are equally
penalised across outcome components. It should be noted that, in general, the formulation of
(1.17) implies that all groups are equally penalised, which makes larger groups more likely to
be selected. The reason is, that if any of the features in a group is selected, then the whole
group is selected. Rescaling the parameters is one way to ensure that small groups are not
overwhelmed by large groups in the selection (Liu et al., 2013). It is, however, not a problem
when an analogue to (1.17) is used to approach the multivariateness as in (1.18), where the p

“groups” are constructed to be of equal size q.

Example 1.6.2. The R package glmnet provides implementations of multivariate Gaussian
models to be fit under the assumption that the same subset is selected for all outcome com-
ponents, using a group lasso penalty on the coefficients for each variable as in (1.18), see
Friedman et al. (2010). As an example, we look at the pig data and consider four outcome com-
ponents: scanning_weight, kg_feed_consumed, Feed efficiency, and meat%.
In Figure 1.20 we display the cross-validation curve (dots), and upper and lower standard de-
viation curves (grey bars) along the λ sequence for the Durocs (top) and Landraces (bottom).
The value of λ that gives minimum mean cross-validated error, λmin, and λ1se, which gives the
most regularised model such that the error is within one standard error of the minimum are
indicated by vertical dotted lines and orange dots. We observe that for the Durocs no SNPs
are selected at λmin. For the Landraces 38 SNPs are selected at λmin. A comprehensive list of
selected SNPs is given in Table C.1 in Appendix C. We note that there is an overlap of SNPs
selected by the multivariate lasso and the lasso method used in Example 1.4.1. In the Man-
hattan plots in Figure B.1 in Appendix B we indicate by × SNPs selected by the multivariate
lasso. ♢

In general, the group lasso is a grouping of parameters in the penalty and the multivariate
lasso (1.18) is a grouping of parameters across outcome components. The effect of such a
grouping is to couple the regularisation of the parameters across the outcome components,
which may be a good idea, if all the outcome components can be predicted from roughly the
same set of features. We are, however, interested in extending the framework to the more
general assumption that there is an unknown subset of the features which are relevant but this
subset is not preserved across all q components of the outcome. We motivate this assumption
by the following example.

Example 1.6.3. We continue Example 1.6.1. The assumption, that the relevance of features
is not preserved across outcome components means that, e.g., race affects meat percentage
but not feed consumption. We illustrate this in the two scatterplots in Figure 1.21. In the left
plot, data points have been coloured according to race (orange for Duroc, blue for Landrace).
The plot indicates that race is not relevant for either of the traits. In the right plot, we have,
for illustrative purposes, coloured the data points artificially. That is, for weights less than 95
kg the data points are coloured orange, otherwise they are coloured blue – regardless of the
quantity of feed consumed. Had this been the actual representation of the race (e.g., orange
for Duroc, blue for Landrace), we would have concluded that Landraces were associated with



1.6. MULTIVARIATE MODELLING AND INTERACTIONS 57

−4 −3 −2 −1

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Index

M
S

E

●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

294 272 265 237 195 130 73 29 12

Number of selected SNPs

−4 −3 −2 −1 0

3.
5

4.
0

4.
5

log(λ)

M
S

E

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

254 229 214 191 158 103 70 37 15 1

Figure 1.20: Cross-validation curve (dots) for the multivariate lasso regression, and upper and
lower standard deviation curves (grey bars) along the λ sequence (bottom axis) and correspon-
ding sequence of number of selected SNPs (upper axis) for the Durocs (top) and Landraces
(bottom). λmin and λ1se are indicated by the orange dots and vertical dotted lines.

higher scanning weight but not with larger feed consumption compared to Durocs. That is,
race would seem relevant, but the relevance would not be preserved across the components of
the outcome since it would be relevant for weight but not for feed consumption. ♢

As mentioned, the nature of the multivariate lasso implies that when a feature is selected by
the procedure, the coefficients for that feature will be non-zero for the entire collection of
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Figure 1.21: Scatterplots suggesting that the two traits are strongly associated as there seem
to be a positive linear correlation between them. Left: The data points are coloured according
to the race (orange for Duroc, blue for Landrace) and suggest that race is not relevant for
either of the traits. Right: The data points are artificially coloured, but if we pretend that
they represent the race (again, orange for Duroc, blue for Landrace), they suggest that race is
relevant for weight but not for feed consumption.

outcome components. It may, however, be more appropriate to have sparsity with respect to
the parameters for the entire collection of outcome components as well as for components
within the collection of grouped components, since all features are not necessarily relevant
for all outcome components. That is, we would like sparsity both with respect to selection
of features for the entire outcome and with respect to selection of features for each outcome
component. The additional “within-group” sparsity is achieved by setting up an analogue to
the multivariate sparse group lasso (MSGLasso) proposed by Li et al. (2015). The objective of
the MSGLasso is to solve the penalised optimisation problem,

minimise
B∈Rp×q





1
2Nq

∥Y − XB∥2
2 +

p∑

j=1

q∑

l=1
λjl|bjl| +

p∑

j=1
λj ∥bj∥2



 , (1.19)

where the ℓ2 penalty term aims to shrink irrelevant groups to zero and the ℓ1 penalty term aims
to shrink irrelevant entries within a relevant group to zero. Thus, the multivariate sparse group
lasso makes a compromise between the group lasso (λjl = 0) and the ordinary lasso (λj = 0).
In Figure 1.22 we illustrate difference between the lasso (top), the group lasso (middle) and
the sparse group lasso (bottom) in the case of three groups of unequal size.

In (1.19), the collection of q outcome components are regressed on the same N × p matrix of
features. When λj > 0 and λjl = 0 for all j = 1, . . . , p and l = 1, . . . , q, the problem reduces
to the group lasso. This corresponds to the assumption that the same set of features are relevant
for the modelling across all components of the outcome. When λjl > 0, the achieved within-
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Figure 1.22: Sparsity patterns enforced by the lasso (top), group lasso (middle), and sparse
group lasso (bottom) assuming that data can be divided into three groups. The set of selected
(groups of) features are shaded grey. Lasso selects features regardless of the group structure;
group lasso selects features on a group basis; sparse group lasso selects features on a group
basis while also selecting individual features within each selected group.

group sparsity allows for the features to be differently penalised across outcome components,
corresponding to the assumption that there is an unknown subset of the features which are
relevant, but this subset is not preserved across all components of the outcome.

1.6.3 A framework for multivariate
hierarchical regularised
regression

We are now ready to describe our efforts in developing a method for identifying hierarchical
interactions using multivariate regularised regression. Our work is detailed in Manuscript III.

We are interested in identifying a subset of relevant features, such that imposing hierarchical
restrictions in a stepwise manner, sufficiently reduce the number of interactions to be included
in a multivariate regularised regression model.

The first step in this direction is to set up an analogue to the MSGLasso optimisation problem
(1.19) to the pairwise interaction model (1.14), such that a penalty is imposed on the interaction
coefficients, thereby shrinking them towards (or estimated to be exactly) zero.
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We define collections of interactions by the rows Θjk ∈ Rq , j, k = 1, . . . , p of the full stack
of matrices of parameters Θ ∈ Rp×p×q . The optimisation problem takes the form

minimise
B∈Rp×q,Θ∈Rp×p×q



L(B, Θ) +

p∑

j=1

q∑

l=1
λjl|bjl| +

p∑

j=1
λj ∥bj∥2

+
p∑

k=1

k−1∑

j=1

q∑

l=1
τjkl|Θjkl| +

p∑

j=1
τj ∥Θj∥2



 ,

where L(B, Θ) denotes the loss function

L(B, Θ) = 1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl −

p∑

k=1

k−1∑

j=1
xijxikΘjkl




2

.

Now, defining the penalty parameters is key for achieving our objective of constructing a pro-
cedure which ensures interpretation in terms of hierarchy. To obtain hierarchical interactions,
we make the following observations. When λj = 0, feature j is not penalised for any compo-
nent of the outcome and, therefore, always included in the model for the entire collection of
outcome components; when λj = ∞ feature j is always excluded for all outcome components;
and for all j = 1, 2, . . . , p for which λj are equal to the same constant value, the corresponding
feature is equally penalised for the entire collection of outcome components. Similarly, when
λjl = 0, feature j is not penalised for the lth outcome component but always included in the
model; when λjl = ∞ feature j is always excluded for the lth outcome component; and for
all j = 1, 2, . . . , p and l = 1, . . . , q for which λjl are equal to the same constant value, the
corresponding features are equally penalised for the corresponding outcome components. The
interpretations of the penalties τj and τjkl on the interactions are analogous to those of λj and
λjl, respectively. By these observations, we are able to define

λjl = λ2α21{(j,l)/∈Me}, λj = λ2(1 − α2)1{j /∈Mg},

τjkl = λ2α31{(j,k,l)∈Ie}, τj = λ2(1 − α3)1{j∈Ig},

where Me and Ie define the index sets of main effects and interactions, respectively, to be in-
cluded in the model subject to one of the hierarchical restrictions for each outcome component.
Similarly, Mg and Ig define the index sets of the main effects and interactions, respectively,
to be included in the model for the entire collection of outcome components subject to one of
the hierarchical restrictions.

Solving the strong and weak multivariate hierarchical lasso outlined above is not computation-
ally tractable even for a moderate number, p, of features and even less so when p is large and
p ≫ N . Therefore, we propose in Manuscript III a two-step procedure. As the first step in
the procedure we include only the main effects and apply the “usual” MSGLasso for variable
selection. As the second step in the procedure we include main effects and interactions in ac-
cordance with step one and subject to one of the restrictions, and we apply a variation of the
MSGLasso with the penalties determined by the given hierarchical restriction.
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The following, replicated in a shortened form from Manuscript III, is our proposed method.

Step 1 We assume the pure main effect model,

Y = XB + E,

for which the MSGLasso estimates are determined by solving the optimisation problem

minimise
B∈Rp×q





1
2Nq

∥Y − XB∥2
2 + λ1

p∑

j=1

(
q∑

l=1
α1|bjl| + (1 − α1) ∥bj∥2

)
 ,

where we have defined λjl = λ1α1 and λj = λ1(1 − α1) with α1 ∈ [0, 1]. We obtain the
estimates M̂e, Îe, M̂g , and Îg .

Step 2 We assume the pairwise interaction model, for all i = 1, . . . , N and l = 1, . . . , q,

yil =
p∑

j=1
xijbjl +

p∑

k=1

∑

j<k

1{(j,k,l)∈Îe}xijxikΘjkl + eil,

for which the MSGLasso estimates are determined by solving the optimisation problem

minimise
B∈Rp×q,Θ∈Rp×p×q



L(B, Θ) + λ2

p∑

j=1

(
q∑

l=1
α21{(j,l)/∈M̂e}|bjl| + (1 − α2)1{j /∈M̂g} ∥bj∥2

+
j−1∑

k=1

q∑

l=1
α31{(j,k,l)∈Îe}|Θjkl| + (1 − α3)1{j∈Îg} ∥Θj∥2

)}
,

where L(B, Θ) denotes the loss function

L(B, Θ) = 1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl −

p∑

k=1

∑

j<k

1{(j,k,l)∈Îe}xijxikΘjkl




2

,

and λjl = λ2α21{(j,l)/∈M̂e}, λj = λ2(1 − α2)1{j /∈M̂g}, τjkl = λ2α31{(j,k,l)∈Îe}, and τj =
λ2(1 − α3)1{j∈Îg}.

This concludes our exposition of the background and framework of Manuscript III. We have
focused on aspects relating to the primary contribution: the proposal of a method for identi-
fying pairwise interactions in a multivariate regularised regression model under different as-
sumptions of hierarchy using the penalty parameters of the MSGLasso.
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1.6.4 Discussion of the
multivariate two-step
procedure

The majority of GWASs used to focus on the effect of individual SNPs. However, the grow-
ing sample size of GWASs has facilitated the discovery of gene-environment and gene-gene
interactions, and empirical evidence shows that such interactions may be an important ge-
netic component underlying complex traits and diseases. Moreover, multivariate GWASs have
gained attention in genetic studies as they offer several advantages over analysing each trait in
a separate GWAS (Galesloot et al., 2014).

How to systematically include interacting features in multivariate regularised regression mod-
els is not clear. Including interactions in multivariate regularised regression models under hi-
erarchical restrictions will facilitate simultaneous feature selection, parameter estimation, and
interpretation of the results.

We have proposed a two-step multivariate regularised regression procedure for identification
of pairwise interactions, when strong or weak hierarchy is assumed. The procedure uses a
variation of the MSGLasso to screen for interactions and fitting multivariate hierarchical pair-
wise interaction models. The main contribution of our procedure is that interactions (and
features) are simultaneously estimated and selected while hierarchical restrictions are taken
into account. This ensures interpretability of the model (in terms of interactions) and should
improve computing time. Importantly, information across all outcome components is used, via
regularisation, to infer subsets of relevant features and interactions.

In addition the framework allows for direct specification of whether the handling of features
(and interactions) should be equal or different across outcome components.

We are not aware of any alternative methods that simultaneously estimate and select interac-
tions under hierarchical restrictions for a multivariate outcome.

Future work will consider the issue of correlation among features as it is somewhat unrealistic
to totally neglect this. For example, in highly dense genetic maps, the correlations between
SNPs positioned close to each other become higher as the genetic maps become denser. A
starting point may be to use the functionality of the MSGLasso allowing for (arbitrary) group
structures as intended.

In Manuscript III, we have presented the theoretical framework and a proof-of-concept simu-
lation study. The obvious next step is more detailed simulation studies as well as application
on real data. For example, to understand the consequence of a wrong hierarchical assumption
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it would be interesting to simulate datasets with different (non-)hierarchical structures and ap-
ply the multivariate two-step procedure under different hierarchical assumptions. Furthermore,
to understand the consequence of not requiring hierarchy it would be interesting to compare
our method on simulated datasets to the usual (multivariate) lasso for the pairwise interaction
model under the assumption of no hierarchy. In addition, it would be of interest to assess the
selection abilities of the method in real data.

We conclude with some remarks on the regularisation parameters. In Manuscript III, we choose
to treat main effects and interactions equally and impose the same penalty on main effects and
interactions. This way, we keep down the number of hyperparameters, but it might result in
main effects being overwhelmed by interactions in the selection. Therefore, it could be argued
that main effects should be less penalised than interactions. Moreover, we treat the regular-
isation parameters primarily as a means to an end. In general, choosing the “right” penalty
parameters is difficult. Both cross-validation and stability selection are possible strategies.

1.7 Directions for future research
In this section, we outline some possible topics for further research. Some of the main chal-
lenges that remain are concerned with correlated features (Manuscript I and Manuscript III)
and correlated individuals (Manuscript II). In the following we give a summary of perspectives
for future research based on the results obtained in the manuscripts and the material covered in
the previous sections. More details are found in Sections 1.4.4, 1.5.3, 1.5.4, and 1.6.4 as well
as in the corresponding manuscripts.

Correlated features. The two-step procedure proposed in Manuscript I is not suited for
data with highly correlated features, since the lasso performs erratically when features are
correlated. It would be of interest to expand the procedure to the situations where features
are correlated. In particular, it would be of interest to adjust the two-step procedure with the
adaptive elastic net.

Oracle property of two-step procedure. As mentioned in Manuscript I, it is likely that the
oracle property of the adaptive lasso no longer holds, when using cross-validation on the same
data twice. As mentioned, we suspect that this reuse may be necessary in many practical cases
due to lack of power. In order to retain the attractive oracle property, it would be of interest
to understand when leaving some data out of the selection in the first round to be used for
cross-validation in the second round is reasonable (in terms of power).
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Tuning of the two-step procedure. In Manuscript I the process of choosing the regularisa-
tion parameter is seen, primarily, as a means to an end. Choosing the right penalty parameter is,
however, difficult and cross-validated choices often include too many features. It would be of
interest to apply other tuning methods, such as stability selection (Meinshausen and Bühlmann,
2010), for choosing the right penalty parameters in the two-step procedure.

Related individuals. The geneJAM method proposed in Manuscript II does not allow for
correlated measurements on each individual, and as a consequence it is not appropriate to
investigate the behaviour of related individuals. Nonetheless, our efforts have aided in setting
up a framework which may be helpful for future research efforts. In particular, our current
work may be a stepping stone towards application in the case of related individuals by means
of the matrix normal distribution (Section 1.5.4).

Non-Gaussian error distributions. In Manuscript II, we consider the situation where the
outcome is assumed to be quantitative (Y ∈ RN×q) and the error distribution is assumed to be
multivariate Gaussian. A useful property of the multivariate Gaussian distribution is that the
ijth component of the corresponding precision matrix is zero if and only if the variables i and
j are conditionally independent, given the others. The geneJAM method exploit this property,
since, by approximating the precision matrix of the PGSs and further sparsity, we are able to
identify blocks of zeros in the precision matrix, and, thus, potential connected components,
which correspond to clusters of traits sharing some genetic characteristics. It would be of
interest to extend the method to non-Gaussian error distributions for example in the case of
a binary outcome representing, e.g., the risk of a complex diseases. In this case a polygenic
(risk) score can be used to reflect an individual’s estimated genetic predisposition.

Correlated features and multivariate outcome. It is not clear how suited the two-step pro-
cedure for multivariate outcome proposed in Manuscript III is for data with highly correlated
features. It would be of interest to to understand under which conditions highly correlated fea-
tures can be accurately selected. In particular, it would be of interest to exploit the functionality
of the MSGLasso allowing for arbitrary group structures.

Oracle property of the multivariate two-step procedure. As for the two-step procedure
proposed in Manuscript I, it is likely that the oracle property of the MSGLasso no longer holds
when using cross-validation on the same data twice. It would be of interest to improve the
procedure to retain the oracle property.

Simulation and application of the multivariate two-step procedure. In Manuscript III,
we have presented a theoretical framework and a proof-of-concept simulation study. It would
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be of general interest to conduct more numerical experiments to assess the method. In par-
ticular, it would be of interest to apply the method on more complex simulated data and on
real data to evaluate the selection abilities and modelling performance (in terms of computing
time).
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A Summary of manuscripts
In this section we summarise the manuscripts of the thesis.

Manuscript I

"Identifying Interactions via Hierarchical Lasso Regularisation"

In Manuscript I we propose a novel method for identifying hierarchical interactions using
regularised regression. It is typical for genomic or multi-omics data that the number, p, of
features measured is larger than the number, N , of observations, and when analysing such data
it is of interest to not only identify relevant features but also more complex relationships such
as gene-gene interactions. However, the introduction of interactions into a model rapidly in-
creases the complexity of said model, since the total number of possible pairwise interactions
is
(

p
2
)

= 1
2 p(p − 1). For example, when using 500K single nucleotide polymorphism microar-

rays there are approximately 125 billion pairwise interactions. Fitting a regression model to
such data is computationally challenging, potentially extremely time consuming, and mathe-
matically distorts the relation between the number of features and the number of observations.
The goal is to obtain both computationally tractable and interpretable models in terms of effect
size as well as feature and interaction selection. We develop an intuitive 2-step procedure for
identifying interactions when p ≫ N by imposing hierarchical restrictions. In the first step we
use lasso (Tibshirani, 1996) and include all features to select the most promising main effects.
In the second step, we use adaptive lasso (Zou, 2006) and include main effects and interactions
according to hierarchical restrictions to select the most promising terms. The method has po-
tential applications to cross-omics studies and genome-wide studies of gene-gene interactions
(epistatis) and, as a special case, to studies of gene-environment interactions. The utility of
the method is illustrated in the manuscript on both simulated and real data. Data from the
Wellcome Trust Centre for Human Genetics (Valdar et al., 2006) were analysed and several
SNP-SNP interactions were identified. Simulations were used to assess the false discovery
rate of the interactions under different hierarchical assumptions on the data generating process
and the method, and we found that under the right hierarchical restrictions, the cross-validated
choices of the penalty parameter succeed in detecting the true interaction. The consequence
of no hierarchical assumption is an immense amount of false discoveries. To assess the mod-
elling performance in terms of computing time the method was compared to the HierNet
function (Bien and Tibshirani, 2014) implemented in R, proposed by Bien et al. (2013), and
we demonstrated that the computing time is considerably reduced by our method and is highly
satisfactory even for fairly large data.
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Manuscript II

"Joint Regression Analysis of Multiple Traits Based on Genetic Relationships"

In Manuscript II we propose a novel clustering and estimation method using polygenic scores
(PGSs) for inferring a genetic relationship among multiple, simultaneously measured and po-
tentially correlated traits in a multivariate GWAS. PGSs are widely available and employed in
fields such as animal breeding, plant breeding, and human genetics for predicting and under-
standing genetic architectures. Based on the presumption that much of the variability observed
in a trait is attributable to genetic differences, i.e., heredity, we develop the geneJAM method
for estimating clusters of correlated traits that share some genetic component and jointly anal-
yse data in these clusters. By approximating the precision matrix of the PGSs and further
sparsity via graphical lasso (Friedman et al., 2007), we identify blocks of zeros in the preci-
sion matrix, and, thus, potential connected components, which correspond to clusters of traits
sharing some genetic characteristics. Using this clustering structure together with feasible gen-
eralised least squares (FGLS) we are able to build estimators of the unknown parameters in a
linear regression model and the unknown among-trait and within-individual correlation of the
errors. The method has potential applications to many biology studies with traits embedded
in clusters sharing genetic characteristics. Data from the Wellcome Trust Centre for Human
Genetics (Valdar et al., 2006) were analysed and clusters of traits were identified. The method
was compared with the fully parametric linear regressions and multilevel models on simulated
data, and we demonstrate that computing time is highly satisfactory even for large data, and
compared to both the simple linear regression and the multilevel models the geneJAM method
is superior in terms of precision of the estimates of traits on which there are genetic effects.

Manuscript III

"Identifying Hierarchical Interactions via Multivariate Sparse Group Lasso Regularisation"

In Manuscript III we propose a novel method for identifying hierarchical interactions using
multivariate sparse group lasso (MSGLasso) proposed by Li et al. (2015). The method is
analogous to the two-step procedure proposed in Manuscript I and extends the framework to
the even more complex setup of a multivariate outcome, where a joint analysis of all traits
may increase power. We develop a 2-step procedure for identifying interactions by imposing
hierarchical restrictions, and we consider the scenario where an unknown subset of the features
and interactions are relevant, but this subset is not preserved across the components of the
outcome. As a special case, we consider the scenario where an unknown subset of the features
and interactions are relevant, and this same subset is preserved across all components of the
outcome. In the first step of the procedure we use MSGLasso and include all features to
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select the most promising main effects for each outcome component. In the second step, we
include main effects and interactions and use a variation of MSGLasso with carefully chosen
regularisation parameters to impose hierarchical restrictions. This way, the most promising
(for each outcome component) features and interactions are selected. The method has potential
applications to genomic or multi-omics data where the number of features measured is likely
to be much larger than the number of observation, samples often contain multiple, potentially
correlated, and simultaneously measured traits, and it is of interest to identify interactions,
e.g., gene-gene or gene-environment interactions. The utility of the method is illustrated in
the manuscript on simulated data. Simulations were used to assess the false discovery rate of
the interactions under the strong hierarchical assumption on the data generating process and
the method, and we found that the cross-validated choices of the penalty parameter succeed in
detecting the true interactions with a very low false discovery rate.
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B Figures
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(a) Manhattan plots for the Durocs.
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(b) Manhattan plots for the Landraces.

Figure B.1: The dashed horizontal line represents the threshold for genome-wide significance
from the Bonferroni correction method. The dotted horizontal line represents the conventional
threshold 5 × 10−8. ◦ indicates SNPs selected by the GWAS, see Example 1.3.1. + indicates
SNPs selected by the usual lasso, see Example 1.4.1 and the first step of the two-step procedure,
see Example 1.4.2. × indicates SNPs selected by the multivariate lasso.
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Figure B.2: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for the first metabolomic sample of the Durocs. Grey squares represent estimated edges and
white space represent no edges. Orange borders represent adjacency matrix corresponding to
ρ̂min.
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Figure B.3: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for the second metabolomic sample of the Durocs. Grey squares represent estimated edges and
white space represent no edges. Orange borders represent adjacency matrix corresponding to
ρ̂min.
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Figure B.4: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for the first metabolomic sample of the Landraces. Grey squares represent estimated edges and
white space represent no edges. Orange borders represent adjacency matrix corresponding to
ρ̂min.
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Figure B.5: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for the second metabolomic sample of the Landraces. Grey squares represent estimated edges
and white space represent no edges. Orange borders represent adjacency matrix correspon-
ding to ρ̂min.
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C Tables

SNPID Race Chromosome Position GWAS lasso mvlasso
30362 Duroc 1 8803333 •
29277 Duroc 3 11597405 •

3471 Duroc 4 9617724 •
21918 Duroc 4 36793710 •

3724 Duroc 4 36811567 •
3739 Duroc 4 39536242 •
3747 Duroc 4 41360877 •
3748 Duroc 4 41452288 •

50049 Duroc 6 24222649 •
59222 Duroc 6 24389455 •
42902 Duroc 11 5464980 •

8790 Duroc 11 27815254 •
25474 Duroc 11 27829151 •

8875 Duroc 11 47689807 •
47357 Duroc 11 48200175 •
52162 Duroc 11 48299203 •

8880 Duroc 11 48376222 •
61714 Duroc 12 5900678 •
30624 Duroc 12 7651064 •
61923 Duroc 12 21742885 •

9525 Duroc 13 9580136 •
60030 Duroc 14 108751907 •
44572 Duroc 17 34347812 •
28557 Duroc 17 34384763 •
44574 Duroc 17 34497668 •
13820 Duroc 18 26687448 •
28869 Duroc 18 26745288 •
29057 Duroc 19 13152222 • •
14071 Duroc 19 13190474 • •
44885 Duroc 19 13245808 • •
14913 Duroc 19 13448866 • •
15414 Duroc 19 106199952 •
20297 Landrace 1 202481802 •
16478 Landrace 1 270659673 •
29722 Landrace 2 151237469 • •

2749 Landrace 2 151248688 • •
(Continued on next page)
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SNPID Race Chromosome Position GWAS lasso mvlasso
2752 Landrace 2 151433869 •

30660 Landrace 3 6069989 •
39701 Landrace 3 22551656 •
40769 Landrace 3 22843902 •

2863 Landrace 3 22855839 •
2861 Landrace 3 22952343 •
2858 Landrace 3 22983641 •

58981 Landrace 3 23156713 •
3075 Landrace 3 72191624 •

40866 Landrace 3 92827526 • •
59499 Landrace 3 126039599 •
21608 Landrace 3 126210935 •
3481 Landrace 4 10597928 •

41246 Landrace 4 114290737 •
36411 Landrace 4 118826911 •
22756 Landrace 5 66837858 •

5196 Landrace 5 104263450 •
5197 Landrace 5 104300278 •
5198 Landrace 5 104338721 •
5192 Landrace 5 104693932 •
5189 Landrace 5 104937103 •

22884 Landrace 5 105544703 •
33983 Landrace 5 111371828 •
52484 Landrace 6 9277653 •
31231 Landrace 6 9952971 •
22987 Landrace 6 35605675 •
5839 Landrace 7 18668395 •
5875 Landrace 7 23022559 •

31066 Landrace 8 42378737 •
53405 Landrace 9 18490706 •
50464 Landrace 9 18519025 •
15547 Landrace 9 18599832 •
51386 Landrace 9 18740429 •
57831 Landrace 9 18765671 •
18537 Landrace 9 18939093 •
31844 Landrace 9 20062541 •
56053 Landrace 9 62513471 •
42599 Landrace 9 74724089 •

7897 Landrace 9 92626084 •
52927 Landrace 9 92976421 •

(Continued on next page)



83

SNPID Race Chromosome Position GWAS lasso mvlasso
42617 Landrace 9 93098631 •

7899 Landrace 9 93125776 •
7900 Landrace 9 93148647 •
7902 Landrace 9 93743533 •

50527 Landrace 9 93851347 •
7905 Landrace 9 93901993 •

30878 Landrace 9 95164137 •
42619 Landrace 9 95957104 •
53117 Landrace 9 95973005 •
54769 Landrace 9 100612906 • •
24827 Landrace 9 100627098 • •
61047 Landrace 9 100949090 • •
31177 Landrace 9 100971561 • •
31415 Landrace 9 100985297 • •

8115 Landrace 9 139376932 •
42872 Landrace 10 70144318 •
25316 Landrace 10 70158066 •
59583 Landrace 12 16459010 •

9273 Landrace 12 19513657 •
33842 Landrace 12 41853982 •
16358 Landrace 12 42035618 •
17816 Landrace 13 93356864 •
10056 Landrace 13 93567191 •
26703 Landrace 14 14392171 •
27588 Landrace 15 2136441 •
28308 Landrace 16 69860082 •
13053 Landrace 16 69865172 •
49644 Landrace 16 78120686 •
14138 Landrace 19 38708793 •
19073 Landrace 19 104170699 •
29196 Landrace 19 125159088 •
14294 Landrace 19 125186910 •
56840 Landrace 19 125199118 •
14295 Landrace 19 125294839 •

Table C.1: Overview of SNPs selected by the standard GWAS method, the lasso, the two-step
procedure, and the multivariate lasso. (Continued)
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Abstract

Penalised regression models such as the lasso are powerful methods, which use sparsity
to do feature selection when the number of features measured is larger than the number of
observations. This is typical for genomic or multi-omics data, and when analysing such
data we are concerned not only with identifying relevant features but also with identifying
more complex relationships such as gene-gene interactions. It is, however, not clear exactly
how to systematically include interacting features in penalised regression models.

We consider methods for identifying pairwise interactions in a linear regression model
under different assumptions of hierarchy.

We approach the problem by using a two-step procedure. In the first step lasso includes
only the main effects and selects the most promising. Next, adaptive lasso includes main
effects and interactions according to hierarchical restrictions and selects the most promising
terms. The approach is motivated by modelling pairwise interactions for qualitative vari-
ables and experimenting with explicitly applying penalties on the main effects and inter-
actions, thereby obtaining interpretable models. We compare the methods with existing
techniques on simulated data using R and illustrate the utility of the methods by examining
a data set of a heterogeneous stock of mice and identifying several gene-gene interactions.

Keywords: hierarchical; interactions; lasso; regularised regression; sparsity

1 Introduction
The existence of, e.g., gene-gene or gene-environment interactions has gained attention in
genetic studies but the introduction of interactions into a model rapidly increases the complex-
ity of said model, see Hu et al. (2014) and Cornelis et al. (2012). If the number of measured
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features is p, the total number of possible pairwise interactions is
(

p
2
)

= 1
2 p(p − 1). Thus,

when using 500K single nucleotide polymorphism microarrays, say, there are approximately
125 billion pairwise interactions. Fitting a regression model to such data is computationally
challenging, potentially extremely time consuming, and mathematically distorts the relation
between the number of features, p, and the number of observations, N , as the design matrix
no longer has full rank. The objective of this paper is to propose a computationally efficient
method for selecting pairwise interactions in a linear model which involves only a subset of
the features.

Interpretations of traditional regression analyses do not encourage including an interaction in
a model without the corresponding main effects. For example, Lim and Hastie (2015) argue:

‘Since main effects [...] can be viewed as deviations from the global mean,
and interactions are deviations from the main effects, it rarely make sense to have
interactions without main effects.’

When deciding on a model where more than two features are present and give rise to multiple
interactions we face the additional challenge of deciding which interactions to consider. Ac-
cording to Cox (1984):

‘One general principle that can be used in such cases is that large component
main effects are more likely to lead to appreciable interactions than small compo-
nents.’

Likewise, Bien et al. (2013) argue:

‘[R]ather than looking at all possible interactions, it may be useful to focus
our search on those interactions that have large main effects.’

This supports the opinion that an interaction should not enter a model without the correspon-
ding main effects and further expresses the view that larger main effects are of more practical
importance.

It is, however, possible that the magnitude of the true effect of a feature, is unrelated to both the
direction and magnitude of the true associated interaction effects: two treatments, A and B,
may be ineffective when given alone but helpful or detrimental when given in combination. For
example, according to Leekha et al. (2011), in certain cases of serious infections, the addition
of gentamicin to penicillin has been shown to be bactericidal, whereas penicillin alone is only
bacteriostatic and gentamicin alone has no significant activity.

Our work is motivated by the wish to do cross-omics comparisons and to understand synergy in
genetic interactions, that is, when combinations of genes carry more information than the sum
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of information provided by individual genes. While hierarchical assumptions may be fulfilled
for some degrees of synergy in gene pairs, they are not fulfilled when each individual gene does
not carry any information on the phenotype under study, while a simultaneous consideration
of the two genes produces an association with the phenotype.

We propose a simple two-step penalised regression procedure for identification of pairwise
interactions, such as high-synergy gene pairs, when strong or weak hierarchy is assumed and
suggest the usual lasso for identification of pairwise interactions in situations where hierar-
chical assumptions do not seem reasonable. We compare the results of feature selection by
the hierarchical and non-hierarchical lasso on data sets which exhibit different hierarchical
properties.

Our method is inspired by the hierarchical interaction models for which the inclusion of inter-
actions depends on the significance of the constituent main effects.

Different penalised regression methods have already been formulated for hierarchical inter-
action models. For example, Bien et al. (2013) propose a procedure which produces sparse
estimates while satisfying either weak or strong hierarchy by adding a set of convex constraints
to lasso. The method is implemented in the R package hierNet, but the implemented
algorithm is not suitable for large scale problems. Other methods make use of the group-lasso
and overlapped group-lasso to select interactions and enforce hierarchy, see, e.g., Lim and
Hastie (2015) and Meier et al. (2008), and then others use stepwise procedures where the “best”
variable is iteratively added or removed thereby enforcing the strong hierarchy restriction, see,
e.g., Bickel et al. (2010) and Park and Hastie (2008). Wu et al. (2010) propose a two-step pro-
cedure not too different from the one proposed in this paper, but their method always enforces
strong hierarchy and they provide no information on the scalability of the method.

In Section 2 we introduce the pairwise interaction model, the concept of hierarchical sparsity,
and our framework and two-step procedure for finding pairwise interactions. We study our
method and other techniques on real data, as well as simulated data, in Section 3. The two-step
procedure is implemented using the R package glmnet; the R code is part of our package
ilasso which is available online, see Buchardt (2021). We conclude with a discussion and
recommendations in Section 4.

2 Methods
In this section we present a two-step penalised regression procedure which enables the detec-
tion of pairwise interactions.
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A set of categorical features is said to interact if the effect of one feature depends on the
level(s) of other feature(s) in the set. Similarly, a categorical and a quantitative feature are
said to interact, if the partial slope corresponding to the quantitative variable depends on the
level of the categorical variable. Estimates and hypothesis tests are calculated similarly for
both cases, and interpretations are fairly clear, see Ekstrøm and Sørensen (2014). In the case
of interactions between quantitative features, testing and interpretation is more complex. A
comprehensive source on the treatment of such interactions in multiple regression is found in
Aiken and West (1991). The method developed in this paper is applicable to all three cases;
for exposition purposes, all our examples regard interactions between categorical features.

We focus in the methods section on linear regression models which are suitable when the
outcome is quantitative, and ideally when the error distribution is Gaussian. The form of
technique in our methodology is easily generalised to other regression models, and we will be
illustrating the utility of our method by examining interactions on both quantitative and binary
outcome. See Hastie et al. (2015) for a discussion on generalisations of simple linear models
and the lasso which are suitable for different types of outcome.

The full model includes an additive effect of the features as well as an interaction between the
two and takes the form

yi = β0 + xi1β1 + xi2β2 + xi1xi2Θ12 + ϵi,

for all observations i = 1, . . . , N where β0 is the intercept, β1 and β2 are unknown parameters
for the main effects, Θ12 is a parameter for the pairwise interaction, and ϵi are Gaussian error
variable. We construct an interaction variable from the product of the original two features; in
the case of binary features the interaction variable estimates the difference in means between
the two levels. The additive linear regression model or pure main effect model is one approach
for modelling the additive effect of two features on a quantitative outcome and disregard
potential interactions. It corresponds to the assumption Θ12 = 0. The pure interaction model
is an approach for describing the situation in which neither of the two features has any effect
on the outcome singly but a combination of the two does. It corresponds to the assumption
β1 = β2 = 0. Finally, the partial model includes an additive effect of only one of the features
but also the combination of them both corresponds to β1 = 0 or β2 = 0.

Now, selecting which model to fit to a given data set is not straight forward. Often, only the
pure main effect model is considered, but without including the interaction term, any main
effect found is potentially partly due to marginal effects of an interaction.

The full model is said to honour so-called strong hierarchy and the partial models are said
to honour weak hierarchy. We look into these hierarchical restrictions later, but for now we
acknowledge the difficult task of deciding on a suitable hierarchy regardless of the data at hand.

An additional challenge involves the parametrisation of the model, since it is possible that
different parametrisations result in different hierarchies. An example is presented in Table 1.
This challenge is not specific to our method. It is a general problem arising when interactions
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are included in regression models, and theoretical and simulation studies of the consequences
of incorrect parametrisations is beyond the scope of this paper.

When searching over all features and pairs of features simultaneously, it is possible that main
effects mask interaction effects and vice versa. Imposing hierarchical restrictions in a stepwise
manner, by searching for prominent main effects first, then only considering corresponding
interactions, does not necessarily imply that interactions are easily found, since the underly-
ing hierarchical structure is most likely unknown and different from the assumed hierarchical
structure. In this paper we propose a two-step procedure, which is useful even when the un-
derlying hierarchical structure is unknown and tackles the issue of masked effects in the case
of categorical features.

x2 = 0 x2 = 1
x1 = 0 0 0
x1 = 1 0 1

x2 = 0 x2 = 1
x1 = 1 0 1
x1 = 0 0 0

Table 1: As an example of different parametrisations resulting in different hierarchies, consider
the simple case of a two-factor design. We assume that we have N observations of a univariate
outcome y ∈ RN , e.g., the severity of a disease, and two associated binary features X ∈
{0, 1}N×2, e.g., indicating whether either of two single nucleotide polymorphisms (SNPs) are
present. We show two different parametrisations of a possible sample of the average severity
of disease, E[y], as a function of the combination of the SNPs x1 and x2. Left: The binary
features are encoded using a dummy variable representation: they take the value 0 to indicate
the absence of the SNP and 1 to indicate the presence of the SNP. If we use ’0’ as the reference
level, the sample suggests a pure interaction model with Θ12 = 1, that is, yi = xi1xi2. Right:
Instead let x1 take the value 1 to indicate the absence of the SNP and 0 to indicate the presence
of the SNP. Now, if we still use ’0’ as the reference level, the sample suggests a partial model
with β2 = 1 and Θ12 = −1, that is, yi = xi1 − xi1xi2.

Since our interest in interactions goes beyond the two-factor design, we extend the pairwise
interaction model to p features in the next section.

2.1 Pairwise interaction model

We assume that we have N observations of the univariate outcome y ∈ RN and p associated
features X with pairwise interactions. If the features are quantitative, X ∈ RN×p, the pair-
wise interaction term is formed simply by multiplying the two corresponding features. For
computational reasons we recommend centring quantitative features before the optimisation
problem is solved, see Aiken and West (1991), such that each column has mean zero. If the
features are not measured in the same units, we also recommend scaling the features such that
each column has unit variance. Otherwise the lasso solution depends on the scale since lasso
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puts constraints on the size of the coefficients associated to each feature. If the features are
categorical, they are assumed to be represented by dummy variables, and the pairwise interac-
tion term is formed by multiplying the corresponding variables. For the sake of simplicity we
assume that the outcome values are centred before the optimisation problem is solved and the
intercept term is omitted from the model. In linear regression models, this condition is not a
restriction, since given an optimal solution, (β̂0, β̂), obtained from the centred data, an optimal
solution, (β̃0, β̃), for the uncentred data is easily recovered: β̃ = β̂ and β̃0 = ȳ − ∑p

j=1 x̄j β̃j ,
where ȳ and x̄j , j = 1, . . . , p, are the original means.

Thus, we consider the linear regression model

yi =
p∑

j=1
xijβj +

p∑

k=1

∑

j<k

xijxikΘjk + ϵi, (1)

for i = 1, . . . , N . Here β1, . . . , βp are unknown parameters for the main effects, Θ ∈ Rp×p

are unknown parameters for the pairwise interactions, and ϵi is a random error variable. We
let Θ represent a symmetric matrix, i.e., Θ = Θ⊤. The strict inequality in the interaction
summation precludes over-parametrisation arising from the inclusion of the same effect twice,
e.g., including both xijxik and xikxij .

Based on the model (1) we aim to select a subset of the p main effects and the 1
2 p(p − 1)

interactions – we refer to the variables in this subset as the relevant variables. In pursuit of this
goal we establish the notions of hierarchy and sparsity in the next sections.

2.2 Hierarchy

We already introduced the challenges connected to model selection – in the sense of hierar-
chical restrictions – as far as interactions are concerned. In this section we present model
restrictions in a form which makes it is possible to specify a penalised regression procedure
which produces sparse interaction models that honour these restrictions. This specification
enables a data assisted and purpose driven choice of hierarchy, which is what we recommend
and discuss in more detail in Section 4. We define the following hierarchical, anti-hierarchical,
and non-hierarchical restrictions:

Strong hierarchy There are interactions only among pairs of non-zero main effects,
HS : Θjk ̸= 0 ⇒ βj ̸= 0 and βk ̸= 0.

Weak hierarchy Each interaction has at least one of its main effects present,
HW : Θjk ̸= 0 ⇒ βj ̸= 0 or βk ̸= 0.

Anti-hierarchy Interactions are only among pairs of main effects which are not present,
HA : Θjk ̸= 0 ⇒ βj = 0 and βk = 0.
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Pure interactions There are no main effects present, only interactions,
HI : βj = 0 ∀j = 1, . . . , p.

Pure main effects There are no interactions present, only main effects,
HM : Θjk = 0 ∀j, k = 1, . . . , p.

No hierarchy There are no restrictions to the presence of main effects and interactions,
HN.

As an example, recall the simple case of a two-factor design with N observations of the centred
outcome y ∈ RN and two associated binary features X ∈ {0, 1}N×2. In this case, the restric-
tions above result in the following models:

HS : yi = xi1β1 + xi2β2 + 1{β1 ̸=0∧β2 ̸=0}xi1xi2Θ12 + ϵi;
HW : yi = xi1β1 + xi2β2 + 1{β1 ̸=0∨β2 ̸=0}xi1xi2Θ12 + ϵi;
HA : yi = xi1β1 + xi2β2 + 1{β1=β2=0}xi1xi2Θ12 + ϵi;
HI : yi = xi1xi2Θ12 + ϵi;

HM : yi = xi1β1 + xi2β2 + ϵi;
HN : yi = xi1β1 + xi2β2 + xi1xi2Θ12 + ϵi.

Next, we introduce methods for estimating the parameters in pairwise interaction models,
which honour one of the hierarchical, anti-hierarchical, or non-hierarchical restrictions.

2.3 Sparsity

The ordinary least squares (OLS) method is a popular method for estimating the parameters in
a linear model. If N is not much larger than p, the OLS estimates may exhibit a lot of variability
resulting in almost sure over-fitting and are, therefore, likely to yield poor predictions. Finally,
if p > N the OLS estimates are not well-defined in which case the method cannot be used at
all. However, in the case of p > N it is unlikely that all features are relevant, anyway. This
motivates the notion of sparsity and fitting a sparse model which involves only a subset of the
features. In order for us to obtain such a subset we can regularise the estimation process.

For the usual linear regression model with no interactions,

yi =
p∑

j=1
xijβj + ϵi,

the lasso (least absolute shrinkage and selection operator), introduced by Tibshirani (1996), is
an ℓ1-regularised regression method, which shrinks the regression coefficients by imposing a
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penalty on their size. The objective of lasso is to solve an optimisation problem of the form

minimise
β

1
2N

N∑

i=1


yi −

p∑

j=1
xijβj




2

subject to
p∑

j=1
|βj | ≤ t,

(2)

where t ≥ 0 is a pre-specified tuning parameter which controls the amount of shrinkage applied
to the estimates. We can write the lasso problem in the Lagrangian form

minimise
β∈Rp





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj




2

+ λ

p∑

j=1
|βj |





, (3)

for some penalty parameter λ ≥ 0, and for every value of λ there is a t (and for every value of t

there is a λ) such that solving (2) and (3) results in the same estimates. The penalty parameter λ

can be determined by a model validation technique such as cross-validation, and selecting the
value of λ translates to selecting a proper amount of regularisation and is, as such, a trade-off
between data fitting and sparsity. Hence, the lasso coefficients minimise a penalised residual
sum of squares, and, since the absolute value function is not differentiable in zero, lasso has
the ability to letting coefficients equal zero, thus resulting in a model which involves only a
subset of the features. The lasso ℓ1-penalty

∑p
j=1 |βj | makes the solution non-linear in yi, and

it has no closed form expression.

Now, fitting the usual lasso ℓ1-penalty on the joint set of main effects and interactions corre-
sponds to the assumption of no hierarchy, HN. That is, for the pairwise interaction model (1),
the lasso problem takes the form

minimise
β∈Rp,Θ∈Rp×p



q(β, Θ) + λ

p∑

j=1
|βj | + λ

p∑

k=1

∑

j<k

|Θjk|



 ,

where q(β, Θ) denotes the loss function

q(β, Θ) = 1
2N

N∑

i=1


yi −

p∑

j=1
xijβj −

p∑

k=1

∑

j<k

xijxikΘjk




2

.

In order for us to take into account actual hierarchical structures we can make use of the group
lasso penalty, which results in structured sparsity, see Lim and Hastie (2015), or we can add
a set of convex constraints to lasso as suggested by Bien et al. (2013) who introduce what
they call the all-pairs lasso: To produce models that are guaranteed to be hierarchical Bien
et al. (2013) build hierarchy into the lasso optimisation problem as a constraint on Θ, thereby
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obtaining the strong hierarchical lasso defined as

minimise
β±∈Rp,Θ∈Rp×p

q(β+ − β−, Θ) + λ1⊤(β+ + β−) + λ

p∑

k=1

∑

j<k

|Θjk|

subject to Θ = Θ⊤,

∑p
j=1 |Θj | ≤ β+

j + β−
j

β+
j ≥ 0, β−

j ≥ 0





for j = 1, . . . , p,

where Θj denotes the jth row (and column, by symmetry) of Θ. Dropping the assumption
Θ = Θ⊤ of symmetry of Θ yields the weak hierarchical lasso.

The R package hierNet provides implementations of the strong and weak hierarchical lasso,
both for Gaussian and logistic losses, see Bien and Tibshirani (2014). Currently, hierNet is,
however, only “reasonably fast for moderate sized problems (100-200 variables)”, as is stated
in the R documentation. Thus, when it comes to solving large-scale problems, there is still
room for improvement.

In this paper we propose an approximation, by means of a variant of the adaptive lasso
proposed by Zou (2006), which is computationally tractable and suited for taking into account
both strong and weak hierarchical structures. While the method allows for an anti-hierarchical
structure, it is not computationally tractable, often conceptually unrealistic, and we make no
further mention of it in this paper. For the usual linear regression model with no interactions
the adaptive lasso solves an optimisation problem of the form

minimise
β∈Rp





1
2N

N∑

i=1


yi −

p∑

j=1
xijβj




2

+ λ

p∑

j=1
γj |βj |





, (4)

where the penalty parameter λ ≥ 0 is determined by cross-validation and the quantities γj ≥ 0,
j = 1, 2, . . . , p, is a penalty modifier: when γj = 0, feature j is never penalised; when γj = ∞
feature j is always excluded; for all j = 1, 2, . . . , p for which γj are equal to the same constant
value, the corresponding features are equally penalised.

2.4 Two-step procedure

Solving the strong and weak hierarchical lasso outlined above is very time consuming, and in
this paper we propose a simple two-step procedure for selecting relevant features and pairwise
interactions according to one of the hierarchical restrictions, HSor HW, which were introduced
in Section 2.2.

As the first step in our procedure we include only the main effects and apply the usual lasso for
variable selection. As the second step in the procedure we include main effects and interactions
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in accordance with step one and subject to one of the restrictions HSor HW, and we apply a
variation of the adaptive lasso with the penalty modifier depending on the given hierarchical
restriction.

Formally, we define the procedure as follows:

Step 1 Define by M and I the sets of indexes for all the main effects and interactions,
respectively, and assume the pure main effect model,

yi =
∑

j∈M
xijβj + ϵi,

for which the lasso estimates are determined by solving the optimisation problem

minimise
β∈Rp





1
2N

N∑

i=1


yi −

∑

j∈M
xijβj




2

+ λ1
∑

j∈M
|βj |





,

where the penalty parameter λ1 ≥ 0 is determined by cross-validation. Define by S = {k :
βk ̸= 0} the set of relevant main effects, that is, the set of non-zero coefficients, which is
estimated by S(λ1) = {k : β̂

(λ1)
k ̸= 0}, that is, the set of non-zero estimates, corresponding to

the main effects selected by lasso.

Step 2 Define by MH and IH the sets of main effects and interactions, respectively, to be
included in the model subject to one of the hierarchical restrictions, HSor HW. For example,
when the model is subject to the restriction of strong hierarchy, MH = S and IH = {j, k :
βj ∈ S ∧ βk ∈ S}, which are estimated by M(λ1)

H = S(λ1) and I(λ1)
H = {j, k : βj ∈

S(λ1) ∧ βk ∈ S(λ1)}, respectively.

Then, assume the pairwise interaction model,

yi =
∑

j∈M
xijβj +

∑

k∈I(λ1)
H

∑

j<k

j∈I(λ1)
H

xijxikΘjk + ϵi,

for which the adaptive lasso estimates are determined by solving the optimisation problem

minimise
β∈Rp,Θ∈Rp×p





1
2N

N∑

i=1


yi −

∑

j∈M
xijβj −

∑

k∈I(λ1)
H

∑

j<k

j∈I(λ1)
H

xijxikΘjk




2

+λ2
∑

j∈M
γj |βj | + λ2

∑

k∈I(λ1)
H

∑

j<k

j∈I(λ1)
H

|Θjk|





,
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where the penalty parameter λ2 ≥ 0 is determined by cross-validation and the penalty modifier
γj ≥ 0, j = 1, 2, . . . , p, is defined as γj = 1{j /∈M(λ1)

H } to ensure that the main effects selected
in the first step are never (or always) penalised in the second step. For example, when the model
is subject to the restriction of strong or weak hierarchy, γj = 1{j /∈M(λ1)

H } = 1{j /∈S(λ1)} =
1{j /∈{k:β̂(λ1)

k
̸=0}}, to ensure that the main effects selected in the first step are never penalised

in the second step. That is, the main effects selected in the second step are the same as those
selected in the first step, thereby, ensuring that the same main effects honour the assumed
hierarchical restriction in both steps.

We are finally able to identify the set SH = {k : βk ̸= 0} of main effects relevant under the
model and estimated by S(λ2)

H = {k : β̂
(λ2)
k ̸= 0} and the set RH = {j, k : Θjk ̸= 0} of

interactions relevant under the model and estimated by R(λ2)
H = {j, k : Θ̂(λ2)

jk ̸= 0}.

Let us explain the reasoning behind the stepwise nature of the method and the modified
(and non-) usage of the adaptive lasso. Given unlimited data, time, and memory we could
include all main effects and pairwise interactions at once and use the adaptive lasso (4) with
weights on the form γj = 1/∥β̂j∥ν , where β̂j is the OLS estimate and ν > 0. With this
choice of weights, the adaptive lasso enjoys the oracle properties, see Zou (2006), and yields
consistent variable selection. In practice, however, computational limitations make dimen-
sionality reduction necessary when interactions are of interest, even for small- and moderate-
sized data sets. Hence the reason for step one. In general, the lasso as used in step one is not
consistent for variable selection and may include too many variables. Ordinarily, this suggests
using the adaptive lasso, but in finite sample settings we ought to be liberal when including
main effects to allow more interactions to be considered and avoid them being disregarded
because of low power. Hence the reason for applying the usual lasso in step one. In step
two we use a modification of the adaptive lasso (4) where the weights are defined as an
indicator function. This does not retain the attractive oracle properties, but it ensures our
goal of interpretation in terms of hierarchy and it allows our approach to work as a screening
tool for finite sample sizes.

For categorical features the stepwise nature of the procedure has a great advantage. As pre-
viously mentioned, it is likely that any interactions will be seen as main effects in a marginal
analysis, such as the first step of the procedure. On the other hand, in a simultaneous analysis
of main effects and interactions, such as the second step of the procedure, different para-
metrisations may lead to different hierarchies. Furthermore, correlation or, even, collinearity
between an interacting main effect and the corresponding interaction variable may occur. This
makes the interpretation of the main effects difficult, but it does not reduce the predictive
power of the model in a simultaneous analysis. These are, for us, useful properties, since, in
a marginal analysis, both main effects of a pairwise interaction are included regardless of the
parametrisation and we can use the main effects selected as indicators of potential interactions.
In a succeeding simultaneous analysis the size of the main effects which were selected in the
marginal analysis may change, but it is possible to ensure that they are included – regardless
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of the parametrisation. It should be noted that these properties imply that the procedure is not
suitable when the truth is anti-hierarchy, since, in that case, the main effects corresponding to
a relevant interaction are likely to be selected in the first step, resulting in the interaction not
being included in the second step.

Furthermore, we would like to point out another concern arising from the stepwise nature,
specifically the using of cross-validation twice on the same data. The main concern is the risk
of overfitting. Overfitting models will generally have poor predictive performance, as they can
exaggerate minor fluctuations in the data. This, again, may result in too many variables being
included, but, as we argued above, we wish to be liberal when including main effects to allow
more interactions to be considered and avoid them being disregarded because of low power. If,
however, power is not a problem in the data at hand, we do suggest leaving, say, 50% of data
out of the selection in the first round to be used for cross-validation in the second round.

Finally, we would like to make it clear, why the main effects are re-estimated in the second
step. We are interested in obtaining interpretable models in terms of effect size as well as
feature selection. Simultaneous estimation of main effects and interactions is key to correct
interpretation of data, as omission of certain terms from a model changes estimates of the
other parameters.

In the next section we investigate the efficacy of the procedure through empirical studies and
compare the performance of our method to the application of lasso on the pure main effect
model, the pure interaction model, and the full model as well as to the application of the strong
and weak hierarchical lasso.

3 Results
We illustrate the utility of the two-step procedure described in Section 2.4 on both simulated
and real data. The motivation for both sets of examples is to understand the performance of
the two-step procedure on one of the important problems in statistical genetics: genotype by
genotype interactions (G×G) in genomic selection. First, we use simulations to assess the
false discovery rate of the interactions under different hierarchical assumptions on the data
generating process and the method. Next, we assess the modelling performance of the two-
step procedure in terms of computing time by using three simulation scenarios corresponding
to two different hierarchies: weak and strong. Here, the goal is to show that our method is
faster than other methods implemented in R. While the method allows for anti-hierarchical
restrictions as well as strong and weak hierarchy, we perceive the anti-hierarchical structure
primarily as a mathematical construction with little practical relevance. Therefore, there will
be no discussion of interactions honouring anti-hierarchy in the applications.
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Finally, we will assess the selection abilities of our method in a heterogeneous stock mouse data
set, see Valdar et al. (2006), from the Wellcome Trust Centre for Human Genetics (WTCCC).

3.1 Simulated data

We wish to study the advantages and disadvantages of the two-step procedure under the dif-
ferent hierarchical restrictions introduced in Section 2.2. We compare our method to the usual
lasso applied to the joint set of main effects and interactions, which corresponds to the assump-
tion of no hierarchy. We also compare the method to the strong and weak hierarchical lasso
implemented in the hierNet package where the penalty parameter is determined by cross-
validation with 10 folds using the hierNet.cv() function.

3.2 Sampling procedure

Since the efficacy of a procedure depends on the true model generating the data we simulate
different set-ups such that each of the different restrictions are tried as the ground truth, and
we apply our method to each scenario separately.

The sampling procedure goes as follows: each sample is generated with N = 200 observa-
tions y and p = 600 associated 3-way categorical features X ∈ {0, 1, 2}200×600 resulting
in 179700 potential pairwise interactions. The choice of sample size is a trade-off between
replication of real-world studies, precision in the assessment of performance, and time-wise
costs. Where applicable, there are one or two main effects and/or one interaction in the data
generating process. In practice, simulating several independent interactions would produce
similar results when each of these interactions are considered in turn. From the features we
generate observations by y = Xβ + ε, where ε is standard Gaussian noise vector. We create
a sparse problem by letting βj = 0 for all j = 1, . . . , p, except for β1, β2, β3, and Θ12, for
which different values are tried.

We fit the models in the two-step procedure using the R package glmnet by Friedman et al.
(2010). The penalty parameters λ1 and λ2 are determined by cross-validation, which we
perform using the cv.glmnet() function with 10 folds. The function fits a lasso penalised
linear model using the glmnet() function, which it runs 10+1 times; the first to get a
sequence of values for the penalty parameter, and then the remainder to compute the fit with
each of the folds omitted. The cross-validated error is accumulated, and the mean cross-
validated error (CVM) and standard deviation over the folds are computed. Since the folds in
cv.glmnet() are selected at random the results of the procedure are random, and we reduce
this randomness by running cv.glmnet() R = 10 times and average the error curves. That
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is, from each iteration, we obtain a sequence of values for the penalty parameter and a corre-
sponding sequence of values for the CVM. From the cross-validation fit we choose the set of
non-zero coefficients (corresponding to the discoveries) at the value of the penalty parameter
corresponding to the minimum point-wise average of the CVM. Finally, to reduce the residual
variation we repeat the sampling of the outcome as well as the fitting using the two-step proce-
dure B = 100 times. Thus, in total the four methods (the two-step procedure assuming either
strong or weak hierarchy and the usual lasso) are evaluated on about 20000 simulations each.

In order for us to compare the performance of the methods we use the false-discovery rate of
the interactions (iFDR), defined as

iFDR = V (i)

V (i) + S(i) ,

where V (i) is the number of false discoveries of interactions and S(i) is the number of true
discoveries of interactions. Please note that the false-discovery rates are defined in a manner
that returns a zero if the number of false discoveries is zero. If there are no false discoveries
nor true discoveries, the false-discovery rates are not provided.

Under the assumption of no hierarchy, B = 100 repetitions of the simulations and the model
fitting (the R = 10 times repeated application of the usual lasso with 10-fold cross-validation
to the joint set of main effects and interactions) is a very lengthy operation. Thus, we are
interested in eliminating features from the problem to reduce the computational load, and, to
this end, we apply a screening rule, which, according to Hastie et al. (2015), has the potential
to speed up the computation considerably while still providing the exact numerical solution.
In particular, we apply the global strong rule, which discards feature j whenever

∣∣x⊤
j y

∣∣ < 2λ − λmax,

where λmax = maxj |⟨xj , y⟩|, that is the variable which has the largest absolute inner-product.
Finally, we apply the usual lasso on the features left after screening using the glmnet package.
The penalty parameter is determined by 10-fold cross-validation, which we perform using the
cv.glmnet() function.

We present the mean iFDR (solid lines) with corresponding point-wise approximate confidence
intervals which we compute as the mean iFDR plus/minus twice the standard error of the mean.
We also present the average number of true interaction discoveries (dotted lines) conditioned
on having discovered a true interaction. We refer to this number as the recall with respect
to interactions. Please note that the average number of false interaction discoveries, which
complete the the picture is not displayed. Since the simulated data honour strong, weak, or
no hierarchy with one interaction effect, the desired number of true interaction discoveries is
one. That is, the dotted lines should be close to one. Since we aim to control the expected
proportion of interaction discoveries which are false, the desired value for the mean iFDR is
zero. That is, the solid lines should to be close to zero.
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3.2.1 Strong Hierarchy

In this section we present the result of applying the two-step procedure under different hier-
archical assumptions when the data generating process honours strong hierarchy. Thus, we
consider simulations for different effect sizes of the features x1 and x2 and the interaction
between the two, that is for different given non-zero values of β1, β2, and Θ12. We compare
the results to results obtained by applying the usual lasso on the joint set of main effects and
interactions, that is by assuming no hierarchy.

In Figure 1 we show the mean iFDR (solid lines) with corresponding point-wise approximate
confidence intervals as a function of β1 = β2 when the model is constrained by strong, weak,
or no hierarchy, corresponding to the three plots respectively. The lines are coloured according
to the true value of Θ12. In Figure 2 we show the recall with respect to interactions (dotted
lines) as a function of β1 = β2 when the model is constrained by strong, weak, or no hierarchy,
corresponding to the three plots respectively. Again, the lines are coloured according to the
true value of Θ12.

We observe that under the strong hierarchical model, HS, the mean iFDR is close to zero for
all values of the two true main effects and all values of the true interaction. This indicates
that when we do discover an interaction it is likely to be the correct one. We also observe that
the recall with respect to interactions is almost constant in the true main effects and increases
as the size of the true interactions increases. It appears that whenever the value of the true
interaction is greater than or equal to 1, it is discovered more than 80 % of the times. Under the
weak hierarchical model, HW, both the mean iFDR and the recall with respect to interactions
is almost constant in the true main effects and increase as the size of the true interactions
increases. It appears that the mean iFDR is over 70 % regardless of the value of the two true
main effects and the true interaction. This suggests that more false interactions are discovered
when the hierarchical restriction is relaxed. The relaxation does, however, not affect the recall
with respect to interactions much. Under the assumption of no hierarchy, HN, the mean iFDR is
greater than 80 % regardless of the value of the two true main effects and the true interaction.
However, the number of true discoveries is one whenever the true size of the interaction is
greater than 0.2 or the values of the two true main effects is greater than 0.4, and we conclude
that, when disregarding the hierarchical structure, the one true interaction is likely to be among
the many false discoveries. The values of the mean iFDR are very close when the size of the
true interaction is greater than 0.2. Therefore, only the solid line representing the mean iFDR
for Θ12 = 2.2 is visible. The values of the recall with respect to interactions are very close
when the size of the true interaction is greater than 0.2. Therefore, only the orange dotted line
representing the recall with respect to interactions for Θ12 = 2.2 is visible.
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Figure 1: The data generating process honours strong hierarchy. Mean iFDR (solid lines)
as a function of β1 = β2 when the model is constrained by strong, weak, or no hierarchy,
corresponding to the three plots respectively. Lines are coloured according to the true value,
Θ12, of the interaction. The lines should be close to zero.
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Figure 2: The data generating process honours strong hierarchy. Recall with respect to inter-
actions (dotted lines) as a function of β1 = β2 when the model is constrained by strong, weak,
or no hierarchy, corresponding to the three plots respectively. Lines are coloured according to
the true value, Θ12, of the interaction. The lines should to be close to one.

3.2.2 Weak Hierarchy

In this section we present the result of applying the two-step procedure under different hi-
erarchical assumptions when the data generating process honours weak hierarchy. Thus, we
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consider simulations for different effects of the feature x1 and the interaction between the x1
and x2, that is for different given non-zero values of β1 and Θ12. We compare the results to
results obtained by assuming no hierarchy.

In Figure 3 we show the mean iFDR (solid lines) with corresponding point-wise approximate
confidence intervals as a function of β1 when the model is constrained by strong, weak, or no
hierarchy, corresponding to the three plots respectively. The lines are coloured according to the
true value of Θ12. In Figure 4 we show the recall with respect to interactions (dotted lines) as a
function of β1 when the model is constrained by strong, weak, or no hierarchy, corresponding
to the three plots respectively. Again, the lines are coloured according to the true value of Θ12.

We observe that the results are very similar to those obtained when the data generating process
honours strong hierarchy: under HS the mean iFDR is approximately zero for all values of
the two true main effects and all values of the true interaction and whenever the value of the
true interaction is greater than 1, it is discovered more than 75 % of the times. More false
interactions are discovered when the hierarchical restriction is relaxed and HW is assumed, and
the recall with respect to interactions is decreased a bit in the value of the true interaction.
Under HN the results are almost identical to those obtained when the data generating process
honours strong hierarchy.

We see that whether the data generating process honours strong or weak hierarchy with one
interaction, the procedure performs very similarly under HS and HW. Essentially, the only
difference is, that under HS the process is likely to discover one more false interaction when
the data generating process honours weak hierarchy instead of strong hierarchy.

3.2.3 Other hierarchical restrictions

In Appendix A we discuss the result of applying the two-step procedure under different hierar-
chical assumptions when the data generating process honours the pure interaction set-up. We
refrain from the pure main effect set-up as it results in a constant iFDR equal to one and zero
discoveries of true interactions.

3.2.4 Comparison of methods

In this section we compare the performance – in terms of computing time, discoveries, and
prediction error – of the two-step procedure and the hierNet package. Due to the long
computation time of hierNet we cannot do as thorough an investigation of the technique
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Figure 3: The data generating process honours weak hierarchy. Mean iFDR (solid lines)
as a function of β1 = β2 when the model is constrained by strong, weak, or no hierarchy,
corresponding to the three plots respectively. Lines are coloured according to the true value,
Θ12, of the interaction. The lines should be close to zero.

as we did of the two-step procedure in the previous sections. For example, fitting one sparse
interaction model subject to the strong hierarchy restriction using cross-validation to estimate
the regularisation parameter to a data set with N = 200 observations and p = 600 continuous
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Figure 4: The data generating process honours weak hierarchy. Recall with respect to inter-
actions (dotted lines) as a function of β1 = β2 when the model is constrained by strong, weak,
or no hierarchy, corresponding to the three plots respectively. Lines are coloured according to
the true value, Θ12, of the interaction. Dotted lines should to be close to one.

features takes more than nine hours on an Intel Core i5-5200U processor.

Thus, we simulate two data sets, as described in Section 3.1, honouring strong and weak
hierarchy respectively, only each sample is generated with N = 100 observations and p = 200
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categorical features, and we consider only the case of β1 = 1, β2 = 1 (strong hierarchy), and
Θ12 = 1. For each data set we run strong and weak hierarchical lasso using the hierNet.
path() and hierNet.cv() functions. We also run the two-step procedure using the cv.
glmnet() function.

The resulting discoveries of interactions are summarised in Table 2. We observe that regardless
of the true underlying hierarchy and the assumed hierarchy both techniques discover the true
interaction. Furthermore, we observe that hierNet always discovers substantially more false
interactions than the two-step procedure.

Strong Weak
hierNet 2-step hierNet 2-step

Tr
ut

h Strong 1/11 1/1 1/17 1/11
Weak 1/11 1/1 1/17 1/11
Anti 1/20 0/0 1/39 1/22

Table 2: Number of true/total discoveries of interactions for the hierNet technique and two-
step procedure using the cv.glmnet() function when the data generating process honours
strong, weak, or anti-hierarchy (rows) and the model assumes strong or weak hierarchy
(columns).

The resulting computation times in seconds are summarised in Table 3. We observe that the
two-step procedure appears to be approximately 400 times faster than hierNet, regardless
of the true underlying hierarchy and the assumed hierarchy. Even for fairly large data, the
computation time is very satisfactory for the two-step procedure: for a data set honouring
strong hierarchy with N = 200 observations and p = 1000 features, that is, approximately
500 thousand pairwise interactions, the computation time of the two-step procedure assuming
strong hierarchy is 1.7 seconds when using the cv.glmnet() function. In comparison, for a
data set with no more than N = 50 observations and p = 100 features, that is, approximately
5000 pairwise interactions, the computation time of the hierNet technique is 1.8 minutes.

Strong Weak
hierNet 2-step hierNet 2-step

Tr
ut

h Strong 2971.86 0.93 382.60 0.94
Weak 2817.00 0.91 299.66 0.88
Anti 2898.10 0.88 319.64 1.22

Table 3: Computing time (in seconds) for the hierNet technique and two-step procedure
using the cv.glmnet() function when the data generating process honours strong, weak,
or anti-hierarchy (rows) and the model assumes strong or weak hierarchy (columns).

As suggested by Kyung et al. (2010), there is no consensus on a statistically valid method
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of calculating standard errors for lasso predictions. With this in mind as well as the added
variance of cross-validation for both methods, we present comparisons of predictions errors of
the two methods in the following. Thus, we simulate two data sets, as described in Section 3.1,
honouring strong and weak hierarchy respectively, but to compute the MSPE over out-of-
sample data, we need to run the procedures several times, and this is very time consuming with
the hierNet package. Therefore, each sample is generated with N = 1000 observations
(divided into ten folds) and only p = 30 categorical features. Again, we consider only the
case of β1 = 1, β2 = 1 (strong hierarchy), and Θ12 = 1. Box plots of the MSPEs are
shown in Figure 5. Blue and orange colours indicate strong and weak hierarchical assumption,
respectively; solid and striped indicate hierNet and the two-step procedure, respectively. We
observe that whether the truth is strong (left panel) or weak (right panel) hierarchy, the results
are very similar.
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Figure 5: Boxplots of prediction error when the data generating process honours strong (left
panel) or weak (right panel) hierarchy. Blue and orange colours indicate strong and weak
hierarchical assumption, respectively; solid and striped indicate hierNet and the two-step
procedure, respectively.

3.3 Real data

We apply our method to the heterogeneous stock of mice data set available from the Wellcome
Trust Centre for Human Genetics (Valdar et al., 2006).

The heterogeneous stock of mice consists of 1,904 individuals from 85 families, all descended
from eight inbred progenitor strains, see Valdar et al. (2006). Please note that the aim of the
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example is to demonstrate proof of concept; the proposed method is used as a screening tool for
identifying potential interactions. This way we can subsequently investigate the associations
using more complicated nested models taking into account the the biological relationships of
related subjects. The data contains 129 quantitative traits which are classified into six broad
categories including behaviour, diabetes, asthma, immunology, haematology, and biochem-
istry.

A total of 12,226 autosomal SNPs were available for all mice. We omit individuals with
missing phenotype, and, as Crawford et al. (2018), for “individuals with missing genotypes,
we imputed missing values by the mean genotype of that SNP in their family. All polymorphic
SNPs with minor allele frequency above 1% in the training data were used for prediction”.
Furthermore, the SNPs are dichotomised, with ‘0’ indicating the more common allele and ‘1’
indicating the less common alleles.

For each quantitative trait we are interested in detecting gene-gene interactions (G×G), that
is, when the effect of one gene is dependent on another gene. The two-step procedure is
applied on each outcome separately with 10 repetitions of 10-fold cross validation in both
steps under the model assumption of strong hierarchy, HS. We have chosen strong hierarchy,
since, for a substantial number of the traits, the number of main effects, selected in the first
step, results in more interactions than computationally feasible. For example, for the third
trait (AdrenalMeanWeight), 59 main effects are selected in the first step. This causes
R to crash, since, under the assumption of weak hierarchy, the number of interactions to be
included in the second step is approximately 900 millions, whereas, under the assumption of
strong hierarchy, the number of interactions to be included is approximately 18 millions which
is doable in R on our computer.

For the biochemistry outcome Glucose with N = 1499 non-missing observations, p =
10996 SNPs have non-zero variation and are tried in the model. |Mλ1

HS | = 27 SNPs are
selected as main effects in the first step and |Mλ2

HS | = 41 main effects and |Iλ2
HS | = 1 in-

teraction are selected in the second step. The interacting SNPs are CEL-5_3149134 and
rs3657663. For the diabetes outcome Insulin_75 with N = 1553 non-missing obser-
vations, p = 10984 SNPs have non-zero variation and are tried in the model. |Mλ1

HS | = 108
SNPs are selected as main effects in the first step and |Mλ2

HS | = 108 main effects and |Iλ2
HS | = 1

interaction are selected in the second step. The interacting SNPs are CEL-3_74975193 and
rs4172689. For the asthma outcome EnhancedPause with N = 1499 non-missing ob-
servations, p = 10996 SNPs have non-zero variation and are tried in the model. |Mλ1

HS | = 54
SNPs are selected as main effects in the first step and |Mλ2

HS | = 67 main effects and |Iλ2
HS | = 2

interaction are selected in the second step. SNP rs3708061 interacts with both rs4164782
and rs4164966. The computation time is approximately 10–15 minutes for each step on a
standard computer.

In Table B1 we provide a summary table which lists all significant SNPs detected by the
two-step procedure for the three traits Glucose, Insulin_75, and EnhancedPause.
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Columns list the three traits, and, for each trait, SNPs which are included in the sets M(λ1)
HS ,

M(λ2)
HS , I(λ2)

HS , defined in Section 2.4, are indicated by bullets. Rows listed in bold indicate the
SNPs between which an interaction is found.

In Figure 6 we show Manhattan plots of genome-wide association studies for Glucose,
Insulin_75, and EnhancedPause. The figure shows that no SNP is significant with
the commonly used genome-wide significance p-value threshold of 5 × 10−8 (dashed line) nor
with the Bonferroni correction testing each individual hypothesis at α = 0.05/p (solid line).
The main effects corresponding to the interactions identified by the two-step procedure are
highlighted in the figure. We observe that for Glucose SNPs on chromosome number 5 and
15 are interacting, for Insulin_75 SNPs on chromosome number 3 and 16 are interacting,
and for EnhancedPause two SNPs on chromosome 16 are interacting on of which is also
interacting with a SNP on chromosome 4.
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Figure 6: (Continued on the next page.)
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Figure 6: (Continued on the next page.)
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Figure 6: Manhattan plots of genome-wide association studies for Glucose (a),
Insulin_75 (b), and EnhancedPause (c). Cumulated genomic positions are displayed
along the first axis, with the negative logarithm (to base 10) of the association p-value for
each SNP displayed on the second axis. Thus, each dot on the Manhattan plots represents a
SNP. Chromosomes on which interacting SNPs are identified are highlighted. We observe that
no SNP is significant with the commonly used genome-wide significance p-value threshold of
5 × 10−8 (dashed line) nor with the Bonferroni correction testing each individual hypothesis
at α = 0.05/p (solid line). Nevertheless, significantly associated interactions are identified
by the two-step procedure; the corresponding main effects are highlighted by different symbols
in the figure. Please note that for EnhancedPause (bottom) the two selected interactions
share a main effect, thus, only three SNP are highlighted.
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4 Discussion
In this paper, we have proposed a two-step procedure, which uses lasso and adaptive lasso
for screening for interactions and fitting pairwise interaction models. A key advantage of our
framework is that the two-step procedure discovers substantially fewer false interactions than
the hierNet. Furthermore, the hierarchical restrictions are no cause for additional computing
time compared to both the strong and weak hierarchical lasso as well as the usual lasso for
the pairwise interaction model under the assumption of no hierarchy. On the contrary, the
computing time is considerably reduced and is highly satisfactory even for fairly large data.

To understand the consequence of a wrong hierarchical assumption we simulated in Section 3.1
data sets with different (non-)hierarchical structures and applied the two-step procedure under
different hierarchical assumptions. From the figures 1–4 we observed that both in terms of
false discovery rate and recall with respect to interactions the two-step procedure works very
well under the assumption of strong hierarchy whether the truth is strong or weak hierarchy.
Under the assumption of weak or no hierarchy the recall with respect to interactions is good,
however, the false discovery rate is high.

To understand the consequence of not requiring hierarchy we compared our method to the
usual lasso for the pairwise interaction model under the assumption of no hierarchy and found
that, regardless of the true hierarchical structure, the usual lasso tends to discover the true
interaction but also many false interactions.

We conclude that, whatever the true data-generating hierarchy, the strong hierarchical assump-
tion helps lowering the fals discovery rate while retaining a high recall with respect to interac-
tions compared to the assumption of weak or no hierarchy.

The specification of a penalised regression procedure which produces sparse interaction models
that honour hierarchical restrictions enables a data assisted choice of hierarchy, as comparing
the results and regularisation paths of different model assumptions may help in shedding light
on the underlying hierarchical structure of data. The short computing time of the two-step
procedure is very advantageous in this regard.

If the underlying hierarchical structure of data is completely unknown we recommend a pur-
pose driven choice of hierarchy as follows: If controlling the expected proportion of interaction
discoveries which are false is the main concern, assuming strong hierarchy is recommended.
If discovering the true interaction is prioritised but the iFDR is still a concern, assuming weak
hierarchy is recommended. If discovering the true interaction is prioritised and neither the
iFDR nor the computing time is any concern, assuming no hierarchy is recommended.

Finally, computational limits may restrict the choice of hierarchy. For example, the assump-
tion of strong hierarchy can be computationally feasible in situations where weak hierarchy is

27



not, since the number of interactions to be included in the model is usually smaller under the
assumption of strong hierarchy than under the assumption of weak hierarchy.

In this paper, we see the choosing of the regularisation parameter primarily as a means to an
end. Choosing the right penalty parameter is, however, difficult and, as is seen in Section 3, the
cross-validated choices often include too many features. Meinshausen and Bühlmann (2010)
show that choosing the right amount of regularisation is much less critical for the stability path
used for stability selection than for the regularisation path used for cross-validation and that
there is a better chance of selecting truly relevant variables with stability selection. Thus, it
would be interesting to apply stability selection for choosing the right penalty parameters in
the two-step procedure.

Our work has potential applications to cross-omics studies and genome-wide studies of G×G,
that is, epistatic pairs where the effect of one gene (locus) is dependent on the presence of a
modifier gene. It is possible to extend our framework to the case of multi-way interactions and,
thereby, to the application to studies of, e.g., higher-order epistatic interactions. Increasing the
order of interactions does, however, pose quite the challenge: given p features, the number
of terms in a linear model which includes every features and every possible interaction is∑p

j=1
(

n
j

)
= 2p. Thus, even the case where only pairwise and three-way interactions are

allowed is computationally demanding. Furthermore, the presence of potential higher-order
interactions has serious implications for the interpretation of the model and dramatically in-
creases the chance of finding false-positive discoveries.

As a special case, our work has potential applications to studies of genotype by environment
interactions (G×E), that is, when two different genotypes respond to environmental variation
in different ways. In studies such as genetic epidemiology, presumably, a small-scale number
of environmental factors and a large-scale number of genes will be available. In this case,
penalisation of the environmental factors may be undesirable, and, with a slight modification,
the two-step procedure is capable of taking this into account. For example, in order to select
G×E when the model is subject to the restriction of weak hierarchy, HW, one could skip step
one of the two-step procedure, define MHW by the set of environmental factors, and define IHW

as the set of pairwise interactions between genes and environmental factors. In order to select
G×E when the model is subject to the restriction of strong hierarchy, HS, one could include
genes in step one of the two step procedure, estimate M(λ1)

HS by the union of genetic effects
selected in step one and the environmental factors, and estimate IHS by the set of pairwise
interactions between genetic effects selected in step one and the environmental factors.

Lasso is a very useful technique for simultaneous estimation and variable selection. However,
it has two major drawbacks. First, it does not possess the oracle property; that is, it does
not perform as well as if the true underlying model was given in advance. Secondly, it is
somewhat indifferent to grouping effects, that is, the selection among a set of strong but cor-
related features. Even though the adaptive lasso yields consistent estimates of the parameters
while retaining the attractive convexity property of the lasso, see Zou (2006), these optimality
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properties are likely no longer true, when using cross-validation on the same data twice. As
previously mentioned, we suspect that this reuse may be necessary in many practical cases due
to lack of power. However, our method is ad hoc in nature, and our focus is on interpretability
and scalability rather than unbiased and oracle properties of the estimators. As the lasso, the
adaptive lasso does not capture any grouping effect. The doubly regularised technique elastic
net proposed by Zou and Hastie (2005) encourages grouping effect, but it does not necessarily
possess the oracle property. However, the adaptive elastic net proposed by Zou and Zhang
(2009) inherits some of the desirable properties of the adaptive lasso and elastic net, and, in
particular, it has the oracle property under certain regularity conditions. Hence, we intend
to pursue the application of the two-step procedure with the adaptive elastic net in the case
of correlated features. In the case of dependant features we should, however, beware that an
observed interaction may be spurious; that is, an interaction between two features, X1 and X2,
say, may be detected in the sample even when there is no true interaction in the population.
The reason is that when the correlation between X1 and X2 increases so does the correlation
between X1X2 and X1, which results in an overlap between the variance explained by X1X2
and the variance explained by X1. Dependence between gene and environment, for example,
can arise in several ways including mediation, pleiotropy, and confounding, and several ex-
amples of gene-environment interaction under gene-environment dependence have recently
been published, see, e.g., Johnson et al. (2014) and Nickels et al. (2013). Caution in reporting
interactions for genetic markers is, however, urged by Dudbridge and Fletcher (2014) who
show that under gene-environment dependence, a statistical interaction can be present between
a marker and environment even if there is no interaction between the causal variant and the
environment.

Several two-stage multiple testing procedures have been proposed to detect gene-environment
interactions in GWASs, and in Dai et al. (2012) they discuss general properties of some of these
procedures and prove the asymptotic independence of various filtering and testing statistics.
While these methods use marginal association as a filter for interaction our method includes all
features simultaneously via lasso, such that each coefficient represents the additional effect of
adding the corresponding variable to the model, conditional on the effects of all other variables
in the model. This way, selection (or not) of a feature in the first step is based on information
from all other features when using our two-step procedure.
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Appendices

A Other hierarchical restrictions

A.1 Pure Interaction

In this section we present the result of applying the two-step procedure under different hierar-
chical and anti-hierarchical assumptions when the data generating process honours the pure in-
teraction set-up. Thus, we consider simulations for different effects of the interaction between
the x1 and x2, that is for different given non-zero values of Θ12. We compare the results to
results obtained by applying the usual lasso on the joint set of main effects and interactions.

In Figure A1 we show the mean iFDR (solid line) with corresponding point-wise approximate
confidence intervals as a function of Θ12 when the model is constrained by strong, weak, or no
hierarchy, corresponding to the three plots respectively. In Figure A2 we show the sensitivity
with respect to interactions (dotted line) as a function of Θ12 when the model is constrained
by strong, weak, or no hierarchy, corresponding to the three plots respectively.

We observe that under HS the mean iFDR is 0 when the value of the true interaction is greater
than 0.6. When the value of the true interaction is less than 0.6 the average number of true as
well as false interaction discoveries is zero resulting in the mean iFDR being undefined. The
average number of true interaction discoveries is increasing in the size of the true interaction,
and for values greater than 1, the true interaction is discovered more than 80 % of the times.
Under HW the mean iFDR is, in general, greater than 80 % and the average number of true
interaction discoveries is increasing in the size of the true interaction, and for values greater
than 1.2, the true interaction is discovered more than 80 % of the times Under HN the mean
iFDR is greater than 80 % and the average number of true interaction discoveries is 100 %
whenever the size of the true interaction is greater than 0.6.

30



iF
D

R

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Strong hierarchy

0.5 1.0 1.5 2.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Weak hierarchy

iF
D

R

Θ12

0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

No hierarchy

Figure A1: The data generating process honours the pure interaction set-up. Mean iFDR (solid
lines) as a function of Θ12 when the model is constrained by strong, weak, or no hierarchy,
corresponding to the three plots respectively.
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Figure A2: The data generating process honours the pure interaction set-up. Sensitivity with
respect to interactions (dotted lines) as a function of Θ12 when the model is constrained by
strong, weak, or no hierarchy, corresponding to the three plots respectively.
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B Tables

Glucose Insulin_75 EnhancedPause

SNP Chr M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

rs3697012 1 •
rs3687812 1 •
rs6253968 1 • •
rs3655881 1 • •
rs6282096 1 • •
rs13475806 1 • •
rs3685569 1 • •
rs3677272 1 • •
mCV23641317 1 • •
rs3675140 1 • •
rs13475988 1 • •
rs3696200 1 • •
rs13476107 1 • •
rs3718090 1 • •
rs13476125 1 • •
rs13476152 1 • •
rs13476237 1 • •
UT_1_176.817447 1 • •
rs8242509 1 • •
rs3680295 1 •
mCV24786469 1 • •
rs3715385 2 • •
rs6305730 2 • •
rs13476557 2 • •
rs13476570 2 • •
rs13476681 2 • •
rs13476682 2 • •
rs6323360 2 • •
rs13476687 2 • •
rs3697020 2 • •
gnf02.126.027 2 • •
rs3696248 2 • •
rs13476895 2 • •
rs13476925 2 • •
rs3022956 3 •
rs3672601 3 • •
rs3700657 3 • •
rs13477175 3 • •
rs3699288 3 • •
rs3693395 3 • •
CEL-3_74975193 3 • • •
UT_3_93.299511 3 • •
rs6224522 3 • •
rs3720007 3 • •
rs13477276 3 • •
rs13477280 3 • •
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Glucose Insulin_75 EnhancedPause

SNP Chr M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

rs3675845 3 • • • •
rs3726226 3 • •
rs13477334 3 • •
mCV23446189 3 • •
rs13477469 3 • •
rs13477532 4 • •
rs13477543 4 • •
rs13477643 4 • •
rs3699688 4 • •
rs3022985 4 • •
rs3708061 4 • • •
rs3686220 4 • •
rs3659791 4 • •
rs13477861 4 • •
rs13477862 4 • •
rs13477863 4 • •
rs6399039 4 • •
rs13478014 4 • •
rs13478069 4 • •
CEL-5_3149134 5 • • •
rs3666313 5 • •
rs6234642 5 • • •
rs3724053 5 • •
rs13478143 5 • •
rs4225096 5 • •
CEL-5_24211033 5 •
rs13478157 5 • •
rs3700261 5 • •
rs3680434 5 • •
rs3723011 5 • •
rs3680521 5 • •
UT_5_94.545323 5 • •
CEL-5_93652588 5 • •
rs13478430 5 • •
rs3710018 5 • •
rs8265855 5 • •
rs3700374 5 • •
rs13478567 5 • •
rs3659848 5 • •
mCV25009162 5 • •
CEL-6_56528034 6 • •
rs6299256 6 • •
rs6334723 6 • •
rs13479058 6 • •
gnf06.139.257 6 • •
rs3694031 7 • •
rs6226457 7 • •
rs6252200 7 •
rs6295036 7 • •
rs13479253 7 •
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Glucose Insulin_75 EnhancedPause

SNP Chr M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

rs3719301 7 • •
rs6405142 7 • •
rs3676254 7 • •
mCV25303361 7 • •
rs13479411 7 • •
rs6224196 7 • •
rs13479450 7 •
rs3673653 7 •
rs3711721 7 •
mCV23009137 7 • •
rs3719258 7 • •
rs3686436 7 • •
rs3723092 8 • •
rs6360601 8 • •
rs13479622 8 • •
gnf08.031.589 8 • •
rs13479690 8 • •
CEL-8_45424252 8 • •
rs3667475 8 •
rs3691327 8 • •
rs13480026 8 • •
UT_9_35.918713 9 • •
rs6289553 9 • •
rs3723670 9 • •
rs3699230 9 • •
rs3673457 9 •
rs13480385 9 • •
rs13480387 9 •
rs3665498 9 • •
rs3720706 9 • •
rs3658244 9 • •
rs13480467 10 • •
rs3659676 10 • •
rs3706825 10 • •
rs3672342 10 • •
rs13480797 10 • •
rs3676616 10 •
rs3724116 11 • •
rs3703198 11 • •
rs3715495 11 • •
rs6379880 11 • •
gnf11.117.476 11 • •
rs6354903 11 • •
rs6349487 11 • •
rs3661724 11 • •
rs3678982 11 • •
CEL-11_121219118 11 • •
rs3693796 11 • •
rs3709002 12 • •
rs6209157 12 • •
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Glucose Insulin_75 EnhancedPause

SNP Chr M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

rs13481358 12 • •
rs13481455 12 • •
rs13481522 12 •
rs13481525 12 • •
rs13481527 12 • •
rs3687032 12 • •
rs13481537 12 •
rs3662628 12 • •
gnf12.084.566 12 • •
rs3719282 12 • •
rs3716095 12 • •
rs13481574 12 • •
rs3670410 12 • •
rs6176416 12 • •
rs13481656 12 • •
rs4229602 12 • •
rs13481895 13 • •
rs6212230 13 • •
rs3688040 13 • •
rs13481902 13 • •
gnf13.082.462 13 • •
rs6175633 14 • •
rs3683585 14 • •
rs13482239 14 • •
UT_14_62.125092 14 •
rs4230463 14 •
rs3697682 14 •
rs6351929 14 • •
rs3718611 14 • •
rs13482396 14 • •
rs13459176 15 •
rs13459177 15 •
CEL-15_9687257 15 •
rs13482427 15 •
rs13482498 15 • •
CEL-15_28692470 15 • •
CEL-15_28995144 15 • •
rs3702361 15 • •
gnf15.062.808 15 • •
mCV22701834 15 • •
rs13482712 15 • •
rs3657663 15 • • •
rs13482752 15 • •
rs4164782 16 • • •
rs4164966 16 • • •
rs4165029 16 • •
rs4172689 16 • • •
rs4177963 16 • •
rs4187596 16 • •
rs4199362 16 • •
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Glucose Insulin_75 EnhancedPause

SNP Chr M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

M(λ1)
HS

M(λ2)
HS

I(λ2)
HS

rs4204016 16 • •
rs3680665 16 • •
rs6409750 17 •
rs6314185 17 • •
rs13483026 17 • •
UT_17_64.236785 17 • •
rs3664306 17 •
rs3717212 17 • •
CEL-17_92336158 17 • •
CEL-18_5565618 18 •
rs13483200 18 • •
rs13483236 18 • •
mCV22331476 18 • •
rs3677707 18 • •
rs13483394 18 • •
rs3704084 18 • •
rs13483605 19 • •
rs3676974 19 • •

Table B1: Summary table listing all significant SNPs detected by the two-step procedure for the
three traits Glucose, Insulin_75, and EnhancedPause. Columns list the three traits,
and, for each trait, SNPs which are included in the sets M(λ1)

HS , M(λ2)
HS , I(λ2)

HS are indicated by
bullets. Rows listed in bold indicate the SNPs between which an interaction is found.
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Abstract

Polygenic scores (PGSs) are widely available and employed in genomic data analyses
for predicting and understanding genetic architectures. We propose a novel clustering
and estimation method using PGSs for inferring a genetic relationship among multiple,
simultaneously measured and potentially correlated traits in a multivariate GWAS.

Using graphical lasso, we estimate a sparse covariance matrix of the PGSs and obtain
clusters of traits sharing genetic characteristics. We use the clusters to specify the structure
of the error covariance matrix of a generalised least squares (GLS) model and use the
feasible GLS estimator for estimating a linear regression model with a certain unknown
degree of correlation between the residuals.

The method suits many biology studies well with traits embedded in some genetic func-
tioning groups and facilitates developement of the PGS research. We compare the method
with fully parametric techniques on simulated data and illustrate the utility of the methods
by examining a heterogeneous stock mouse data set from the Wellcome Trust Centre for
Human Genetics. We demonstrate that the method successfully identifies clusters of traits
and increases precision, power and computational efficiency.

Keywords: correlated traits, joint analysis; multiple traits; multivariate GWAS; polygenic
scores
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1 Introduction
The motivation for this paper is the problem of jointly analysing multiple, simultaneously
measured quantitative traits in a genome-wide association study (GWAS), i.e., a multivari-
ate GWAS. Multivariate GWASs have gained attention in genetic studies as it offers several
advantages over analysing each trait in a separate GWAS (Galesloot et al., 2014). While
single-trait GWASs have found numerous genetic variants associated with complex diseases
(MacArthur et al., 2016), traits are often correlated, for example due to pleiotropic genes and,
therefore, a joint modelling approach can be used to increase precision and power (Schmitz
et al., 1998). Furthermore, these variants typically have a small effect and correspond to a
small fraction of truly associated variants, therefore they have limited predictive power (Yang
et al., 2010; Dudbridge, 2013).

While a univariate GWAS cannot exploit potential correlation between traits, carrying out a
multivariate genome-wide association (GWA) analysis may vastly increase the statistical and
computational complexity of the analyses. For example, an unconstrained correlation matrix
for q traits requires q(q − 1)/2 correlation parameters. Such large numbers of parameters
require very large data sets and present considerable computational challenges.

Different multivariate GWA methods have been formulated for simultaneously testing marker
associations with multiple traits influenced by pleiotropic genes (Zhou and Stephens, 2012),
(Kang et al., 2008), and (Zhou and Stephens, 2014). In the case of correlated traits, the OLS
estimator is unbiased, but inefficient. Instead we may use the feasible generalised least squares
(FGLS) estimator. The feasible estimator is, provided the covariance matrix is consistently
estimated, asymptotically more efficient for large samples under heteroskedasticity. A further
challenge is that the total number p of features (e.g., SNPs) is usually larger than the sample
size N when working with genomic data. In this case, the design matrix does not have full rank
and the OLS estimator cannot be computed. Various methodologies deal with this problem as
well as how to generate the weights of the SNPs and how to determine which s ≤ p features
should be included (e.g., Euesden et al. (2014); Wray et al. (2014)). To meet these challenges
we introduce polygenic scores (PGSs). Our goal is to use PGSs to both perform dimensionality
reduction and identify clusters of traits to approximate the structure of the error covariance
matrix of a linear regression model. We can then use the FGLS estimator for estimating the
unknown parameters.

PGSs are linear transformations of multiple genetic variants to scores that summarise the
estimated effect of, e.g., SNPs. Often they are calculated as a weighted sum of SNPs, that
is, they are constructed from the “weights” derived from a GWAS, or from some form of
machine learning algorithm. This way, a PGS reflects an estimated genetic predisposition for
a given trait without taking environmental factors into account and can be used as a numeric
predictor for that trait.
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The objective of this paper is to propose a computationally efficient method for inferring a
genetic relationship among a large number of simultaneously measured and potentially corre-
lated traits in a multivariate GWAS. The method simultaneously analyses multiple correlated
quantitative traits in clusters that share some genetic component under the assumption that the
trait values in a cluster follow a multivariate normal distribution.

We propose a versatile tool called a joint analysis of multiple traits based on genetic rela-
tionships (geneJAM), which implements the method of finding clusters of correlated outcome
components (traits) that share some genetic component by means of PGSs. The PGS method
(Dudbridge, 2013) aggregates the effects of variants across the genome to estimate heritability,
infer genetic overlap between traits, and predict phenotypes based on the genetic profile. The
approach is motivated by utilising the widely available PGSs as numeric predictors to identify
conditional independences of traits giving rise to clusters of traits, and, thereby, being able to
analyse the data combined in clusters and increase precision and power and gain computational
advantages. By estimating a sparse version of the precision matrix of the PGSs, approximate
zeroes induce conditional independence which enables us to infer clusters of traits sharing
genetic characteristics. Having identified the clusters, we are able to jointly analyse the traits,
thereby increasing precision and power. We propose a simple approach: having estimated the
precision matrix of the PGSs, we are able to approximate clusters of traits that share some
genetic component. Thus, we are able to specify the structure of the error covariance matrix
of a linear regression model when there is a certain unknown degree of correlation between
the residuals and use the feasible generalised least squares (FGLS) estimator for estimating the
unknown parameters.

In Section 2 we introduce the conceptual framework of the geneJAM method and the theoretical
foundation including linear regression models, the concept of PGSs, conditional independence,
FGLS, and sparsity of correlation matrices.

We study our method and other techniques on real data, as well as simulated data, in Section 3.
Specifically, we analyse a heterogeneous stock mouse data set (Valdar et al., 2006), from
the Wellcome Trust Centre for Human Genetics. The methods are implemented using the
R packages MESS by Ekstrøm (2019) and glasso by Friedman et al. (2018); the R code is
part of our package geneJAM which is available online, see (Buchardt, 2022). We conclude
with a discussion and recommendations in Section 4.

2 Method
We focus on linear regression models, which are suitable when the outcome is quantitative,
and ideally when the error distribution is Gaussian. We consider N independent samples,
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y1, . . . , yN ∈ Rq , of a q-dimensional random variable distributed according to a multivariate
normal distribution. We define a matrix, Y, from the N observations of the q outcome com-
ponents, Y = (y1, . . . , yN )⊤ ∈ RN×q . We assume that the data generating process can be
described by a linear regression model of the form

Y = M + XC + E, (1)

where X = (x1, . . . , xN )⊤ ∈ RN×q is a matrix of N samples of p features, M = 1N µ⊤ ∈
RN×q is a matrix of intercepts with µ = (µ1, . . . , µq)⊤, C ∈ Rp×q is a matrix of regression
coefficients, and E ∈ RN×q are independent Gaussian random errors.

In the following we assume that a set of PGSs has been provided – one for each outcome – and
we use this set of estimated PGSs as numeric predictors (features). That is, we assume that we
have access to N samples of exactly one feature per trait, z1, . . . , zN ∈ Rq .

We let Y⃗ = vec(Y⊤) ∈ RNq denote the row-wise vectorisation of Y obtained by stacking the
columns of the matrix Y⊤, that is,

Y⃗ = (y11, y12, . . . , y1q, y21, y22, . . . , y2q, . . . , yN1, yN2, . . . , yNq)⊤
.

Now, we consider a linear regression model on the form

Y⃗ = Z⃗B⃗ + E⃗, (2)

where B⃗ ∈ R2q denotes the row-wise vectorisation of a matrix B ∈ R2×q of unknown
intercepts and regression coefficients such that B⃗ = (ξ1, β1, ξ2, β2, . . . , ξq, βq)⊤. Z⃗ ∈ RNq×2q

is a corresponding design matrix of features and E⃗ ∈ RNq is a vector of Gaussian random
errors. To allow for among-trait correlation, we assume that

E⃗ ∼ NNq (0Nq, Ω) ,

where 0Nq ∈ RNq is a vector of zeros and Ω ∈ RNq×Nq is a general covariance matrix.
Possible structures for Ω may be a block diagonal matrix, a diagonal matrix, or, more impor-
tantly, a general positive definite matrix. This flexibility is essential to our method, since the
outcome that our method is targeted towards, is supposed to be both correlated and heterosce-
dastic across outcome components. In particular, we assume that the covariance matrix, Ω, is
a block diagonal matrix on the form

Ω =




R 0 · · · 0
0 R · · · 0
...

...
. . .

...
0 0 · · · R


 , (3)

where R ∈ Rq×q are the residual covariances among traits within each individual i = 1, . . . , N .
If the covariance matrix is known, the generalised least squares (GLS) estimator is the best
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linear unbiased estimator of the unknown parameters B⃗ in a linear regression model when
there is a certain known degree of correlation between the residuals. In these cases, ordinary
least squares (OLS) and weighted least squares (WLS) can be statistically inefficient, or even
give misleading inferences (Baltagi, 2008). In our case, the among-trait and within-individual
correlation, Ω, of the errors is unknown, but we can get a consistent (in terms of structure)
estimate using the feasible generalised least squares (FGLS) estimator. In general terms, the
FGLS procedure consists of two steps: First, a linear regression model is estimated by OLS,
and the residuals are used to build an estimator of the covariance matrix of the errors. Second,
using the estimator of the covariance matrix of the errors, the unknown regression coefficients
are estimated using WLS, which generalises OLS and allows the covariance matrix of the
errors to be different from an identity matrix. If the estimator of the covariance matrix of the
errors is a consistent estimator, like the OLS, then the FGLS estimator of the unknown regres-
sion coefficients is a consistent estimator (Baltagi, 2008). The FGLS estimator is discussed in
more detail in Section 2.1.

Our initial motivation for considering PGSs is the presumption that much of the variability
observed in a trait is attributable to genetic differences. Therefore, the traits may be correlated
via the PGS, and it may be reasonable to assume that the underlying independence relations for
the traits can be approximated by the relations observed in the PGSs. Let us briefly elaborate
on the interplay between the structure of the constants C, which reflect the true population
coefficients, the expected correlation structure of the PGSs, and the expected independence
structure of the among-trait and within-individual correlation. Figure 1 illustrates a few ex-
amples of cross-trait associations where circles represent features (SNPs) and squares represent
outcome (components). If there are no genetic effects on SNP level (a), C is a matrix of zeros.
In this case there is also no effect on PGS level and there is no (genetically determined) among-
trait and within-individual correlation, that is, Ω is a diagonal matrix and we can use the OLS
estimator. If each SNP affects at most one trait (b*), the corresponding PGSs are independent
and, again, there is no (genetically determined) among-trait and within-individual correlation.
If there is a single cross-trait association where one SNP, say, x1, affects multiple traits, say, y1
and y2, C is a matrix of zeros except for the entries c11 and c21. In this case there is an effect
on PGS level. Furthermore, the PGSs z1 and z2 are correlated and there is (genetically deter-
mined) among-trait and within-individual correlation. That is, Ω is a block diagonal matrix
and we cannot use the OLS estimator. This argument can be further extrapolated for the case
of multiple cross-trait associations where multiple SNPs affect multiple traits as exemplified
in (d) and (e). In such cases, more PGSs will be correlated and the among-trait and within-
individual correlation structure will be more complex. That is, Ω will be even "further away"
from the identity matrix, and a joint analysis of the correlated traits will have an even greater
impact in terms of precision and power (Schmitz et al., 1998).
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2.1 The geneJAM method

We provide a method which identifies blocks in the correlation matrix of PGSs via the graphical
lasso with regularisation parameter ρ and models the relationship between traits and associ-
ated PGSs by linear regression. To obtain a better fit, the FGLS estimator is used to provide
a consistent estimate of the covariance, R, of the errors with a block-structure identified at a
given ρ, and, then, weighted least squares (WLS) is used for estimating the unknown para-
meters in a linear regression model. This way, we identify clusters of potentially correlated
outcome components by means of PGSs, under the assumptions that features which are mar-
ginally highly associated with a trait should carry more weight in a joint analysis of traits,
and that much of the variability observed in a trait is attributable to genetic differences, i.e.,
heritability, such that the traits may be correlated via the PGS.

We assume that we have N observations of the multivariate outcome Y ∈ RN×q with as-
sociated PGSs, Z = (z1, . . . , zq) ∈ RN×q , for each trait individually, and that the PGSs are
from the same population as the data at hand but estimated from a different sample. If existing
PGSs for a trait have not been provided, we refer to Section 3.1.1 for a brief introduction to
generating PGSs and to Dudbridge (2013) for a comprehensive survey and a pointer to com-
puting PGSs. We assume that the collection of PGSs can be approximated by a multivariate
Gaussian distribution with mean µ and covariance Σ.

If we represent the system of PGSs as an undirected graph G, where the PGS for a certain
trait is represented by a node, then an edge represents related pairs of traits in terms of PGSs.
Moreover, a connected component of a graph, which is a maximal sub-graph in which there
exists a path between any two nodes, represents a cluster of related traits. In a probabilistic
graphical model, the conditional independence structure is encoded in a graph, since the
presence/absence of edges encode conditional independence relations among associated nodes
(Lauritzen, 1996).

Identifying connected components of the graph G is one of the core functionalities of the
geneJAM method: A useful property of the multivariate Gaussian distribution is that, for a
matrix of random variables following a multivariate Gaussian distribution, the ijth component
of the corresponding precision matrix (the matrix inverse of the covariance matrix) is zero if
and only if the variables i and j are conditionally independent, given the others. This is an
implication of the basic property of the multivariate Gaussian distribution being closed under
conditioning (Lauritzen, 1996). We wish to exploit this property: Under the assumption that
much of the variability observed in a trait is attributable to genetic differences, i.e., heritabil-
ity, the traits may be correlated via the PGSs. That is, by assuming that the PGSs follow a
multivariate Gaussian distribution, approximating the precision matrix, P, of the PGSs and
further sparsity, we are able to identify blocks of zeros in the precision matrix, and, thus,
potential connected components, which correspond to clusters of traits sharing some genetic
characteristics.

6



As a way of estimating a sparse precision matrix, we consider the graphical lasso (Friedman
et al., 2007). The graphical lasso estimates a sparse precision matrix using a lasso penalty, and
the regularisation path is computed at a grid of values for the regularisation parameter ρ. Thus,
from the sparse precision matrix, P̂(ρ), of the PGSs estimated by graphical lasso at a given
value of ρ, we obtain a clustering, that is, a set of C(ρ) connected components. We assume that
the residual covariances among traits within each individual, R, exhibit this clustering as well.

For the first step in the FGLS estimation of R we define sub-vectors bl = (ξl, βl)⊤ ∈ R2,
l = 1, . . . , q, of B⃗ and design matrices Zl ∈ RN×2, where a constant term is included, such
that the first column of Zl is a column of ones allowing estimation of the intercept while the
following column contains the feature (PGS) associated with the corresponding trait value. An
OLS estimator of bl is calculated from a linear regression model for each trait, l = 1, . . . , q,
separately:

yl = Zlbl + el,

where el ∈ RN , l = 1, . . . , q, are independent Gaussian random errors el ∼ NN (0N ,

σ2
l IN×N ), with σ2

l > 0. The OLS estimator of bl, l = 1, . . . , q, is

b̂O
l =

(
Z⊤

l Zl

)−1
Z⊤

l yl.

From these estimates the corresponding estimated residuals,

ûl =
(

Y − ZB̂O
)

l
,

for all l = 1, . . . , q, are obtained. Here, Z ∈ RN×(q+1) is a corresponding design matrix of
features, where a column of ones is included to allow for estimation of the intercept. Now, for
each value of the regularisation parameter ρ, we construct an estimate, R̂O

(ρ), of the covariance
of the errors by computing the covariance of the OLS estimated residuals, Û = (û1, . . . , ûq) ∈
RN×q , in the same connected component. That is,

R̂O
g(ρ) = cov

(
Ûg(ρ)

)
,

where R̂O
g(ρ) and Ûg(ρ) are the sub-matrices and of R̂O

(ρ) and Û, respectively, corresponding to

the connected components g(ρ) = 1, . . . , C(ρ) at a given value of ρ. From R̂O
(ρ) we construct

an estimate, Ω̂O
(ρ), of Ω on the form (3). Step one of the FGLS procedure is then fulfilled.

In the second step in the FGLS estimation, we build the FGLS estimator, ˆ⃗BF
(ρ) ∈ R2q , using

WLS:

ˆ⃗BF
(ρ) =

(
Z⃗⊤
(

Ω̂O
(ρ)

)−1
Z⃗
)−1

Z⃗⊤
(

Ω̂O
(ρ)

)−1
Y⃗.
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The procedure is iterated with the first iteration given by

ÛF(1) =
(

Y − Ŷ(ρ)

)

R̂F(1)
g(ρ) = cov

(
ÛF(1)

g(ρ)

)

Ω̂F(1)
(ρ) = diag

(
R̂F(1)

1 , . . . , R̂F(1)
C(ρ)

)

ˆ⃗BF(2)
(ρ) =

(
Z⃗⊤
(

Ω̂F(1)
(ρ)

)−1
Z⃗
)−1

Z⃗⊤
(

Ω̂F(1)
(ρ)

)−1
Y⃗

where Ŷ(ρ) ∈ RN×q is a by-row matrix transformation of

ˆ⃗Y(ρ) = Z⃗ ˆ⃗BF
(ρ).

This estimation of Ω is iterated to convergence and we obtain estimates Ω̂(ρ) and ˆ⃗B(ρ). The
standard error, SE(ρ), of the estimated coefficients are given by

SE(ρ) =

√√√√diag
((

Z⃗⊤
(

Ω̂(ρ)

)−1
Z⃗
)−1

)
.

As we discuss below, choosing the value of the regularisation parameter ρ is an important
issue in practice as it controls the amount of regularisation of the precision matrix, that is, the
conditional independence structure of the PGSs.

An algorithmic overview of the method is shown in Appendix A of the Supplementary Mate-
rials.

2.2 Tuning

Tuning of the regularisation parameter ρ is crucial since a large value of ρ for the graphical
lasso will make all variables conditionally independent while a small value of ρ will keep most
variables in one cluster. We choose the regularisation parameter for the purposes of increasing
the precision of the estimates, and note that it may be preferable to err on the side of complexity
and choose less sparsity to obtain larger clusters, and thus more complex models, in order to
further increase power and not fail to detect clusters in the data.

Since we aim at optimising the precision, we use the standard error of the estimated coefficients
to tune the geneJAM method. More specifically, for a given value of the regularisation para-
meter, we compute the mean of the standard errors of estimates for traits which have been
clustered. Traits which, at a certain level of regularisation, are left as singletons stay as
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singletons as the regularisation increases, and, since there is no regularisation on singletons,
they are modelled using a simple linear regression estimated by OLS. Hence, traits belonging
to clusters of size one are irrelevant for the tuning. Therefore, for a given value, ρ, of the regu-
larisation parameter, we compute the standard error SE(ρ) ∈ Rq and, for all traits which are in
clusters of size strictly larger than one, we compute the average standard error (SE), that is,

S̄E(ρ) = 1∣∣G(ρ)
∣∣
∑

l∈G(ρ)

SE(ρ)l,

where G(ρ) is the index set of traits in connected components of size strictly larger than one
and

∣∣G(ρ)
∣∣ is the cardinality of G(ρ). We use the smallest value of S̄E(ρ), over all tried values of

ρ, as our selection criterion for the regularisation.

3 Results
We illustrate the utility of the geneJAM method presented in Section 2.1 on both simulated
and real data. The motivation for both sets of examples is to understand the performance of
the method on two important problems in statistical genetics: simultaneously measured traits
and cross-trait associations.

First, we use simulations to assess the ability to cluster traits under different assumptions of
cross-trait association on the data generating process and the method, see Figure 1 for different
scenarios. Most complex traits are highly polygenic; they are influenced by a large number
of genetic variants with moderate effects, rather than a handful of variants with large effects
(Price et al., 2015). However, from the central limit theorem we know that if the PGS is based
on a sum of, say, p independent features, x1, . . . , xp, e.g., SNPs, with identical distributions,
then the PGS of a sample approximates the Gaussian distribution. Thus, instead of simulating a
large number of genetic variants with moderate effects, we simulate a few with a larger effect;
corresponding to an additive aggregation, which preserves information about the mean and
variance and conforms to the Gaussian distribution. The effect sizes and error distribution are
chosen in each case such that the heritability, for l = 1, . . . , q,

H2
l = V [yl] − V [el]

V [yl]
=

∑p
j=1 V [xj ] c2

jl∑p
j=1 V [xj ] c2

jl + V [el]
,

are tried in the range 0.2–0.6. This corresponds to assuming that the genetic effects explain
20–60% of the total (phenotypic) variance in the outcome, or, equivalently, that the broad-
sense heritability of a trait is known to be 0.2–0.6. In particular, the noise is simulated from the
standard Gaussian distribution, and the SNPs are simulated from the binomial distribution with
the number of trials, n, equal to two, and success probability π. This way, in the simple case of
a single locus with two alleles denoted A and a with frequencies f(A) = π and f(a) = 1 − π,

9



respectively, the expected genotype frequencies under random mating are f(AA) = π2 for the
AA homozygotes, f(aa) = (1 − π)2 for the aa homozygotes, and f(Aa) = 2π(1 − π) for the
heterozygotes. These frequencies define the Hardy-Weinberg equilibrium with a minor allele
frequency drawn from the continuous uniform distribution on the interval [0.1, 0.5].

In order for us to assess the clustering ability of the method we use the Rand index (RI)
(Rand, 1971). The Rand index measures the similarity between two clusterings. The Rand
index represents the frequency of occurrence of agreements over the total pairs of traits, or the
probability that two clusterings to be compared will agree on a randomly chosen pair. We apply
the Rand index to the adjacency matrix A, which is a symmetric square matrix with zeros on
the diagonal representing a finite undirected graph. The elements of the matrix represent pairs
of edges which are adjacent (represented by a ‘1’) or not (represented by a ‘0’) in the graph.
We generate the adjacency matrix from the estimated sparse precision matrix, P̂ij by letting
Aij = 1 if P̂ij > 0, i ̸= j, and zero otherwise.

We also assess the modelling performance of the method in terms of precision and computing
time. Here, the goal is to show that by using the geneJAM to cluster and estimate we improve
the precision of the estimates compared to using simple linear regressions or mixed models,
and, given a clustering of the traits, estimation using FGLS is faster than the mixed model
estimation implemented in R in the lme4 package. Finally, we compute and compare the root
mean squared error (RMSE) as a general purpose error metric for the numerical predictions:

RMSEl =

√√√√ 1
N

N∑

i=1
(yil − ŷil)2

, l = 1, . . . , q.

We assess the clustering and precision of our method in a heterogeneous stock mouse data set
(Valdar et al., 2006), from the WTCCC.

3.1 Simulated data

Since the efficacy of a procedure depends on the true model generating the data we simulate
five different set-ups, see Figure 1, such that different scenarios are tried as the ground truth,
and we apply our method to each scenario separately.

3.1.1 Sampling procedure

The sampling is a two-step procedure which goes as follows: first, we generate a sample with
N = 1000 observations of p = 500 features, X(0) =

(
x(0)

1 , . . . , x(0)
p

)
∈ {0, 1, 2}N×p, in
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Figure 1: Graphical illustration of different cross-trait associations. (a), (b), and (b*) are
extreme cases where there are no genetic effects on SNP level (a), where all SNPs affect all
traits equally (b), and where SNPs at most affects one trait (b*). (c) is a case of single cross-
trait association where one SNP affects multiple traits. (d) is a case of multiple cross-trait
association where multiple SNPs affect distinct clusters of traits. Finally, (e) is a case of
overlapping cross-trait association where multiple SNPs affect the same cluster of traits.

the Hardy–Weinberg equilibrium with a minor allele frequency of 0.3, as described above.
From the features we generate observations, Y (0) =

(
y(0)

1 , . . . , y(0)
q

)
∈ RN×q , by Y (0)

= X(0)C + E(0), where C ∈ Rp×q is a matrix of regression coefficients and E(0) =(
e(0)

1 , . . . , e(0)
q

)
∈ RN×q is a Gaussian noise matrix. We create a heteroscedastic problem

by allowing different variances for the noise across the traits. We create a sparse problem by
letting cjl = 0 for all j = 1, . . . , p and l = 1, . . . , q, except for a few entries, corresponding
to different cross-trait association scenarios, for which different values are tried; more details
are given in the subsequent sections. This way, the method is examined at different levels of
broad-sense heritability. From this initial sample,

(
Y(0), X(0)), PGSs, Z, are generated as

follows: we estimate a univariate simple linear regression model of the form

y(0)
l = x(0)

j wjl + e(0)
l ,

where the scalars wjl ∈ R, j = 1, . . . , p, l = 1, . . . , q, are regression coefficients and e(0)
l ∈

RN , l = 1, . . . , q are vectors of independent Gaussian random errors. For ease of notation
and implementation, the estimated regression coefficients, ŵjl, j = 1, . . . , p, l = 1, . . . , q,
are stored in a p × q matrix Ŵ, which is not to be mistaken for a matrix of coefficients
from a multivariate multiple linear regression. Next, we simulate a new sample of features,
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X ∈ {0, 1, 2}N×p, in the Hardy–Weinberg equilibrium with a minor allele frequency of 0.3,
and from these features we generate new PGSs by Z = XŴ. Finally, we simulate new
observations by Y = XC + E, where E ∈ RN×q is a Gaussian noise matrix. This way,
we obtain traits and PGSs as if the PGSs were provided from an unrelated GWAS. We run the
geneJAM procedure using the geneJAM function available online, see (Buchardt, 2022), and
we repeat the sampling of the outcome as well as the running of geneJAM 100 times. Thus, in
total the method is evaluated on about 50000 simulations.

3.1.2 Precision and clustering assessment

To assess the clustering ability of geneJAM, we apply the method when the data generating
process honours the different cross-trait associations on SNP level, exemplified by genetic
correlations as illustrated in Figure 1. Thorough presentations are found in the supplementary
material; here, we summarise our findings.

We consider simulations of i.i.d. features X ∈ {0, 1, 2}1000×500 and i.i.d. traits yil ∼ N (0, 1),
i = 1, . . . , 1000, l = 1, . . . , 10. For the scenario (a), we assume that the SNPs have no effect
on the traits, that is, cjl = 0 for all j = 1, . . . , 500, l = 1, . . . , 10. This way, genetic effects
explain none of the total variance in the traits, or, equivalently, the broad-sense heritability of
the traits y1, . . . , y10 is known to be H2

l = 0 for all l = 1, . . . , 10. For the scenario (b), we
assume that all SNPs have equal effect on all traits with cjl = 0.01, for all j = 1, . . . , 500, l =
1, . . . , 10. This way, genetic effects explain 2% of the total variance in each trait, that is,
H2

l = 0.02 for all l = 1, . . . , 10. For the scenario (c) of single cross-trait association on SNP
level, we assume that c11 = c12 = 1.4 such that H2

l = 0.4 for l = 1, 2. For the scenario (d)
of multiple cross-trait association on SNP level, we assume that c11 = c12 = c23 = c24 = 1.4
such that H2

l = 0.4 for l = 1, . . . , 4. Finally, for the scenario (e) of overlapping multiple
cross-trait association on SNP level, we assume that c11 = c22 = 0.6 and c12 = c21 = 1.4
such that H2

l = 0.5 for l = 1, 2.

We present the average SE (grey dots) averaged over the 100 simulations with corresponding
point-wise approximate confidence intervals which we compute as the average SE plus/minus
twice the standard error of the average SE. We indicate the minimal average SE at ρ̂min by
a coloured orange dot. We also present visualisations of the optimal clusters, by means of
the estimated adjacency matrix at ρ̂min. In Figure 2 we plot diagnostics. In the left panel we
show the average SE averaged over 100 simulations with corresponding point-wise upper and
lower standard deviation intervals plotted against the values of ρ used in the fits. The orange
coloured dot indicates the minimum average SE and corresponding regularisation parameter
ρ̂min. In the right panel we show a visualisation of the estimated adjacency matrix for the
clustering corresponding to ρ̂min for one, randomly chosen, simulation. Grey squares represent
estimated edges, white space represents no edges, and orange borders represent the true edges.
In Figures 2.a and 2.b we observe that, for the scenarios (a) and (b) the average SE curve attains
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a minimal value (orange dot) at the largest regularisation, yielding an almost empty adjacency
matrix. In the case (a), this almost corresponds to the truth of no clustered traits, and for the
case (b) it corresponds quite badly with the truth of one cluster of all traits. In Figures 2.c–2.e
we observe that, for the scenarios (c)–(e) the average SE curve attains a minimal value at ρ̂min
(orange dot) and the point-wise standard deviation intervals appear narrow. For the randomly
chosen simulation, we observe that the minimal average SE is obtained exactly when the true
clustering is discovered, as illustrated in the right panel.

The scenarios (b)–(e) are tried with a broad-sense heritability ranging between 0.1 and 0.5.
The resulting RIs are shown in Figure 3. We observe that for the scenarios (c)–(e) the RIs are
greater than 0.9 (and for heritability of 0.4 or more exactly one), that is, the true clustering is
discovered in almost all of the 100 simulations.
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Figure 2: (Continued on the next page.)
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Figure 2: (Continued from the previous page.) Diagnostics plots for simulations of scenarios
illustrated in Figure 1. Left panel: Average SE curve with corresponding point-wise
approximate confidence intervals as a function of ρ. Orange dot indicates ρ̂min. Right panel:
adjacency matrix corresponding to ρ̂min. Grey squares represent estimated edges, white space
represents no edges, and orange borders represent the true edges.
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Figure 3: Rand index, RI, for the simulated scenarios (b) (left) and (c)–(e) (right) at different
values of the broad-sense heritability H2.

3.1.3 Comparison of methods

In this section we compare the performance – in terms of precision and computing time – of
the geneJAM, simple univariate linear regressions, and linear mixed effects models.

As mentioned, standard multiple linear regression models assume that the underlying obser-
vations are independent. As an extension to the multiple linear regression models multilevel
models or linear mixed-effects models (LMM) assume observations to be inhomogeneous in the
sense that they are not independent but grouped. If we treat multiple simultaneously measured
traits Y in a repeated measurement setting, then a univariate multilevel model can be used to
explain the phenotypic variation: We define Y̌ = vec (Y) = (y1, . . . , yq)⊤ ∈ RNq as the
column-wise vectorisation of Y, that is,

Y̌ = (y11, y21, . . . , yN1, y12, y22, . . . , yN2, . . . , y1q, y2q, . . . , yNq)⊤
,

not to be mistaken with the row-wise vectorisation of Y denoted by Y⃗ and introduced in (2).
Then, the univariate multilevel model takes the form:

Y̌ = Žb + Uα + Ě, (4)

where Ž ∈ RNq×2q is a fixed-effects design matrix, b ∈ R2q is a vector of regression
coefficients for the fixed effects, such that each trait has a fixed intercept and slope, α ∈ RN

are person-specific regression coefficients for the random effect with random-effects design
matrix U ∈ RNq×N , ensuring that each individual has its own trait-specific random intercept,
and Ě = vec (E) = (e1, . . . , eq)⊤ ∈ RNq are trait-specific residual errors caused by non-
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additive genetic variation, random environmental effects, and measurement error. We define
the random-effects design matrix as an identifier of the individuals and assume that

(i) el ∼ NN (0, σ2
eIN ) and uncorrelated for l = 1, . . . , q;

(ii) α ∼ NN (0, σ2
αG);

(iii) e1, . . . , eq , and α are independent.

Here G ∈ RN×N is a general covariance matrix. Possible structures for G may be a block
diagonal, a diagonal or a general positive definite matrix. This way, restricted maximum
likelihood (REML) estimates of the parameters in models on the form (4) can be determined
using the lmer function in the lme4 package for R (Bates et al., 2015). We assume a common
correlation among the observations from a single individual, with the correlation being the
same for all individuals. Compared to the assumptions for linear regression model (2) of the
geneJAM method, the assumption is analogous to the residual covariance matrix Ω being a
block diagonal with blocks corresponding to the individuals and with each block having a
compound-symmetry structure. This structure has two unknown parameters, one modeling
a common covariance and the other a residual variance. The form for R would then be as
follows:

R =




σ2
e + σ2

α σ2
e · · · σ2

e

σ2
e σ2

e + σ2
α

. . .
...

...
. . . σ2

e + σ2
α

...

σ2
e · · · σ2

e σ2
e + σ2

α




. (5)

In comparison to the geneJAM method, this is more restrictive as the geneJAM method allows
for an arbitrary structure of the residual covariances R among traits within each individual
in (3). We use this method as reference when assessing the precision and computational
performance of our method. We also compare to fitting simple linear regression models for
each trait and corresponding PGS separately.

We simulate 100 data sets according to the sampling procedure described in Section 3.1.1.

We are interested in improving the precision of the estimates of traits on which there are genetic
effects. We refer to this set of estimates as the active set. In Figure 4 we show the standard error
of the estimates in the active set averaged over the 100 simulations. We observe that regardless
of the scenario and heritability the geneJAM perform better than both the simple linear regres-
sion (LM) and the multilevel model (LMER). As expected, the larger the heritability the better
the absolute precision of the geneJAM.

In Figure 5 we show the RMSE in the active set averaged over the 100 simulations. The figures
show that, in general, the prediction performance of the methods discussed are worsening
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Figure 4: Standard error of the estimates in the active set averaged over 100 simulations
for the simulated scenarios (b) (left) and (c)–(e) (right) at different values of the broad-sense
heritability H2.

when the heritability grows since the RMSE is increasing in H2. We observe that, for low
heritability, the RMSE is very similar for all three methods and all scenarios (b)–(e), that is,
they are equally suited for prediction. In the scenario (b), a higher heritability results in more
varying RMSEs for the three methods. Specifically, the geneJAM and the LM methods seem
to be better qualified for prediction than the LMER. As expected, for the scenarios (c)–(e) the
RMSE is the same for the LM and LMER methods. For the scenarios (c) and (d) the geneJAM
method seems to slightly outperform the other methods in terms of predictive ability. For the
scenario (e) the RMSE does not appear to differ substantially between the three methods, that
is, their performance in terms of numeric prediction is very close.

In Figure 6 we visualise the covariance structure between traits for simulations of the scenarios
(a)–(e) illustrated in Figure 1 corresponding to the subfigures (rows) (6.a)–(6.e), respectively.
Dark colours indicate large values and light colours indicate small values. In the left panel
we show the structure induced by the sampling, in the centre panel we show the structure
estimated by the geneJAM method, and in the right panel we show the structure estimated by
the multilevel model. We observe that, for the scenarios (c)–(e) in particular, the geneJam
method appear to succefully capture the covariance structure induced by the sampling. This is
not possible for the multilevel model which require a fixed structure such as (5).

To assess the computation time of the geneJAM we consider a simulation design similar to the
one proposed in the previous subsection with a single cross-trait association and broad-sense
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Figure 5: Root mean squared error (RMSE) of the estimates in the active set averaged over
100 simulations for the simulated scenarios (b) (left) and (c)–(e) (right) at different values of
the broad-sense heritability H2.

heritability H2 = 0.5. We assume that the grouping is given so we do not run the graphical
lasso part of the procedure. To assess the performance of the R code we use the package
microbenchmark by Mersmann (2019).

In Figure 7 we show how the geneJAM and multilevel model scale in execution time in the
number of traits q (left panel) and observations N (right panel). To assess the scaling in the
number of traits each sample is generated with N = 1000 observations. First, we observe
that the computing time of the geneJAM is almost constant in q, and fitting one FGLS takes
approximately 1.2 seconds on an Intel Core i5-5200U processor. Second, we observe that,
while the mixed model is faster than the geneJAM for q < 30, the computing time increases
almost exponentially as the number of traits increases logarithmically. For q > 30 the mixed
model is slower than geneJAM, and the lme4 cannot handle q > 26. To assess the scaling in
the number of observations each sample is generated with q = 32 traits. As expected, given
the number of traits fixed at 32, the geneJAM is, for all values of N faster than the multilevel
model. The computing time for the geneJAM increases linearly in q, whereas the computing
time for the multilevel model increases faster.
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Figure 6: (Continued on the next page.)
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Figure 6: (Continued from the previous page.) Visualisation of covariance matrices for
simulations of scenarios illustrated in Figure 1. Dark colours indicate large values and light
colours indicate small values. Left panel: Structure induced by the sampling. Centre panel:
Structure estimated by the geneJAM method. Right panel: Structure estimated by the multilevel
model.

3.2 Real data

We apply geneJAM to the heterogeneous stock of mice data set available from the Wellcome
Trust Centre for Human Genetics (Flint and Valdar, 2008).

The heterogeneous stock of mice consists of 1,904 individuals from 85 families, all descended
from eight inbred progenitor strains (Valdar et al., 2006). We consider this particular dataset
not only because it contains multiple quantitative traits, but also because many of the traits
are naturally associated, and thus this dataset presents a realistic mix between our simulation
scenarios. Please note that the aim of the example is to demonstrate proof of concept; the
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Figure 7: Scaling (measured in seconds) of the geneJAM (solid) and multilevel model (dashed)
in the number of traits q (left panel) and observations N (right panel).

proposed method is used as a screening tool for identifying potential clusters of the traits. This
way we can subsequently investigate the associations using more complicated nested models
taking into account the biological relationships of related subjects. The data contain 129
quantitative traits which are classified into six broad categories including behaviour, diabetes,
asthma, immunology, haematology, and biochemistry. Because of the fairly large amount of
missing data in the traits, and to avoid having to discuss complicated imputation techniques,
we narrow down the analysis and include only the 14 traits in the asthma category which has
the fewest missing values. Development and deployment of a phenotyping protocol to collect
measures on a model of asthma is described in Solberg et al. (2006) as well as a definition
of the 14 traits in the asthma category. We omit individuals with missing trait and obtain
N = 1491 observations. A total of 12,226 autosomal SNPs were available for all mice. As
Crawford et al. (2018), for “individuals with missing genotypes, we imputed missing values
by the mean genotype of that SNP in their family. All polymorphic SNPs with minor allele
frequency above 1% in the training data were used for prediction”. Furthermore, SNPs with
no variation across observations are removed and we obtain p = 10994 SNPs.

We are interested in clustering traits sharing genetic characteristics in preparation for fitting
low-dimensional multivariate linear regression models. For each quantitative trait we generate
a PGS as described in Section 3.1.1. GeneJAM is applied at a suitable sequence of the regular-
isation parameters ρ.

In Figure 8 we show diagnostics plots. In the top row we show the average SE plotted against
the values of ρ used in the fits. The orange coloured dot indicates the minimum average SE and
corresponding regularisation parameter ρ̂min. We observe that the average SE curve attains a
minimum at ρ̂min. In the bottom row we show a visualisation of the estimated adjacency
matrix for the clustering corresponding to ρ̂min. Grey squares represent estimated edges and
white space represents no edges. We observe that the best precision is obtained when all traits
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except for one are clustered together. The singleton cluster identified is the sixth trait (Pleth.
base.InspiratoryTime) which is defined as the baseline inspiratory time measured by
the plethysmograph (Solberg et al., 2006).
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Figure 8: Diagnostics plot for the heterogeneous stock of mice data set. Top: Average SE curve
as a function of ρ. Bottom: adjacency matrix corresponding to ρ̂min. Grey squares represent
estimated edges and white spaces represent no edges.

In Figure 9 we visualise the covariance structure between traits for the heterogeneous stock
of mice data set. Dark colours indicate large values and light colours indicate small values.
In the top row we show the structure observed in data and in the bottom row we show the
structure estimated by the geneJAM method. We observe some similar structures in the two
figures, e.g., a stronger correlation between Pleth.meta.MinuteVolume and Pleth.

meta.TidalVolume and between Pleth.base.MinuteVolume and Pleth.base.
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Figure 9: Visualisation of the covariance structure for the heterogeneous stock of mice data
set. Dark colours indicate large values and light colours indicate small values. Top: Structure
observed in the data. Bottom: Structure estimated by the geneJAM method.

TidalVolume. This is indication of two pairs of genetic relationships among the traits. We
also see structures in the observed covariance which is not present in the structure estimated by
the geneJAM method. There is, e.g., a stronger observed relationship between Pleth.meta.
EnhancedPause, Pleth.meta.ExpiratoryTime, and Pleth.meta.Inspira
toryTime. This may be indication of traits that are related for other reasons than genetics
and the realtions are, therefore, not captured by the geneJAM method.
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4 Discussion
In this paper, we have proposed a method, which uses PGSs and graphical lasso for clustering
simultaneously measured traits sharing genetic characteristics in preparation for fitting low-
dimensional multivariate linear regression models. Furthermore, we have proposed a proce-
dure for choosing the optimal regularisation for the graphical lasso as well as a method for
fitting the models using the FGLS estimator.

Key advantages of our framework are that there are no prior assumptions on the structure or
sizes of the clusters of traits, information on PGS level is sufficient when data on SNP level
is not available, and, following the clustering and modelling, both clusters and model fit are
readily available. Moreover, the computing time is highly satisfactory even for large data,
and compared to both the simple linear regression and the multilevel models the geneJAM
is superior in terms of precision of the estimates of traits on which there are genetic effects.
Finally, if (independent) environmental factors are available, they are easily adjusted for.

To understand the relevance of cluster assignment we simulated data sets with different cross-
trait structures and effect sizes. In the extreme case, where no traits are affected by the SNPs,
the RI is close to one. Moreover, as expected, the estimated adjacency matrix quickly reaches
the true zero matrix. In the extreme case, where all traits are equally affected by all SNPs, the
geneJAM does not perform very well – as would be expected; the RI decreases as the heritabil-
ity increases and even for small values, the RI is only 0.11. Similarly, the estimated adjacency
matrix goes from the true one matrix to the zero matrix at which the minimum average SE is
(erroneously) attained. More interestingly, when a subset of features affect a subset of clustered
traits and when the effect sizes are sufficiently large, the average SE attains a maximum value
(not at the tails of the sequence of ρ), indicating that a range of values of the regularisation
parameter exists, such that an optimal (attainable) agreement between the estimated and the
true clustering is reached. This, indeed, appears to be the case, as indicated by the sequences
of estimated adjacency matrices: in general, the sparsity of the matrix increases in ρ, and for
a range of values of ρ the estimate is equivalent to the adjacency matrix representing the true
clustering of traits. Furthermore, the larger the effect size the larger the range at which the
clustering is correctly estimated.

Moreover, using the implemented tuning method we are able to determine a value of ρ at which
the true clustering is identified and the average SE is minimised.

In practice, researchers may have preconceived ideas about clusters of traits sharing genetic
characteristics. If no clusters are identified by the geneJAM, it is because the genetic signal
is too low (or the presumption is wrong) and, in this case, there is nothing to gain by a joint
analysis of the traits. It should be emphasised that traits may be correlated due to other (non-
genetic) factors, in which case the geneJAM may be unable to detect the clusters. If, however,
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summary statistics related to the correlation (e.g., metabolite risk scores) are available, these
can be used in the method instead of PGSs to obtain clusters of traits sharing other (e.g.,
metabolic) characteristics.

While the multilevel model is useful where multiple correlated measurements are made on each
individual the geneJAM allows for correlation of traits, thereby improving the precision of the
estimates of traits on which there are genetic effects. We intend to extend the geneJAM method
to also allow for correlated measurements on each individual, to investigate the behaviour of
related individuals.

The algorithms presented in Zhou and Stephens (2014) are computationally-efficient algo-
rithms for fitting multivariate linear mixed models in GWASs. In practice, however, there
could remain both computational and statistical barriers to applying the methods to even a
quite modest number of traits, e.g., q ≈ 10.
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Supplementary Material

A Algorithmic Overview

Algorithm 1: geneJAM algorithm

for l = 1, . . . , q do
Compute b̂O

l and ûl

end
Centre PGSs Q per column
Compute empirical covariance matrix Σ of centred Q
if no sequence of regularisation parameters ρr, r = 1, . . . , R, is provided then

Specify length R of sequence of regularisation parameter ρr

Specify ratio δ between regularisation parameters ρr, r = 1, . . . , R

Choose a sequence of regularisation parameters ρr, r = 1, . . . , R, with maximal
value, ρR, defined by the maximum column sum of Σ and the rest of the sequence
determined by R and δ.

end
for r = 1, . . . , R do

Estimate sparse precision matrices P̂(ρr) to obtain C(ρr) clusters
for g(ρ) = 1, . . . , C(ρr) do

Compute Ω̂O
g(ρ)(ρ)

end

Construct Ω̂O

Compute estimate ˆ⃗BF

Define Ω̂F(1) = Ω̂O

Initialise t → 1
repeat

Compute ûF(t)

for g(ρ) = 1, . . . , C(ρr) do
Compute Ω̂F(t)

g(ρ)
end

Construct Ω̂F(t)

Compute estimate ˆ⃗BF(t+1)

until convergence
end
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B Simulated data
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Figure B1: Graphical illustration of different cross-trait associations. (a) and (b) are extreme
cases where there are no genetic effects on SNP level (a), and where all SNPs affect all traits
equally (b). (c) is a case of single cross-trait association where one SNP affects multiple traits.
(d) is a case of multiple cross-trait association where multiple SNPs affect distinct clusters of
traits. Finally, (e) is a case of overlapping cross-trait association where multiple SNPs affect
the same cluster of traits.

B.1 Extreme cases

In this section we present the result of applying the geneJAM method when there are no genetic
effects on SNP level in the data generating process, as illustrated in Figure 1 (a), and when all
SNPs affect all traits equally in the data generating process, as illustrated in Figure 1 (b).
The simulations are generated according to the sampling procedure presented in the main
manuscript.

Thus, for the first scenario, we consider simulations of i.i.d. features X ∈ {0, 1, 2}1000×500

and i.i.d. traits Yil ∼ N (0, 1), i = 1, . . . , 1000, l = 1, . . . , 10 on which the genes have no
effect. For the second scenario, we consider simulations of i.i.d. features X ∈ {0, 1, 2}1000×500

and traits Y ∈ R1000×10 on which all genes have equal effect, that is, for given non-zero values
of Bil, for all i = 1, . . . , 1000, l = 1, . . . , 10.
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Table 1: Rand index, RI, for the simulated scenarios (a)–(e) at different values of the broad-
sense heritability H2.

H2 RI

(a) 0.00 0.98
(b) 0.01 0.11

0.02 0.05
0.04 0.04

(c) 0.17 0.93
0.41 1.00
0.60 1.00

(d) 0.17 0.04
0.41 1.00
0.60 1.00

(e) 0.24 0.96
0.39 1.00
0.58 1.00

In Figure B2 we plot diagnostics for the simple scenario with no effects. In the left panel we
show the average SE averaged over 100 simulations with corresponding point-wise upper and
lower standard deviation intervals plotted against the values of ρ used in the fits. The orange
coloured dot indicates the minimum average SE and corresponding regularisation parameter
ρ̂min. We observe that the average SE curve is almost constant in ρ, but, on average, the best
precision is obtained with maximal regularisation, that is, by analysing each trait separately.
We do, however, also observe that the point-wise upper and lower standard deviation intervals
are very wide. The RI is 0.98 for this scenario, see Table 1. In the right panel we show a
visualisation of the estimated adjacency matrix for the clustering corresponding to ρ̂min for a
single, randomly chosen, simulation example. Grey squares represent estimated edges, white
space represent no edges, and orange borders represent the true edges. It shows that for this
random sample the minimal average SE is obtained with the maximal regularisation when two
traits are clustered together.

In Figure B3 we plot diagnostics for the scenario where all SNPs affect all traits with heri-
tability H2

l = 0.01 (top), H2
l = 0.02 (middle), and H2

l = 0.04 (bottom), l = 1, . . . , 10.
In the left panel we show the average SE averaged over 100 simulations with corresponding
point-wise upper and lower standard deviation intervals plotted against the values of ρ used
in the fits. We observe that in all three cases the average SE curve is almost constant in ρ,
but, on average, the best precision is obtained with maximal regularisation (orange) at ρ̂min,
that is, using information across all traits. This is consistent with our expectations and the true
clustering of the traits. In the right panel we show a visualisation of the estimated adjacency
matrix for the clustering corresponding to ρ̂min. It shows that for this random sample the

28



minimal average SE is obtained when few traits are clustered together. The RIs for the scenario
(b) are 0.11, 0.05, and 0.04, for the heritability, H2

l = 0.01, 0.02, 0.04, respectively for all
l = 1, . . . , 10, see Table 1. We see that the stronger the heritability the smaller the RI, that is,
with a stronger heritability comes worse clustering performance, when all SNPs affect all traits
equally in the data generating process.

● ● ● ● ● ● ● ● ● ●

●
●

●

●S
td

. e
rr

or ● ● ● ● ● ● ● ● ● ●

●
●

●

●●

−6.3 −3.7 −1.2

0.
04

1
0.

04
3

0.
04

5

10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 910

Figure B2: Diagnostics plots for simulations of the simple scenario illustrated in Figure 1 (a).
Left panel: Average SE curve with corresponding point-wise approximate confidence inter-
vals as a function of ρ. Right panel: adjacency matrix corresponding to ρ̂min. Grey squares
represent estimated edges, white space represent no edges, and orange borders represent the
true edges.

In Figure B7–Figure B10 in the supplementary material we show, for one randomly chosen
simulation of each of the two extreme scenarios, visualisations of the estimated adjacency
matrices at all values of the sequences of ρ tried. As expected, the sparsity of the matrix
increases in ρ.

B.2 Single cross-trait association

In this section we present the result of applying the geneJAM method when the data generating
process honours single cross-trait association on SNP level, exemplified by genetic correlations
as illustrated in Figure 1 (c). Thus, we consider simulations for different effect sizes of the
feature X1 on two traits, Y1 and Y2, that is for different given non-zero values of B11 and
B12.

In Figure B4 we plot diagnostics for the scenario (c) with H2
l = 0.17 (top), H2

l = 0.41
(middle), and H2

l = 0.60 (bottom), l = 1, 2. In the left panel we show the average SE averaged
over 100 simulations with corresponding point-wise upper and lower standard deviation inter-
vals plotted against the values of ρ used in the fits. We observe that, for a range of smaller
values of ρ, the average SE curve is constant before it decreases to the minimal value at ρ̂min
(orange) at which it stays. In the right panel we show, for one of the 100 simulations, a
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Figure B3: Diagnostics plots for simulations of the scenario illustrated in Figure 1 (b) with
H2

l = 0.01 (top), H2
l = 0.02 (middle), and H2

l = 0.04 (bottom), l = 1, . . . , 10. Left
panel: Average SE curve with corresponding point-wise approximate confidence intervals as a
function of ρ. Right panel: adjacency matrix corresponding to ρ̂min. Grey squares represent
estimated edges, white space represent no edges, and orange borders represent the true edges.

visualisation of the estimated adjacency matrix for the clustering corresponding to ρ̂min. It
shows that when the tried heritability is 0.41 (middle) or 0.60 (bottom), the minimal average
SE is obtained exactly when the true clustering is discovered. The RIs for the scenario (c) are
0.93, 1.00, and 1.00 for the tried heritability 0.4, 0.5, and 0.6, respectively, see Table 1.

In Figure B11, Figure B12, and Figure B13 in the supplementary material we show, for
simulations with heritability 0.17, 0.41, and 0.6, respectively, visualisations of the estimated
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Figure B4: Diagnostics plots for simulations of simple cross-trait associations illustrated in
Figure 1 (c) with H2

l = 0.17 (top), H2
l = 0.41 (middle), and H2

l = 0.60 (bottom), l = 1, 2.
Left panel: Average SE curve with corresponding point-wise approximate confidence inter-
vals as a function of ρ. Right panel: adjacency matrix corresponding to ρ̂min. Grey squares
represent estimated edges, white space represent no edges, and orange borders represent the
true edges.

adjacency matrices at all values of the sequence of ρ tried. As expected, the sparsity of the
matrix increases in ρ, and when H2

l ≥ 0.41, l = 1, 2, the estimated adjacency matrix is, for
a range of values of ρ, equivalent to the adjacency matrix representing the true clustering of
traits. Furthermore, we observe that the larger the effect size the larger the range at which the
clustering is correctly estimated.
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B.3 Multiple cross-trait association

In this section we present the result of applying the geneJAM method when the data generating
process honours multiple cross-trait association on SNP level, exemplified by genetic correla-
tions as illustrated in Figure 1 (d). Thus, we consider simulations for different effect sizes of
the features X1 and X2 each on two traits, (Y1, Y2) and (Y3, Y4), respectively, that is for
different given non-zero values of B11, B12, B23, and B24.

In Figure B5 we show diagnostics plots similar to those of Figure B4. In the left panel we show
the average SE averaged over 100 simulations with corresponding point-wise upper and lower
standard deviation intervals plotted against the values of ρ used in the fits. The average SE
curve attains a minimal value at ρ̂min (orange). In the right panel we show a visualisation of
the estimated adjacency matrix for the clustering corresponding to ρ̂min. It shows that when the
tried heritability is 0.41 (middle) or 0.60 (bottom) the minimal average SE is obtained exactly
when the true clustering is discovered. The RIs for the scenario (d) are 0.04, 1.00, and 1.00 for
the heritability 0.17, 0.41, and 0.6, respectively, see Table 1.

In Figure B14, Figure B15, and Figure B16 in the supplementary material we show, for
simulations with heritability 0.17, 0.41, and 0.6, respectively, visualisations of the estimated
adjacency matrices at all values of the sequence of ρ tried. As expected, the sparsity of the
matrix increases in ρ, and, when H2

l ≥ 0.41, l = 1, . . . , 4, it is, for a range of values of ρ,
equivalent to the adjacency matrix representing the true clustering of traits. Furthermore, we
observe that the larger the effect size the larger the range at which the clustering is correctly
estimated.

B.4 Overlapping multiple cross-trait association

In this section we present the result of applying the geneJAM method when the data generating
process honours overlapping multiple cross-trait association on SNP level, exemplified by
genetic correlations as illustrated in Figure 1 (e). Thus, we consider simulations for differ-
ent effect sizes of the features X1 and X2 on two traits, Y1 and Y2, that is for different given
non-zero values of B11, B12, B21, and B22.

In Figure B6 we show diagnostics plots similar to those of Figure B4 and Figure B5. In the left
panel we show the average SE averaged over 100 simulations with corresponding point-wise
upper and lower standard deviation intervals plotted against the values of ρ used in the fits.
The average SE curve attains a minimal value at ρ̂min (orange). In the right panel we show
a visualisation of the estimated adjacency matrix for the clustering corresponding to ρ̂min. It
shows that when the tried heritability is 0.39 (middle) or 0.58 (bottom) the minimal average
SE is obtained exactly when the true clustering is discovered. The RIs for the scenario (e) are
0.96, 1.99, and 1.00 for the heritability 0.24, 0.39, and 0.58, respectively, see Table 1.
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Figure B5: Diagnostics plots for simulations of multiple cross-trait associations illustrated
in Figure 1 (d) with H2

l = 0.17 (top), H2
l = 0.41 (middle), and H2

l = 0.60 (bottom),
l = 1, . . . , 4. Left panel: Average SE curve with corresponding point-wise approximate
confidence intervals as a function of ρ. Right panel: adjacency matrix corresponding to ρ̂min.
Grey squares represent estimated edges, white space represent no edges, and orange borders
represent the true edges.

In Figure B17, Figure B18, and Figure B19 in the supplementary material we show, for
simulations with heritability 0.24, 0.39, and 0.58, respectively, visualisations of the estimated
adjacency matrices at all values of the sequence of ρ. As expected, the sparsity of the matrix
increases in ρ, and when H2

l ≥ 0.38, l = 1, 2, for a range of values of ρ it is equivalent to the
adjacency matrix representing the true clustering of traits. Furthermore, we observe that the
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Figure B6: Diagnostics plots for simulations of overlapping cross-trait associations illustrated
in Figure 1 (e) with H2

l = 0.24 (top), H2
l = 0.39 (middle), and H2

l = 0.58 (bottom), l = 1, 2.
Left panel: Average SE curve with corresponding point-wise approximate confidence inter-
vals as a function of ρ. Right panel: adjacency matrix corresponding to ρ̂min. Grey squares
represent estimated edges, white space represent no edges, and orange borders represent the
true edges.

larger the effect size the larger the range at which the clustering is correctly estimated.
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Figure B7: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for simulations of the scenario illustrated in Figure 1 (a), where the SNPs have no effect on the
traits.
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Figure B8: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for simulations of the scenario illustrated in Figure 1 (b) with broad-sense heritability, H2
l =

0.01, of the traits l = 1, . . . , 10.
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Figure B9: Visualisation of estimated adjacency matrices at the tried sequence of values of ρ

for simulations of the scenario illustrated in Figure 1 (b) with broad-sense heritability, H2
l =

0.02, of the traits l = 1, . . . , 10.
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Figure B10: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (b) with broad-sense heritability,
H2

l = 0.04, of the traits l = 1, . . . , 10.
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Figure B11: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (c) with broad-sense heritability,
H2

l = 0.17, of the traits l = 1, 2.
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Figure B12: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (c) with broad-sense heritability,
H2

l = 0.41, of the traits l = 1, 2.

40



Figure B13: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (c) with broad-sense heritability,
H2

l = 0.60, of the traits l = 1, 2.
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Figure B14: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (d) with broad-sense heritability,
H2

l = 0.17, of the traits l = 1, . . . , 4.
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Figure B15: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (d) with broad-sense heritability,
H2

l = 0.41, of the traits l = 1, . . . , 4.
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Figure B16: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (d) with broad-sense heritability,
H2

l = 0.60, of the traits l = 1, . . . , 4.
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Figure B17: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (e) with broad-sense heritability,
H2

l = 0.24, of the traits l = 1, 2.
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Figure B18: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (e) with broad-sense heritability,
H2

l = 0.39, of the traits l = 1, 2.
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Figure B19: Visualisation of estimated adjacency matrices at the tried sequence of values
of ρ for simulations of the scenario illustrated in Figure 1 (e) with broad-sense heritability,
H2

l = 0.58, of the traits l = 1, 2.
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Abstract

Penalised regression models such as lasso are powerful methods, which use sparsity
to do feature selection in situations where the number of features measured is larger than
the number of observations. This is typical for genomic or multi-omics data, which, in
addition, may contain multiple, simultaneously measured traits. When analysing such
high-dimensional and multivariate data we are concerned not only with identifying relevant
features but also with identifying more complex relationships among the features such as in-
teractions, e.g. gene-gene or gene-environment interactions. Furthermore, we are interested
in a joint analysis of all traits to increase power.

It is, however, not clear exactly how to consistently include interacting features in mul-
tivariate penalised regression models.

We consider methods for identifying pairwise interactions in a multivariate linear re-
gression model under different assumptions of hierarchy on the interactions. We assume
that there is an unknown subset of the features and interactions which are relevant, but
this subset is not preserved across the components of the outcome. As a special case, we
consider the assumption that there is an unknown subset of the features and interactions
which are relevant, and that this same subset is preserved across all components of the
outcome.

We approach the problem by using a two-step procedure. In the first step lasso includes
only the main effects and selects the most promising. Next, a special case of the multi-
variate sparse group lasso includes main effects and interactions according to hierarchical
restrictions and selects the most promising terms. The approach is motivated by modelling
pairwise interactions for qualitative variables and experimenting with explicitly applying
penalties on the main effects and interactions, thereby obtaining interpretable models.

Keywords: multivariate outcome; regularised regression; lasso; interactions; hierarchical
sparsity
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1 Introduction
In Buchardt and Ekstrøm (2021), we proposed a method for identifying pairwise interactions
in a univariate linear regression model under different assumptions of hierarchy. Our objective
in this paper is to extend the method to the multiple outcome setting.

The existence of, e.g., gene-gene or gene-environment interactions has gained attention in
genetic studies and empirical evidence shows that such interactions might be an important
genetic component underlying complex traits and diseases (Lee et al., 2018; Schrode et al.,
2018; Dong et al., 2017). However, the introduction of interactions into a model rapidly in-
creases the complexity of said model (Hu et al., 2014; Cornelis et al., 2012). If the number of
measured features is p, the total number of possible pairwise interactions is

(
p
2
)

= 1
2 p(p − 1).

Thus, when using 500K single nucleotide polymorphism microarrays, say, there are approx-
imately 125 billion pairwise interactions. Fitting a regression model to such data is compu-
tationally challenging, potentially extremely time consuming, and mathematically distorts the
relation between the number of features, p, and the number of observations, N . Furthermore,
joint association analysis of multiple, simultaneously measured quantitative traits in a genome-
wide association study (GWAS), i.e., a multivariate GWAS, has gained attention in genetic
studies as it offers several advantages over analysing each trait in a separate GWAS (Galesloot
et al., 2014). While single-trait GWASs have found numerous novel loci associated with
complex diseases (MacArthur et al., 2016), traits are often correlated, for example due to
pleiotropic genes and, therefore, a joint modelling approach can be used to increase precision
and power (Schmitz et al., 1998).

The objective of this paper is to propose a computationally efficient method for selecting pair-
wise interactions in a multivariate regression model which involves only a subset of the features
and interactions. We consider a general setup where we assume that there is an unknown subset
of the features which are relevant, but this subset is not necessarily preserved across all com-
ponents of the outcome. By “relevant” we refer to a feature which affects at least one outcome.
If a feature affects more than one outcome, we allow for the effect size to be different across
the outcomes. We make the consequential assumption that that there is an unknown subset of
interactions which are relevant, but this subset is not preserved across all outcomes.

When to include interactions in a multivariate (regularised) regression model is, however, not
straightforward. Interpretations of traditional regression analyses do not encourage including
an interaction in a model without the corresponding main effects, since main effects can be
viewed as deviations from the mean and interactions as deviations from the main effects (Bien
and Tibshirani, 2014). Furthermore, it can be argued that large main effects are more likely to
lead to important interactions than small (Cox, 1984). Finally, including “too many” interac-
tion terms may unnecessarily complicate the model and its interpretation and be computation-
ally infeasible. This motivates the hierarchical restrictions that an interaction is included in a
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model only if one or both constituent main effects are marginally important.

In Section 2 we introduce the pairwise interaction model, the concept of hierarchical sparsity,
and our framework and two-step procedure for finding pairwise interactions. We propose a
method for identifying a subset of relevant features, such that imposing hierarchical restrictions
in a stepwise manner, sufficiently reduce the number of interactions to be included in a mul-
tivariate regularised regression model. We study our method on simulated data, in Section 3.
The two-step procedure is implemented using the R package MSGLasso; the R code is part
of our package ilasso which is available online, see Buchardt (2022). We conclude with a
discussion and recommendations in Section 4.

2 Methods
In this section we present a two-step regularised regression procedure which enables the iden-
tification of pairwise interactions in a multiple outcome setting.

2.1 Pairwise interaction model

We assume that we have N observations of the multivariate outcome Y = (y1, . . . , yq) ∈
RN×q and p associated features X = (x1, . . . , xp) with pairwise interactions.

If the features are categorical, they are assumed to be represented by dummy variables, and the
pairwise interaction term is formed by multiplying the corresponding variables. If the features
are quantitative, X ∈ RN×p, the pairwise interaction term is formed by multiplying the two
constituent features. For computational reasons we recommend centring each quantitative
feature before the optimisation problem is solved (Aiken and West, 1991). If the features are
not measured in the same units, we also recommend scaling each feature. Otherwise the lasso
solution depends on the scale since lasso puts constraints on the size of the coefficients for
feature. The methods developed in this paper are applicable to pairwise interactions between
categorical features, between quantitative features, and between categorical and quantitative
features. It should be noted that hypothesis tests are calculated similarly for both the cases
of pairwise interactions between categorical features and between categorical and quantitative
features, and interpretations are fairly clear (Ekstrøm and Sørensen, 2014). In the case of inter-
actions between quantitative features, testing and interpretation is more complex (Aiken and
West, 1991).

For the sake of simplicity we assume that the outcome values are centred before the optimi-
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sation problem is solved, that is, 1
N

∑N
i=1 yil = 0, for all l = 1, . . . , q, and the intercept term

can be omitted from the model. In multivariate linear regression models, this condition is not a
restriction, since given an optimal solution, (b̂0, B̂), obtained from the centred data, an optimal
solution, (b̃0, B̃), for the uncentred data is easily recovered: B̃ = B̂ and b̃0 = ȳ−∑p

j=1 x̄j b̃j ,
where ȳ and x̄j , j = 1, . . . , p, are the original column means. Furthermore, if the outcome
components are not measured in the same units, we also recommend scaling each component.
Otherwise the lasso solution depends on the scale.

Thus, for each sample i = 1, . . . , N and each outcome l = 1, . . . , q the pure main effect model
takes the form

yil =
p∑

j=1
xijbjl + eil, (1)

and the pairwise interaction model takes the form

yil =
p∑

j=1
xijbjl +

p∑

k=1

∑

j<k

xijxikΘjkl + eil, (2)

where B = (b1, . . . , bp)⊤ ∈ Rp×q are unknown regression parameters for the main effects,
Θ ∈ Rp×p×q are unknown parameters for the pairwise interactions, and E ∈ RN×q are
Gaussian errors. For each l = 1, . . . , q we let Θl ∈ Rp×p represent a symmetric matrix,
i.e. Θl = Θ⊤

l , such that the strict inequality in the interaction summation precludes over-
parametrisation arising from the inclusion of the same effect twice, for example, including
both xijxik and xikxij .

Based on the model (2) we aim to select a subset of the p main effects and the 1
2 p(p − 1)

interactions – we refer to the variables in this subset as the relevant variables. In pursuit of this
goal we establish the notions of hierarchy and sparsity in the next sections.

2.2 Hierarchy

In this section we present model restrictions in a form which makes it is possible to specify a
regularised regression procedure which produces sparse interaction models that honour these
restrictions. The hierarchical constraint of the pairwise interactions is defined for all outcome
components simultaneously, that is, exactly one of the following hierarchical, anti-hierarchical,
and non-hierarchical restrictions is assumed for all l = 1, . . . , q:

Strong hierarchy There are interactions only among pairs of non-zero main effects,
HS : Θjkl ̸= 0 ⇒ bjl ̸= 0 and bkl ̸= 0.
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Weak hierarchy Each interaction has at least one of its main effects present,
HW : Θjkl ̸= 0 ⇒ bjl ̸= 0 or bkl ̸= 0.

Anti-hierarchy Interactions are only among pairs of main effects that are not present,
HA : Θjkl ̸= 0 ⇒ bjl = 0 and bkl = 0.

Pure interactions There are no main effects present, only interactions,
HI : bjl = 0 ∀j = 1, . . . , p.

Pure main effects There are no interactions present, only main effects,
HM : Θjkl = 0 ∀j, k = 1, . . . , p.

No hierarchy There are no restrictions to the presence of main effects and interactions,
HN.

Next, we introduce methods for estimating the parameters in pairwise interaction models,
which honour one of the hierarchical, anti-hierarchical, or non-hierarchical restrictions.

2.3 Sparsity

The ordinary least squares (OLS) method for estimation is not suitable when p > N , in which
case we prefer fitting a sparse model, which refer to a model which involves only a subset of
the p features. In order for us to obtain such a subset we can regularise the estimation process.

The multivariate pure main effect model (1) can be seen as a coupled collection of q standard
regression problems in Rp, each sharing the same features, in which column l, bl ∈ Rq , of B
is the coefficient vector for the lth problem. Inspired by the methodology outlined for example
in the book Hastie et al. (2015) we define “groups” by the rows bj ∈ Rq , j = 1, . . . , p, from
the full matrix of parameters B ∈ Rp×q , and the problem can be viewed as a special case of
the general group lasso (Yuan and Lin, 2006), where we construct p groups of equal size q.
Under the assumption that the same set of features are relevant for the modelling across all
q components of the outcome variable, that is, the collection of q outcome components are
regressed on the same N × p matrix of features, we approach the multivariateness by solving
q separate lasso problems, one for each column of the p × q regression matrix B. Thus, for the
multivariate pure main effect model (1), the objective of the multivariate lasso is to solve the
regularised least-squares problem

minimise
B∈Rp×q





1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl




2

+ λ

p∑

j=1
∥bj∥2





, (3)

for some regularisation parameter λ > 0. This way, the collection of q outcome components
are regressed on the same N × p matrix of features and the q linear regression problems are
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coupled together via the regularisation constraint which ensures that all features are equally
regularised across outcome components. It should be noted, that the factor 1

2Nq appearing in
(3) makes no difference in the optimum; it corresponds to a standardisation of λ and makes the
regularisation comparable for different sample sizes.

The nature of the group lasso implies that when a group is selected by the procedure, all the
coefficients in that group will be non-zero. For the multivariate setup, this implies that when
a feature is selected by the procedure, the coefficients for that feature will be non-zero for
the entire collection of outcome components. It may, however, be more appropriate to have
sparsity with respect to the collection as well as components within the collection, since all
features are not necessarily relevant for the entire collection of outcome components.

The additional within-group sparsity is achieved with the versatile multivariate sparse group
lasso (MSGLasso) feature selection and estimation method proposed by Li et al. (2015). The
method is carried out through a regularised multivariate multiple linear regression model and
allows for an arbitrary group structure for the regression coefficient matrix. That is, the
MSGLasso allows for different regularisation of groups as well as features within groups via
adaptive lasso tuning parameters.

Specifically, the MSGLasso assumes that B contains G groups, and each group, denoted as
Bg where g ∈ {1, . . . , G}, is a subset of two or more elements in B. The group structure is
denoted by G = {B1, . . . , BG}. Depending on the context B and Bg denote either the set
of all their elements or the numerical values of all their elements. Note that the union of all
groups in G does not need to contain all the elements of B, in other words, some bjl may not
belong to any group.

For an arbitrary group structure G with G groups,
∑G

g=1 ∥Gg∥2 is the total sum of ℓ2 norms
of every group in G, where ∥Gg∥2

2 =
∑

bjl∈Bg
b2

jl.

For an arbitrary group structure G on B, we denote {g : Bg ∈ G} by {g ∈ G} to simplify
the notation as long as it does not cause any confusion. For j = 1, . . . , p and l = 1, . . . , q, let
λjl ≥ 0 be the adaptive lasso tuning parameter for bjl with λjl = 0 if bjl is not regularised.
Let λg ≥ 0 be the adaptive tuning parameter for group Bg ∈ G with λg = 0 if group Bg is not
regularised. The objective of the MSGLasso is to solve the following regularised optimisation
problem for a general regularised multivariate multiple linear regression:

minimise
B∈Rp×q





1
2Nq

∥Y − XB∥2
2 +

p∑

j=1

q∑

l=1
λjl|bjl| +

∑

g∈G
λg ∥Bg∥2



 , (4)

where the ℓ2 regularisation term aims to shrink unimportant groups to zero and the ℓ1 regular-
isation term aims to shrink unimportant entries within an important group to zero.

We exclude the trivial case that λg = 0 for all g ∈ G and λjl = 0 for all j = 1, . . . , p and
l = 1, . . . , q. We observe that the case that λjl = 0 for all j = 1, . . . , p and l = 1, . . . , q and
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λg = λ for all g ∈ G with G = {1, . . . , p} corresponds to the multivariate lasso (3) where all
features are equally regularised across outcome components.

While the group structures considered in Li et al. (2015) are pre-defined by biological func-
tions, such as gene or pathways, the group structure considered here is very simple and deter-
mined with the goal of including interactions and imposing hierarchical restrictions in mind.
Therefore, we define groups (in the following referred to as collections) by the rows bj ∈ Rq ,
j = 1, . . . , p, and the problem reduces to

minimise
B∈Rp×q





1
2Nq

∥Y − XB∥2
2 +

p∑

j=1

q∑

l=1
λjl|bjl| +

p∑

j=1
λj ∥bj∥2



 .

In order for us to include interactions, we define collections of interactions by the rows Θjk ∈
Rq , j, k ∈ {1, . . . , p} of the full stack of matrices of parameters Θ ∈ Rp×q×q . Now, fitting a
MSGLasso regularisation on the joint set of main effects and interactions corresponds to the
assumption of no hierarchy, HN. That is, for the multivariate pairwise interaction model (2),
the MSGLasso problem takes the form

minimise
B∈Rp×q,Θ∈Rp×p×q



L(B, Θ) +

p∑

j=1

q∑

l=1
λjl|bjl| +

p∑

j=1
λj ∥bj∥2

+
p∑

k=1

k−1∑

j=1

q∑

l=1
τjkl|Θjkl| +

p∑

j=1
τj ∥Θj∥2



 ,

where L(B, Θ) denotes the loss function

L(B, Θ) = 1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl −

p∑

k=1

k−1∑

j=1
xijxikΘjkl




2

.

This way, when λj = 0, the jth regularisation term disappears, that is, feature j is not
regularised for any outcome component but always included in the model. When λj = ∞
feature j is always excluded for all outcome components, and for all j = 1, 2, . . . , p for which
λj are equal to the same constant value, the corresponding features are equally regularised
across the outcome. Similarly, when λjl = 0, the jlth regularisation term disappears, that is,
feature j is not regularised for the lth outcome component but always included in the model.
When λjl = ∞ feature j is always excluded for the lth outcome component, and for all
j = 1, 2, . . . , p and l = 1, . . . , q for which λjl are equal to the same constant value, the cor-
responding features are equally regularised for the corresponding outcome components. The
interpretation of the regularisation parameters τj and τjkl on the interactions is analogous to
that of λj and λjl.

We observe that λjl > 0 (and τjkl > 0) ensures the more general assumption that there is
an unknown subset of the features (and interactions) which are relevant, but this subset is not
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necessarily preserved across the components of the outcome. On the other hand, λjl = 0 (and
τjkl = 0) corresponds to the assumption that there is an unknown subset of the features (and
interactions) which are relevant, and this same subset is preserved across all q components of
the outcome. Here, the term “relevant” refers to a feature which affects all outcome component,
but, possibly, with different effect sizes across the components. This scenario also makes the
consequential assumption that there is an unknown subset of interactions which are relevant,
and this same subset is preserved across all components of the outcome. The general setup
is, obviously, most flexible, and it is, possibly, the most realistic. The special case scenario
is, however, suitable when all the outcome components are suspected to be predicted from
roughly the same set of features.

2.4 Two-step procedure

Solving the strong and weak hierarchical lasso outlined above is very time consuming, and
in this section we extend the two-step procedure of Buchardt and Ekstrøm (2021) from the
univariate outcome setting to the multivariate outcome setting. That is, we propose an effi-
cient method for selecting relevant features and pairwise interactions according to one of the
hierarchical restrictions, HS or HW, introduced in Section 2.2. While the method allows for an
anti-hierarchical structure, it is not computationally tractable, often conceptually unrealistic,
and we make no further mention of it in this paper.

As the first step in our procedure, we include only the main effects and apply the MSGLasso
for variable selection. As the second step in the procedure we include main effects and in-
teractions in accordance with step one and subject to one of the restrictions HSor HW, and we
apply a variation of the MSGLasso where the regularisation parameters depend on the assumed
hierarchical restriction.

Define by

Se = {j ∈ {1, . . . , p}, l ∈ {1, . . . , q} : |bjl| ≠ 0} ,

the index set of non-zero elements in B, by

Sg =
{

j ∈ {1, . . . , p} : ∥bj∥2 ̸= 0
}

,

the index set of non-zero rows in B, by

Re =
{

(j, k) ∈ {1, . . . , p}2, l ∈ {1, . . . , q} : |Θjkl| ≠ 0
}

,

the index set of non-zero elements in Θ, and by

Rg =
{

j ∈ {1, . . . , p} : ∥Θj∥2 ̸= 0
}

,
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the index set of non-zero rows in Θ.

Define by Me and Ie the index sets of main effects and interactions, respectively, to be
included in the model subject to one of the hierarchical restrictions, HS or HW, and specific
to outcome components. Similarly, define by Mg and Ig the index sets of the main effects and
interactions, respectively, to be included in the model for all outcome components subject to
one of the hierarchical restrictions, HS or HW. Specifically, when the model is subject to the
restriction of strong hierarchy Me = Se, and

Ie =
{

(j, k) ∈ {1, . . . , p}2, l ∈ {1, . . . , q} : (j, l) ∈ Se ∧ (k, l) ∈ Se

}
;

Mg = Sg , and

Ig =
(
{(j, k) ∈ {1, . . . , p}2 : j ∈ Sg ∧ k ∈ Sg

}
.

When the model is subject to the restriction of weak hierarchy Me = Se, and

Ie =
{

(j, k) ∈ {1, . . . , p}2, l ∈ {1, . . . , q} : (j, l) ∈ Se ∨ (k, l) ∈ Se

}
;

Mg = Sg , and

Ig =
{

(j, k) ∈ {1, . . . , p}2 : j ∈ Sg ∨ k ∈ Sg

}
.

The procedure is defined as follows:

Step 1 We assume the pure main effect model,

Y = XB + E,

for which the MSGlasso estimates are determined by solving the optimisation problem

minimise
B∈Rp×q





1
2Nq

∥Y − XB∥2
2 + λ1

p∑

j=1

(
q∑

l=1
α1|bjl| + (1 − α1) ∥bj∥2

)
 ,

where we have defined λjl = λ1α1 and λj = λ1(1 − α1) with α1 ∈ [0, 1]. Now, Se is
estimated by

Ŝ(λ1,α1)
e =

{
j ∈ {1, . . . , p}, l ∈ {1, . . . , q} :

∣∣∣b̂(λ1,α1)
jl

∣∣∣ ̸= 0
}

,

and Sg is estimated by

Ŝ(λ1,α1)
g =

{
j ∈ {1, . . . , p} :

∥∥∥b̂(λ1,α1)
j

∥∥∥
2

̸= 0
}

.

Me, Ie, Mg , and Ig are estimated by M̂(λ1,α1)
e , Î(λ1,α1)

e , M̂(λ1,α1)
g , and Î(λ1,α1)

g , respec-
tively. For simplicity, we suppress the explicit dependence on λ1 and α1 in the notation in the
following.
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Step 2 We assume the pairwise interaction model, for all i = 1, . . . , N and l = 1, . . . , q,

yil =
p∑

j=1
xijbjl +

p∑

k=1

∑

j<k

1{(j,k,l)∈Îe}xijxikΘjkl + eil,

for which the MSGLasso estimates are determined by solving the optimisation problem

minimise
B∈Rp×q,Θ∈Rp×p×q



L(B, Θ) + λ2

p∑

j=1

(
q∑

l=1
α21{(j,l)/∈M̂e}|bjl| + (1 − α2)1{j /∈M̂g} ∥bj∥2

+
j−1∑

k=1

q∑

l=1
α31{(j,k,l)∈Îe}|Θjkl| + (1 − α3)1{j∈Îg} ∥Θj∥2

)}
,

where L(B, Θ) denotes the loss function

L(B, Θ) = 1
2Nq

N∑

i=1

q∑

l=1


yil −

p∑

j=1
xijbjl −

p∑

k=1

∑

j<k

1{(j,k,l)∈Îe}xijxikΘjkl




2

,

and λjl = λ2α21{(j,l)/∈M̂e}, λj = λ2(1 − α2)1{j /∈M̂g}, τjkl = λ2α31{(j,k,l)∈M̂e}, and
τj = λ2(1 − α3)1{j∈M̂g}.

We are finally able to estimate the sets Se, Sg , Re, and Rg , by

Ŝ(λ2,α2,α3)
e =

{
j ∈ {1, . . . , p}, l ∈ {1, . . . , q} :

∣∣∣b̂(λ2,α2,α3)
jl

∣∣∣ ̸= 0
}

,

Ŝ(λ2,α2,α3)
g =

{
j ∈ {1, . . . , p} :

∥∥∥b̂(λ2,α2,α3)
j

∥∥∥
2

̸= 0
}

,

R̂(λ2,α2,α3)
e =

{
j, k ∈ {1, . . . , p}, l ∈ {1, . . . , q} :

∣∣∣Θ̂(λ2,α2,α3)
jkl

∣∣∣ ̸= 0
}

,

R̂(λ2,α2,α3)
g =

{
j ∈ {1, . . . , p} :

∥∥∥Θ̂(λ2,α2,α3)
j

∥∥∥
2

̸= 0
}

,

respectively.

It should be noted, that we choose to treat main effects and interactions equally and impose
the same regularisation on main effects and interactions, thereby keeping down the number
of parameters. This might result in main effects being overwhelmed by interactions in the
selection, and it could be argued that main effects should be less regularised than interactions.

3 Proof of concept simulations
We illustrate the utility of the two-step procedure described in Section 2.4 on simulated data.
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The motivation is to understand the performance of the two-step procedure on one of the
important problems in statistical genetics: genotype by genotype interactions (G×G) in multi-
trait genomic selection. We use simulations to assess the false discovery rate of the interactions
found under the assumption of strong hierarchy for both the data generating process and the
two-step procedure.

3.1 Sampling procedure

Since the efficacy of a procedure depends on the true model generating the data we simulate
different set-ups such that each of the different restrictions are tried as the ground truth, and
we apply our method to each scenario separately.

x1 x2

x1x2

y1

x3 x4

x3x4

y2

Figure 1: Graphical illustration of data generating process where there is a main effect of x1
and x2 on y1 and an interactions between x1 and x2 affecting y1 and a main effect of x3 and
x4 on y2 and an interactions between x3 and x4 affecting y2.

The sampling procedure goes as follows: each sample is generated with N = 200 observations
of q = 10 traits Y and p = 600 associated categorical features X ∈ {0, 1, 2}200×600 resulting
in 179700 potential pairwise interactions per trait. There are four main effects and two in-
teractions in the data generating process, as illustrated in Figure 1. In practice, simulating
more independent interactions would produce similar results when each of these interactions
are considered in turn. From the features we generate observations by Y = XB + E, where
E is a matrix of standard Gaussian noise. We create a sparse problem by letting bjl = 0 for all
j = 1, . . . , p and l = 1, . . . , q, except for b11, b21,b32, b42,Θ121 and Θ342, for which different
values are tried.

We fit the models in the two-step procedure using our wrapper function milasso() (Buchardt
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and Ekstrøm, 2021) which calls functions from the R package MSGLasso by Li et al. (2016).
The penalty parameters are determined by cross-validation, which we perform using the
MSGLasso.cv() function with 5 folds. To reduce the residual variation we repeat the
sampling of the outcome as well as the fitting using the two-step procedure B = 100 times.

In order for us to compare the performance of the methods we use the false-discovery rate of
the interactions (iFDR) across all traits, defined as

iFDR = V (i)

V (i) + S(i) ,

where V (i) is the number of false discoveries of interactions and S(i) is the number of true
discoveries of interactions across all traits. Please note that the false-discovery rates are defined
in a manner that returns a zero if the number of false discoveries is zero. If there are no false
discoveries nor true discoveries, the false-discovery rates are not provided.

We present the mean iFDR with corresponding point-wise approximate confidence intervals
which we compute as the mean iFDR plus/minus twice the standard error of the mean. We also
present the average number of true interaction discoveries conditioned on having discovered
a true interaction. We refer to this number as the recall with respect to interactions. Please
note that the average number of false interaction discoveries, which complete the picture is not
displayed. Since the simulated data honour strong hierarchy with two interaction effects, the
desired number of true interaction discoveries is two. That is, the dotted lines should be close
to two. Since we aim to minimise the expected proportion of interaction discoveries which are
false, the desired value for the mean iFDR is zero. That is, the solid lines should to be close to
zero.

In the left panel of Figure 2 we show the mean iFDR with corresponding point-wise approximate
confidence intervals as a function of β11 = β21 = β32 = β42 when the model is constrained
by strong hierarchy. The lines are coloured according to the true value of Θ121 = Θ342. In
the right panel of Figure 2 we show the recall with respect to interactions as a function of
β11 = β21 = β32 = β42 when the model is constrained by strong hierarchy. Again, the lines
are coloured according to the true value of Θ121 = Θ342. We observe that, for the chosen
values of coefficient, the mean iFDR is close to zero for all values of the two true main effects
and all values of the true interactions. This indicates that when we do discover an interaction
it is likely to be the correct one. We also observe that the recall with respect to interactions
increases as the size of the true interactions increases. More specifically, we meet the goal of
discovering the two interactions whenever the true size of the interactions is greater than 2.4.

Further numerical studies are needed to fully assess the performance of the method. For
example, to understand the consequence of a wrong hierarchical assumption it would be inte-
resting to simulate datasets with different (non-)hierarchical structures and apply the multivari-
ate two-step procedure under different hierarchical assumptions. Furthermore, to understand
the consequence of not requiring hierarchy it would be interesting to compare our method on
simulated datasets to the usual (multivariate) lasso for the pairwise interaction model under the
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assumption of no hierarchy. It would also be of interest to assess the selection abilities of the
method in real data.
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Figure 2: The data generating process honours strong hierarchy. Left: Mean iFDR over
B = 100 repeated samples and corresponding point-wise approximate confidence intervals
as a function of β11 = β21 = β32 = β42 when the model is constrained by strong hierarchy.
Lines are coloured according to the true value, Θ121 = Θ342, of the interactions. The lines
should be close to zero. Right: Recall with respect to interactions as a function of β11 = β21 =
β32 = β42 when the model is constrained by strong hierarchy. Lines are coloured according
to the true value, Θ121 = Θ342, of the interactions. The lines should to be close to two.

4 Discussion
In this paper, we have proposed a two-step procedure, which use a special case of the multi-
variate sparse group lasso (Li et al., 2015) for screening for interactions and fitting multivariate
pairwise interaction models under hierarchical restrictions.

Our methodology is designed to identify pairwise interactions in a multivariate regression
model which involves only a subset of the features and interactions even when data are avail-
able for a limited number of individuals and when the number of outcome components (e.g.,
traits) per individual and the number of features (e.g., SNPs) are large. The main contribution
of our procedures is that interactions are included under hierarchical restrictions as well as
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simultaneously estimated and selected. We believe that this is one of the strengths of our
procedure as it furthers interpretability and (expectedly) computing time. Furthermore, the
framework allows for direct specification of whether the treatment of features (and interac-
tions) should be equal or different across outcome components.

Our method could still be further refined when features are correlated. One potential solution
to this issue consists in using the cluster Elastic Net framework (Price and Sherwood, 2018).
As an alternative, the correlations among features may be incorporated by considering blocks
of features (e.g., SNPs within chromosomes) within the model using more refined group
structures of the MSGLasso, as this might improve the detection of weak associations. Other
future work will also consider the oracle property, and how to improve the framework to attain
these desirable properties.

In this paper, we have presented the theoretical framework and a proof-of-concept simulation
study. From the simulation study we obseved that both in terms of false discovery rate and
recall with respect to interactions the two-step procedure works very well under the assumption
of strong hierarchy.

While we are not aware of any alternative multivariate methods that simultaneously estimate
and select interactions under hierarchical restrictions, it would be of interest to compare the
performance – in terms of discoveries and prediction error – of the two-step procedure and a
simple marginal multiple testing procedure.

It should be noted that, in this paper, we see the choosing of the regularisation parameters
primarily as a means to an end. Choosing the right regularisation parameters is, in general,
difficult. Both cross-validation and stability selection are possible strategies.

Our work has potential applications to cross-omics studies and multivariate genome-wide
studies of G×G, that is, epistatic pairs where the effect of one gene (locus) on, possibly,
multiple traits is dependent on the presence of a modifier gene. It is possible to extend our
framework to the case of multi-way interactions and, thereby, to the application to studies of,
e.g., higher-order epistatic interactions. In practice, however, this is an unfeasible challenge
in terms of tractability, computability, and interpretation. As a special case, our work has
potential applications to studies of G×E. In studies such as genetic epidemiology, presumably,
a small-scale number of environmental factors and a large-scale number of genes will be avail-
able. In this case, regularisation of the environmental factors may be undesirable, and, with a
slight modification, the two-step procedure is capable of taking this into account.
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