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Summary

Recurrent events are events that can happen more than once for a person during their lifetime. Such
events occur naturally within disease progression, e.g., recurrent heart failures. For randomised trials,
the effect of treatment on recurrent events may be explored. This treatment effect, the estimand,
may be formulated in several ways depending on the scientific question of interest.

This thesis discusses various estimands for recurrent events and explores shortcomings and ben-
efits of each. It is recommended to focus on marginal models for recurrent events, such as the
proportional means model. This model has a simple interpretation and allows for modelling flex-
ibility. In the presence of terminal events, it is important to also evaluate the effect of treatment
on mortality. Thus, the effect of treatment on both recurrent events and death should be explored
jointly. A bivariate procedure based on pseudo-observations is proposed in this thesis. This method
can model the effect of treatment on recurrent events and death using marginal models simultane-
ously. The construction of a bivariate procedure may enable more powerful sequential tests compared
to exploiting univariate features.

Recurrent event methods may be more powerful than methods based on first events. Moreover,
analysing recurrent events can provide new insights into treatment effects. Thus, Novo Nordisk
could benefit from having the possibility of including recurrent event analyses as either primary or
confirmatory analyses when designing randomised controlled trials. A simulation-based sample size
estimation procedure based on the recommended marginal models for recurrent events and deaths
is proposed in this thesis. This allows the user to make power estimation of such marginal models
when treatment may influence mortality and recurrent events in various ways. Such a tool is key in
order to dimension the clinical trials to ensure that claims may also be made on recurrent events.

Finally, the recommended marginal models for recurrent events assume independent censoring.
This implies that an unbiased causal treatment effect may not be extracted from these models if
this assumption is violated. Discussion on how to modify the marginal models to a situation with
dependent censoring is presented. This would be useful for pre-specifying sensitivity analyses for
recurrent events which explores the assumption of independent censoring.

In summary, this thesis provides recommendations for how to analyse recurrent events for ran-
domised trials, especially with the additional complication of terminal events. Moreover, it suggests
how to design such clinical trials with confirmatory recurrent event endpoints with high mortality
rates. Software has been made publicly available for both analysing and planning clinical trials.
Finally, relevant sensitivity analyses for recurrent events is proposed. Following these recommen-
dations, ensures that clinically relevant treatment effects may be extracted from data on recurrent
events, with or without terminal events. The contributions of this thesis are both methodological
and practical.
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Resumé

Gentagne hændelser er begivenheder, som kan ske flere gange for et individ i løbet af dets levetid.
S̊adanne begivenheder opst̊ar naturligt indenfor sygdomsprogression, fx gentagne hjertesvigt. Be-
handlingseffekten p̊a gentagne hændelser kan undersøges i randomiserede studier. Afhængig af det
videnskabelige spørgsm̊al kan denne behandlingseffekt, estimanden, formuleres p̊a flere m̊ader.

Denne afhandling diskuterer fordele og ulemper ved diverse estimander for gentagne hændelser.
Det anbefales at fokusere p̊a marginale modeller for gentagne hændelser s̊asom modellen for propor-
tionelle middelværdier. Modellen har en simpel fortolkning og tillader fleksibilitet i modelleringen.
I tilstedeværelse af terminale hændelser, fx død, skal behandlingseffekten p̊a dødelighed tillige eval-
ueres. Dermed skal behandlingseffekten p̊a gentagne hændelser og terminale hændelser undersøges
samtidigt. En to-dimensionel procedure baseret p̊a pseudo-observationer er foresl̊aet i denne afhan-
dling. Metoden kan modellere behandlingseffekten p̊a gentagne hændelser og død samtidigt. Den
to-dimensionelle procedure kan tillade sekventielle hypotesetest med større styrke end tests baseret
p̊a en-dimensionelle egenskaber.

Metoder for gentagne hændelser kan have større styrke end metoder baseret p̊a de første hæn-
delser. Desuden kan analysen af gentagne hændelser give nyt indblik i behandlingseffekter. N̊ar
Novo Nordisk planlægger randomiserede kliniske studier, vil det være nyttigt at kunne inklud-
ere analyser af gentagne hændelser som enten primære eller bekræftende sekundære analyser (dvs.
analyser med overordnet type 1 fejls kontrol). Afhandlingen foresl̊ar en procedure til udregningen af
stikprøvestørrelse via simulation baseret p̊a de anbefalede marginale modeller for gentagne hændelser
og død. Proceduren tillader brugeren at lave en styrkeberegning under disse marginale modeller, n̊ar
behandling b̊ade kan p̊avirke dødelighed og gentagne hændelser i flere retninger. Et s̊adant værktøj
er vigtigt for at kunne dimensionere de kliniske studier s̊aledes, at man kan undersøge p̊astande
omkring gentagne hændelser.

De anbefalede marginale modeller for gentagne hændelser er baseret p̊a en antagelse omkring
uafhængig censurering. Hvis denne antagelse er overtr̊adt, kan man ikke regne med at estimere en
retvisende behandlingseffekt fra modellerne. Afhandlingen diskuterer m̊ader, hvorp̊a man kan justere
de marginale modeller til situationen med afhængig censurering. Denne udvidelse er brugbar for at
kunne planlægge sensitivitetsanalyser for gentagne hændelser, som undersøger antagelsen omkring
uafhængig censurering.

Afhandling anbefaler, hvordan man skal analysere gentagne hændelser for randomiserede studier,
specielt med den ekstra kompleksitet som introduceres ved tilstedeværelsen af terminale hændelser.
Desuden foresl̊ar afhandlingen, hvordan man kan planlægge studier med gentagne hændelser, n̊ar
dødelighedsraten er høj. Software er gjort offentligt tilgengængeligt for s̊avel analyse og planlægning
af kliniske studier. Endeligt er relevante sensitivitetsanalyser blevet foresl̊aet. Hvis man følger disse
anbefalinger, sikrer man at behandlingseffekter med en klinisk relevant fortolkning kan uddrages fra
data omkring gentagne hændelser - med eller uden terminale hændelser. Afhandlingens bidrag er
b̊ade metodologiske og praktiske.
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Chapter 1

Introduction and overview

The analysis of recurrent events is a field of increasing interest for clinicians and pharmaceutical
companies. Recurrent events are events that may happen more than once for an individual during
the course of their life, such as hospitalisations. In randomised controlled trials, information on
such repeated events is often collected. However, due to convention and convenience, it happens
that only first events are considered for statistical analysis. Cox’s proportional hazards model has
become a standard tool in the statistical toolbox for analysing time-to-first events within survival
analysis (Cox (1972)). The effect of a randomised treatment on a pre-specified survival outcome may
be addressed using this model. Unless the considered outcome is terminal, e.g., death, subsequent
events could occur for an individual. From a clinical point-of-view, it is of interest to understand
the effect of treatment on, not only, the first event but also subsequent events. This would capture
another treatment effect and perhaps address the total burden of a disease better. When events
are in fact recurrent, discarding events beyond first events is an insufficient use of data. Thus,
from an efficiency and clinical perspective, analysing recurrent events is valuable. As it turns out,
the statistical analysis of recurrent events is more complicated than the analysis of first events.
Moreover, if mortality rates are high, the complexity is increased.

Novo Nordisk collects life history data in several large randomised controlled trials. Both the
clinical and statistical society within heart failure are discussing whether it is “time to move on
from ‘time-to-first’”, that is, consideration of recurrent events as opposed to first events (Anker and
McMurray (2012)). Such a transition requires both clinicians, sponsors and regulators to develop
their understanding of which recurrent event endpoints may be of interest and how these should be
analysed. Hence, from Novo Nordisk’s viewpoint it will be key to develop an understanding and
methodology within this field. The aim of this thesis is to discuss and suggest clinically relevant
treatment effect measures for recurrent event endpoints with and without the presence of terminal
events.

1.1 Motivation

In 2016, the Committee for Medicinal Products for Human Use (CHMP) within European Medicines
Agency (EMA) issued a reflection paper on the assessment of cardiovascular risk of medicinal prod-
ucts for the treatment of cardiovascular and metabolic diseases (EMA (2016)). This states that the
approval of certain medicinal products within cardiovascular and metabolic diseases (e.g., diabetes
and obesity) requires an in-depth evaluation of cardiovascular safety. A possibility is to design a ded-
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1.1. MOTIVATION 3

icated cardiovascular outcomes trial which can demonstrate cardiovascular safety. They state that
the preferred cardiovascular outcome is the “composite of all major cardiovascular events (MACE);
i.e., cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke”. Specifically, they
require that the upper limit of the confidence interval for the hazard ratio is below 1.8 for a compar-
ison between an active treatment and placebo (or standard of care). This wording clearly suggests
that the sponsor should consider the timing until first events which could be analysed using a Cox
model. EMA states that additional outcomes, like hospitalisation for cardiovascular causes, could
also be included in a “MACE plus” endpoint. However, such endpoints would always be presented
separately as supportive analyses. Consequently, the main focus for analysing cardiovascular data
has been to use approaches within traditional survival analysis that targets first events. It is known
that statistical analysis of individual MACE components, such as non-fatal stroke, introduces the
problem of competing risks while only considering first events (Andersen, Geskus, et al. (2012)).
In 2008, the Food and Drug Administration (FDA) released a similar recommendation for the as-
sessment of cardiovascular risk associated with treatment of type 2 diabetes with respect to bounds
placed on the hazard ratios. This recommendation was withdrawn in 2020 and replaced with a newer
and less specific draft guideline on the assessment of cardiovascular risk (FDA (2020)). FDA (2019)
has issued a draft guidance on relevant endpoints for the treatment of heart failure. Both mortality
and morbidity endpoints are of interest. In this document, both number of hospitalisations for heart
failure and time to recurrent hospitalisation qualify as relevant morbidity endpoints. This highlights
the acceptance of recurrent event endpoints by the agency.

During recent years, recurrent events has gained focus for the analysis of life history data col-
lected in clinical trials (Anker and McMurray (2012)). This would ensure usage of all collected data
and may estimate other treatment effects than those for first events. Moreover, the analysis of recur-
rent events may characterise the total burden of a disease more accurately from a patient perspective.
Several large outcome trials with primary time-to-event endpoints have been re-analysed with a fo-
cus on recurrent events (e.g., PARADIGM-HF (2014) (2018), CHARM-Preserved (2014)). However,
the treatment effect of interest for analysis of recurrent events lacks clarity in these papers. This is
illustrated by the use of forest plots to illustrate parameter estimates from different models that tar-
get different (and non-compatible) parameters. In addition, the recent clinical trial PARAGON-HF
(2019) was designed with primary recurrent event endpoint; composite of total (first and recurrent)
hospitalizations for heart failure and death from cardiovascular causes. This illustrates the increased
interest for recurrent events.

In a Qualification Opinion (EMA (2020b)), EMA expressed the regulatory interest in recurrent
events. It is mentioned that experience with recurrent events with high mortality rates is more lim-
ited. Moreover, they highlight the methodological and clinical challenges in adequately describing
the effect of treatment on recurrent events if treatment affects mortality. However, they agree that
statistical efficiency may be gained if data on recurrent events can be used. In conclusion, they
argue that methods which capture a clinically relevant treatment effect is worth while for recurrent
events with terminal events but emphasise the present methodological challenges.

Novo Nordisk is conducting several large outcome trials where the endpoints of interest are time-to-
event outcomes. Examples include the randomised controlled trials: SELECT, SOUL, and FLOW.
SELECT investigates the effect of the drug semaglutide versus placebo on cardiovascular outcomes
in people with obesity and established cardiovascular disease. SOUL also investigates the drug
semaglutide versus placebo on cardiovascular outcomes in people with type 2 diabetes and estab-
lished cardiovascular disease. Whereas FLOW investigates semaglutide versus placebo on renal
outcomes in people with type 2 diabetes and chronic kidney disease. The primary endpoints in
these trials are time-to-first events, but many of the components can occur several times per in-



4 CHAPTER 1. INTRODUCTION AND OVERVIEW

dividual. For example, time-to-first non-fatal myocardial infarction is pre-specified for analysis in
SELECT. Clearly, this endpoint is recurrent in nature and each individual may have more than one
event. Analyses of recurrent myocardial infarction may highlight new aspects of disease progression
and treatment benefits. Such analyses may be used for regulatory discussion, labelling claims, and
additional exploratory analyses for publication.

Further, potential power gains with recurrent events compared to first events has been explored
and discussed within the scientific community (Claggett et al. (2018), Fritsch et al. (2021)). Using
recurrent events as opposed to first events can result in lower sample sizes. For large and expensive
clinical trials, a sponsor has an interest in reducing costs as much as possible. This could be
offered by analysing recurrent events instead. Moreover, from an ethical point-of-view, the sample
size should be as small as possible (EMA (1998)). However, focusing on recurrent events with or
without terminal events adds complexity to the clinical question and statistical modelling. Both
regulators and practitioners are exploring various options without any go-to solution. The concept
of estimands proposes a framework to describe treatment effects clearly (EMA (2020a)). This thesis
will discuss and suggest estimands as well as analysis methods suitable for such scenarios. These
analyses should provide treatment effect measures, estimands, on recurrent event endpoints which
has a clinical interpretation both with and without terminal events. Ideally, it should be simple
for both statisticians, regulators, general practitioners, and patients to understand what treatment
effect such analyses describe. Emphasis will be placed on inference on treatment effects drawn from
randomised controlled trials. Extensions to observational data will be discussed briefly.

1.2 Objectives

The overall objective of this PhD project is to investigate, develop, and implement statistical methods
with clinically interpretable treatment effect measures for the analysis of recurrent event endpoints
with and without presence of terminal events.

In detail, the project has the following objectives:

1. Development and characterisation of statistical methods for recurrent event endpoints, par-
ticularly in the presence of terminal events

2. Recommendation of statistical methods for recurrent event endpoints in clinical trials with a
focus of clinically interpretable treatment effect measures, i.e. estimands

3. Development of statistical methods for recurrent events that are used in statistical analysis
plans for Novo Nordisk’s randomised controlled trials

4. Implementation of new statistical methods for recurrent events in statistical software that is
made publicly available

These objectives will be met through the research conducted in the relation to the manuscripts
included in this thesis.
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1.3 Overview of thesis

The thesis consists of four manuscripts and an R-package with the overall aim of investigating and
developing methods for analysing recurrent events with or without presence of terminal events. The
following manuscripts are included in the thesis,

Manuscript I Methodological challenges in the analysis of recurrent events for randomised con-
trolled trials with application to cardiovascular events in LEADER

Manuscript II Bivariate pseudo-observations for recurrent event analysis with terminal events

Manuscript IIx R-package ‘recurrentpseudo’: Creates Pseudo-Observations and Analysis for
Recurrent Event Data

Manuscript III Simulation-based sample size calculations for recurrent events with competing
risks

Manuscript IV Marginal models for recurrent events under covariate dependent censoring

All manuscripts describe various aspects of obtaining clinically relevant treatment effects for analysing
recurrent events with or without competing risks in the setting of randomised controlled trials.
Manuscript IV discusses dependent censoring in the realm of randomised trials, but some aspects
could be extended to observational data. The publication status of each manuscript is displayed in
Table 1.1.

Manuscript Publication status
I Published in Pharmaceutical Statistics (January 2022)

II Published in Lifetime Data Analysis (April 2023)

IIx Published on CRAN (September 2022)

III Under revision for Pharmaceutical Statistics (March 2023)

IV In preparation

Table 1.1: Publication status of each manuscript.

The thesis consists of seven chapters followed by the manuscripts. Chapters 2-4 introduce key
concepts for the analysis of recurrent events both with and without terminal events. Chapter 5
introduces pseudo-observations within survival analysis and recurrent events. Chapter 6 discusses
various important aspects for planning randomised controlled trials with confirmatory recurrent
event endpoints. Chapter 7 introduces causality and addresses analysis of recurrent events under
dependent censoring. Table 1.2 outlines the overall structure of the thesis.

Moreover, the following describes the background for each manuscript,

Manuscript I The background is found in Chapters 2-4

Manuscript II(x) The background is found in Chapters 2-5

Manuscript III The background is found in Chapters 2-4, and 6

Manuscript IV The background is found in Chapters 2-5, and 7

Chapters 2-4 discuss and characterise current statistical methods for recurrent events with or without
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terminal events. In relation to these chapters, recommendations of statistical methods for analysing
recurrent events in randomised trials that ensures a clinically relevant treatment effect will be made
(objectives 1-2). The development of new statistical methods for recurrent events that can be used
in Novo Nordisk’s clinical trials is covered by the Manuscripts II-IV, which is introduced in Chapters
5-7 (objective 3). In relation to the new statistical methods for recurrent events, software has been
made available on CRAN and GitHub (objective 4). Vignettes which describe the content of the R

software are available on GitHub and has been included after the relevant manuscripts. The focus
in this thesis will be inference drawn from randomised trials. Extensions to observational data will
be introduced in Chapter 7.

Chapter Content
2 introduces multi-state models for survival data and recurrent

events with or without competing risks.
3 discusses relevant regression models for modelling recurrent events

with or without competing risks.
4 explores conditional and marginal parameters of interest for quan-

tifying a treatment effect from randomised controlled trials.
5 introduces pseudo-observation within survival analysis. Relevant

parameters to compute pseudo-observations on based recurrent
events are discussed.

6 discusses general concepts for planning clinical trials with a con-
firmatory recurrent event endpoint.

7 introduces causality and issues related to dependent censoring.
Marginal models for recurrent events are discussed under depen-
dent censoring.

Table 1.2: Overall structure of thesis.





Chapter 2

Multi-state models

Multi-state models provide a general framework for describing and analysing life history data. Life
history data governs information on individuals collected over time. In the analysis of life history
data, e.g., survival analysis, the waiting time until occurrence of a specific event is often of interest.
This data collection, which observes and records events for individuals over time, is characterised
by right-censoring. Right-censoring occurs when the observed individuals do not have the event of
interest within the period of observation. Thus, all that is known, is that the individual did not
have the event of interest. Due to this special feature, the field of survival analysis emerged, which
handles censoring by focusing on transition intensities.

The type of life history data that we are interested in, is collected on individuals in (almost)
continuous time. Usually, event information is available in days. Thus, attention is restricted to
multi-state models in continuous time as opposed to discrete time as this resembles the continuous
collection.

The multi-state models discussed in this chapter provides the overall conceptual and mathematical
background for Manuscripts I, II(x), III and IV. Knowledge of general inference from survival, com-
peting risks, and recurrent events data is required to read these manuscripts. This chapter focuses
on visualizing the concepts of interest, formulating relevant quantities as well as non-parametric
inference using multi-state models. Regression models will be discussed in Chapter 3. Treatment
effects for randomised trials will be elaborated in Chapter 4.

Cook and Lawless (2018) provide a comprehensive introduction to multi-state models as well as
detailed modelling considerations. A multi-state process in continuous time is a stochastic process
X(t), t ∈ [0, τ ], τ < ∞ with a finite state space S = {0, . . . ,K}. The occupied state at time t is
represented by X(t). The transition intensity function between states {k, l} ∈ S, k ̸= l, is defined
as

λkl(t | H(t−)) = lim
dt→0

P (X(t+ dt) = l | X(t) = k,H(t−))

dt
. (2.1)

Here t− denotes a time that is infinitesimally smaller than time t. The state occupation history
over [0, t) is represented by H(t−), where H(t) = {X(s), 0 ≤ s ≤ t}. The state occupation history
for individual i is given by Hi(t) = {Xi(s), 0 ≤ s ≤ t}, which describes the states that individual
i = 1, . . . , n has occupied. Compressed notation will be used and the i’s will often be suppressed in
the notation.

8
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A Markov multi-state process satisfies that λkl(t | H(t−)) = λkl(t). In other words, this implies that
the dependence on the history is given only through the current state. This corresponds to so-called
total time models: evaluating the time since, e.g., randomisation.

For a semi-Markov multi-state process, it holds that λkl(t | H(t−)) = hkl(B(t)), where hkl(t)
denotes the transition intensity function and B(t) denotes the time since entry into the current state
k. That is, the dependence on the history depends alone on the duration in the current state. This
corresponds to so-called gap time models: modelling the duration of the stay in a given state.

For Markov models, the transition probabilities may be elegantly presented using product integration
(Cook and Lawless (2018)). The K ×K transition probability matrix, P (s, t), may be obtained by
product integration as

P (s, t) =
∏

[s,t)

{I +Q(u) du}, (2.2)

where Q(t) denotes theK×K matrix with λkl(t) in the off-diagonal entries (k ̸= l) and −∑k ̸=l λkl(t)
in the diagonal entries (k = l). In P (s, t), the (k, l)’th element is P (X(t) = l | X(s) = k).

Data for the multi-state process is characterised by the presence of right-censoring. We distinguish
between independent and dependent censoring. Independent censoring occurs when the censoring
process is unrelated to the event (or failure) process of interest. Administrative censoring occurring
due to study closure is typically perceived as being independent. On the other hand, censoring is
said to be dependent if censoring is related to the event process in some way. An example would be
if individuals tend to drop out of the study for reasons that are related to the failure process.

2.1 Multi-state models for survival data

First, multi-state models are illustrated using traditional survival data, e.g., time-to-death data.
Let the survival time be given by D∗. Due to right-censoring, D∗ is incompletely observed, since
either a censoring or survival time is observed. To that end, the censoring indicator is defined as
δ = I(D∗ ≤ C). Moreover, let D = D∗ ∧C. Figure 2.1 displays the relevant multi-state model with
the states ‘alive’ and ‘dead’. The instantaneous probability of death, λ01(t), may be considered.
Here,

λ01(t) = lim
dt→0

P (X(t+ dt) = 1 | X(t) = 0)

dt
.

The cumulative hazard of dying is given by

Λ01(t) =

∫ t

0

λ01(u) du.

The probability of surviving past time t, the survival function, is defined by,

S(t) = P (D∗ > t) = exp(−Λ01(t)).

The cumulative hazard of death may be estimated using the non-parametric Nelson-Aalen estimator
(Aalen (1978), Nelson (1969), Nelson (1972)). This estimator is given by,

Λ̂01(t) =

∫ t

0

1

Y (u)
dN(u),
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where Y (t) = I(t ≤ D∗) denotes the at-risk process and N(t) = I(D∗ ≤ t) denotes the event
process. See Andersen, Borgan, et al. (1993) for further details on counting processes and stochastic
integration. The Nelson-Aalen estimator is a step function with jumps at each observed failure time.
Under independent censoring, the Nelson-Aalen estimator is an asymptotically unbiased estimator
of Λ01(t) (Andersen, Borgan, et al. (1993), Martinussen and Scheike (2006)). Similarly, a non-
parametric estimator, the Kaplan-Meier estimator, exists for estimation of the survival probabilities
(Kaplan and Meier (1958)). The Kaplan-Meier estimator is given by,

Ŝ(t) =
∏

u≤t

(
1− dΛ̂01(u)

)
=
∏

u≤t

(
1− dN(u)

Y (u)

)
.

The Kaplan-Meier estimator is also a step function with jumps at the observed failure times. This
estimator, Ŝ(t), is an asymptotically unbiased estimator of the survival probability, S(t), under
independent censoring (Andersen, Borgan, et al. (1993)).

0: alive 1: dead

λ01(t)

Figure 2.1: Multi-state model for a two-state survival model.

0: alive 2: dead, cause 2

1: dead, cause 1

3: dead, cause 3

λ01(t)

λ02(t)

λ03(t)

Figure 2.2: Multi-state model for a competing risks model.

In some situations, it may be possible to die from more than one cause. The causes of death
are ‘competing’. Such data is within the realm of competing risks. Now, let ∆ = {1, 2, . . .} be a
cause-of-death indicator, which indicates the cause of death (cause 1, cause 2, and so forth). Figure
2.2 represents a competing risks setting with three competing causes of death. The cause-specific
hazards (intensities) are given by λ01(t), λ02(t) and λ03(t), with

λ0h(t) = lim
dt→0

P (X(t+ dt) = h | X(t) = 0)

dt
, for h ∈ ∆ = {1, 2, 3}.

The cause-specific cumulative hazard for cause h is given by,

Λ0h(t) =

∫ t

0

λ0h(u) du.
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The overall probability of being alive at time t, the survival probability, is given by

S(t) = exp

(
−
∫ t

0

∑

h

λ0h(u) du

)
.

The overall survival probability may still be estimated using the Kaplan-Meier estimator while
considering all causes of death as a failure. The probability of dying from cause h before time t, the
cumulative incidence, is given by

Fh(t) =

∫ t

0

S(u)λ0h(u) du.

As seen, the cumulative incidence depends on the overall survival probability and the cause-specific
hazard. Hence, the probability of dying of cause h prior to time t depends both on; how likely
it is that the individual has survived until time t and the hazard of dying of cause h. Thus, the
cumulative incidence depends on all cause-specific hazard functions. Consequently, the one-to-one
relationship between rates and risks is lost when moving away from studying all-cause mortality, as
discussed in Andersen, Geskus, et al. (2012). The Aalen-Johansen estimator is a non-parametric
estimator of the cumulative incidence function (Aalen and Johansen (1978)). This estimator is given
by,

F̂h(t) =

∫ t

0

Ŝ(u) dΛ̂0h(u).

Large sample behaviour of this estimator is discussed in Andersen, Borgan, et al. (1993). Specifi-
cally, it is asymptotically unbiased and the variance can be consistently estimated under independent
censoring. Technically, the cause-specific cumulative hazard for cause h, Λ0h(t), may be estimated
by considering events of cause h and censoring for the competing causes using the Nelson-Aalen
estimator.
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2.2 Multi-state models for recurrent events

Recurrent events are events that can happen several times during an individual’s life. Examples
could include hospitalisation or bruises. Such events are collected for all individuals during the
period of observation. These events are still characterised by the presence of right-censoring. Figure
2.3 illustrates recurrent events and right-censoring for six individuals.

t: time0
Figure 2.3: Illustration of recurrent events for six individuals. The filled and unfilled circles
represent events and censoring, respectively.

0: No event 1: 1 event 2: 2 events

λ01(t) λ12(t) λ23(t)

Figure 2.4: A recurrent event process.

0: No episode 1: Episode

λ01(t)

λ10(t)

Figure 2.5: A recurrent event process with episodes (risk-free periods).

After experiencing such events, individuals may or may not be at risk of experiencing an event
immediately after. For example, if subjects are hospitalised, they may not be at risk of being
hospitalised again until admission from the hospital. Here, there is ‘gaps’ between at-risk peri-
ods. We will denote such events by ‘episodes’ to indicate the risk-free periods. If instead bruises
were considered, subject may be at risk of getting a new bruise shortly after experiencing the first
bruise. In this scenario, there would be no ‘gaps’ between the at-risk periods. Figure 2.4 illustrates
a multi-state model for recurrent events with no ‘gaps’ between the at-risk periods. Alternatively,
Figure 2.5 illustrates a multi-state model for recurrent events with ‘gaps’ between the at-risk periods.

At times, recurrent events such as hospitalisations occur in a population with a high mortality rate.
This could happen if a very ill population is followed over time. Figure 2.6 illustrates such a sit-
uation for six individuals. When mortality is non-negligible, both a recurrent event process and
death process may be of interest in a multi-state model. Figure 2.7 illustrates a multi-state model
for recurrent events, terminal events, and no ‘gaps’ between at-risk periods. Figure 2.8 illustrates a
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multi-state model for recurrent events, terminal events, and ‘gaps’ between at-risk periods.

t: time0
Figure 2.6: Illustration of recurrent events and deaths for six individuals. The filled, unfilled, and
crossed-out circles represent events, censoring, and deaths, respectively.

0: No event 1: 1 event 2: 2 events

D: Dead

λ0D(t)
λ1D(t)

λ2D(t)

λ01(t) λ12(t) λ23(t)

Figure 2.7: A recurrent event process with a terminal event.

0: No episode 1: Episode

D: Dead

λ01(t)

λ10(t)λ0D(t) λ1D(t)

Figure 2.8: A recurrent event process with a terminal event and with episodes (risk-free periods).

The number of recurrent events by time t, N∗(t), could be an interesting quantity when focusing
on recurrent events. Figure 2.9 displays an example of the behaviour of N∗(t) and X(t) when a
terminal event exists, and (a) subjects are immediately at risk of experiencing a new event or (b)
when subjects have periods where they are not at risk of experiencing the event of interest. This
corresponds to the multi-state models in Figures 2.7 and 2.8 (either risk-free periods or not). Here,
X(t) ∈ S = {0, 1, 2, 3, 4} and the states 0, 1, 2, 3, 4 represents ‘No event’, ‘1 event’, ‘2 events’, ‘3
events’, and ‘Death’, respectively, for situation (a). Conversely, X(t) ∈ S = {0, 1, 2} and the states
0, 1, 2 represents ‘No episode’, ‘Episode’, and ‘Death’, respectively, for situation (b). The expected
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t

N∗(t)

0

1

2

3

4

D∗

t

X(t)

0

1

2

3

4

D∗

(a)

t

X(t)

0

1

2

D∗

(b)

Figure 2.9: Examples of N∗(t) and X(t) processes for a recurrent event process with a terminal
event, D∗, and (a) no gaps between at-risk periods or (b) gaps between at-risk periods.

number of recurrent events is given by

µ(t) = E(N∗(t)) =

∫ t

0

dE(N∗(u)).

When there are no terminal events, the Nelson-Aalen estimator may be used to estimate the marginal
mean function as suggested by Lawless and Nadeau (1995). That is, the marginal mean may be
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non-parametrically estimated by

µ̂(t) =

∫ t

0

1

Y (u)
dN∗(u).

The marginal mean estimator is a step function with jumps at the observed recurrent event times.
This estimator will be an asymptotically unbiased estimator of µ(t) under independent censoring
(Lawless and Nadeau (1995)).

Cook and Lawless (1997) argued that the marginal mean should be calculated differently in the
presence of terminal events. Specifically, it holds that,

µ(t) = E(N∗(t)) =

∫ t

0

P (D∗ > u)E(dN∗(u) | D∗ ≥ u). (2.3)

The Nelson-Aalen estimator will be an upwards biased estimator of µ(t) if there is terminal events
(Cook and Lawless (1997), Ghosh and Lin (2000)). Instead, Cook and Lawless, subsequented by
Ghosh and Lin, suggest considering the plug-in estimator,

µ̂(t) = E(N∗(t)) =

∫ t

0

Ŝ(u) dR̂(u | D∗ ≥ u), (2.4)

where Ŝ(t) is the Kaplan-Meier estimator of S(t) and R̂(t | D∗ ≥ t) is the Nelson-Aalen estimator

of R(t | D∗ ≥ t). Technically, R̂(t | D∗ ≥ t) is estimated by considering the occurrence of recur-
rent events and censoring for death using the Nelson-Aalen estimator. From equation (2.3), it is
apparent that the expected number of recurrent events with terminal events will be mixture of; the
probability of being alive and the expected number of recurrent events while alive. Two-sample tests
and large sample properties were discussed by Ghosh and Lin (2000). The loss of the one-to-one
correspondence between rates and risks for general competing risks data was discussed in Section
2.1. Analogously, this correspondence is also lost for relationship between the marginal mean and
the rates, as seen through equation (2.3). In summation, it will be important to consider both rates
of recurrent events and mortality when analysing recurrent events with terminal events.

Other marginal features of X(t) than N∗(t) may be of interest when considering the recurrent event
process. Examples could include the state occupation probability in a given state, e.g., P (X(t) = 1),
which corresponds to the probability of being in the ‘Episode’ state at time t for the multi-state
model in Figure 2.5. The state occupation probabilities are given by,

ψk(t) = P (X(t) = k) =

K∑

l=0

P (X(t) = k | X(0) = l)P (X(0) = l).

If everyone starts in state 0, this simplifies to P (X(t) = k) = P (X(t) = k | X(0) = 0) = P0k(0, t).

For Markov models, the cumulative intensities between the states k and l, Λkl(t) =
∫ t

0
dΛkl(u) =∫ t

0
λkl(u) du may be estimated non-parametrically using the Nelson-Aalen estimator,

Λ̂kl(t) =

∫ t

0

1

Yk(u)
dNkl(u),

where Yk(t) denotes the at-risk process for state k and Nkl(t) the event process counting transitions
from k to l. Subsequently, the transition probabilities may be estimated using the structure in the
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transition probability matrix in equation (2.2),

P̂ (s, t) =
∏

[s,t)

{I + Q̂(u) du}, (2.5)

where the entries in Q̂(u) du are dΛ̂kl(u) for the off-diagonal terms (k ̸= l) and −∑k ̸=l dΛ̂kl(u)
in the diagonal (k = l). The estimator in equation (2.5) is an Aalen-Johansen type product limit
estimator (Aalen and Johansen (1978)). Large sample results of this estimator is discussed in
Andersen, Borgan, et al. (1993). In summary, the state occupation probability, P (X(t) = k), may

be estimated from P̂ (0, t). For example, for the multi-state model in Figure 2.5, assume that we
wish to calculate P (X(t) = 1). Then, if P (X(0) = 0) = 1,

P01(0, t) = P (X(t) = 1 | X(0) = 0) = P (X(t) = 1).

Hence, P (X(t) = 1) may be estimated by P̂01(0, t) through equation (2.5) where

Q̂(t) dt =

(
−dΛ̂01(t) dΛ̂01(t)

dΛ̂10(t) −dΛ̂10(t)

)
.

An alternative measure may be obtained by considering the average time spent in state k by time
t, ϕk(t). This may be computed based on the state occupation probabilities, since

ϕk(t) = E

(∫ t

0

I(X(u) = k) du

)
=

∫ t

0

P (X(u) = k) du, for k ∈ S.

Hence, the area under the curve is the time spent in state k until time t. That is,

ϕ̂k(t) =

∫ t

0

P̂ (X(u) = k) du, for k ∈ S.

Thus, for example, for the multi-state model in Figure 2.5, the average time spent in the ‘Episode’
state (average time of an episode) may be estimated by ϕ̂1(t) =

∫ t

0
P̂01(0, u) du if P (X(0) = 0) = 1.

One way of handling the situation with both recurrent events and terminal events is to focus on the
composite endpoint which consists of both recurrent events and death. Time-to-first composite event,
either first recurrence or death, could be considered. This composite event could be examined using
the multi-state model in Figure 2.1. The composite event could be analysed using the proportional
hazards model of Cox (1972). In this model, the instantaneous probability of getting an event (either
first recurrent or death) given covariates, λ(t | Z), is given by,

λ(t | Z) = λ0(t) exp(β
TZ),

where λ0(t) denotes the unspecified baseline intensity and β the effect of the Z covariates. In order
to utilise more data, all recurrences may be considered for such a composite endpoint. That is, the
recurrent event process consists of both actual recurrent events and death. An example could be
the composite recurrence of hospitalisation for heart failure and death. Interpretation of a recurrent
event process with a terminal component is less clear, since occurrence of a death prevents further
recurrences. This will be elaborated and discussed in more detail later.
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In the following chapters, there may be situations in which it can be beneficial to split the terminal
event into two or more components. The multi-state models in Figures 2.11 and 2.10 illustrate such
scenarios with two death types. These multi-state models naturally occur when contemplating to
formulate a recurrent event process with a type of terminal event component but with other compet-
ing terminal events. An example could be recurrent heart failure hospitalisation and cardiovascular
death with competing non-cardiovascular death. For modelling such data, it would be beneficial to
split mortality into two components.

0: No event

D1: Death type 1

1: 1 event 2: 2 events

D2: Death type 2

λ0D2(t)
λ1D2(t)

λ2D2(t)

λ0D1(t)
λ1D1(t)

λ2D1(t)

λ01(t) λ12(t) λ23(t)

Figure 2.10: A recurrent event process with two types of terminal events, death type 1 and 2.

0: No episode 1: Episode

D1: Death type 1 D2: Death type 2

λ01(t)

λ10(t)

λ0D1(t)
λ1D1(t)

λ0D2(t) λ1D2(t)

Figure 2.11: A recurrent event process with two types of terminal events, death type 1 and 2, and
with episodes (risk-free periods).



Chapter 3

Regression models for recurrent
events

Often it will be desirable to formulate a regression model that captures the effect of covariates
on recurrent events. The following chapter will introduce the most common models for recurrent
events with or without competing risks. The regression models either target conditional or marginal
features of the recurrent event process as discussed by Cook and Lawless (2007). The conditional
models focus on specifying the transition intensities in multi-state models for recurrent events with
or without terminal events. On contrary, the marginal models focus on marginal features of the
stochastic process, such as the expected number of events by time t, state occupation probabilities
and more, with or without the influence of terminal events.

The following chapter will focus strictly on semi-parametric multiplicative regression models. Thus,
the chapter will not cover additive regression models for recurrent events or fully parametric re-
gression models for recurrent events. For additional literature on additive regression models for
recurrent events the reader is referred to Schaubel et al. (2006), Zeng and Cai (2010), and Sun et al.
(2020). Fully parametric models may of interest, but the flexibility of semi-parametric models is a
general strength. However, a correctly specified parametric model will be more powerful than the
semi-parametric counterpart. Model diagnostics and goodness-of-fit techniques are not covered in
this chapter but should be explored for each model. Various residual processes may be explored for
departures from the models (see, e.g., Lin et al. (2000), and Ghosh and Lin (2002)).

The regression models introduced in this chapter provides the background for models used or dis-
cussed in Manuscripts I, II(x), III, and IV. Manuscript I presents several methods for the analysis
of recurrent events and focus on the challenges in extracting treatment effects from recurrent event
data with terminal events through a case study. Treatment effect measures for these models will
be elaborated further in Chapter 4. Manuscripts II, III, and IV discuss marginal regression models
modelling expected number of recurrent events which are introduced in this chapter.

18
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3.1 Conditional models for recurrent events

Assume now that there is a single event intensity such that

λ(t) = λ01(t) = λ12(t) = . . .

Further, assume that there are no competing risks. Several regression models may be formulated
for λ(t) and we will now discuss the most common models. Andersen and Gill (1982) proposed a
counting process style extension of the Cox model which allow the event intensity to depend on the
past through time-dependent covariates,

λ(t | Z(t)) = λ0(t) exp(β
TZ(t)),

where λ0(t) is a unspecified baseline intensity function and Z(t) denotes potentially time-varying
covariates. For recurrent events, Z(t) could contain information on the previous number of events as
well as other covariates. The covariates, Z(t), represent the relevant history of the recurrent event
process, H(t−), as per equation (2.1). The model assumes that observations are independent among
subjects, but robust standard errors may be used to account for dependency within subjects.

Alternatively, each transition may be governed by a baseline intensity function and potentially
own covariate effect. This can be accommodated by considering the Cox type model with time-
dependent strata suggested by Prentice, Williams, and Peterson (1981),

λ(t | Z) = λk,k+1(t) exp(β
T
k Z), k = 0, 1, . . .

where λk,k+1(t) is the unspecified baseline intensity function for the transition between states k and
k+ 1 and Z denotes the covariates. The effect of Z can be allowed to differ with each transition, k,
or to be the same across all transitions, corresponding to βT = βT

k .

One may believe that some subjects are more prone (“frail”) to experience recurrent events. This
naturally introduces the notion of a frailty model, where the recurrent event intensity is assumed to
depend on the frailty of each individual,

λ(t | Z(t), ν) = νλ0(t) exp(β
TZ(t)),

where ν is a random and unobserved frailty which is assumed to follow some distribution, λ0(t)
is the unspecified baseline intensity function and Z(t) denotes the possibly time-varying covariates
(Vaupel et al. (1979)). Often, ν is assumed to be Gamma distributed with mean 1 and variance σ2.
The larger σ, the more heterogeneous the population is.

In the presence of terminal events, the Andersen and Gill (AG) model, and the Prentice, Williams
and Peterson (PWP) model may be used to model the cause-specific hazard of recurrent events,
as depicted in Figures 2.7 and 2.8. Technically, this can be achieved by treating the competing
cause as a censoring in estimation. This is analogous to the way in which cause-specific hazards
can be estimated in a time-to-first event situation by technically censoring for the competing causes
(Andersen, Geskus, et al. (2012)). The frailty model will also model the cause-specific hazard of
recurrent events in the presence of terminal events. However, if individuals that are frail to experience
recurrent events also are frail to die, the assumption of independent censoring given frailty is violated
as discussed by Nielsen et al. (1992). This would imply that the frailty model is mis-specified in
such a scenario and inference on the cause-specific hazard function derived from such an analysis
should be considered twice. The joint frailty model suggested by Liu et al. (2004) tackles this issue
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by introducing a common frailty which is allowed to affect both recurrent events and death. The
recurrent event intensity is given by λ(t | Z(t), ν) and the death intensity is given by λD(t | Z(t), ν),
where it is assumed that

λ(t | Z(t), ν) = νλ0(t) exp(β
TZ(t)),

λD(t | Z(t), ν) = νγλD0 (t) exp(αTZ(t)).

Here, ν is a random and unobserved frailty with some distribution, λ0(t) is the unspecified base-
line intensity function for recurrent events, λD0 (t) is the unspecified baseline intensity function for
terminal events, and Z(t) denotes the possibly time-varying covariates. Further, the parameter γ
expresses the relationship between the frailty on recurrent events and death. If γ > 0, an increased
frailty will increase the hazard of both recurrent events and deaths. Covariate effects are expressed
through β (effect on recurrent events) and α (effect on terminal events).

Inference

Inference for the intensity models may be based on a maximum likelihood approach. See Chapter
3 and 6 of Cook and Lawless (2007) for further technical details on likelihood estimation for each
model type. Consider the ordered m event times, t1 < . . . < tm, occurring over the time interval
[τ0, τ ]. Conditional on the history at time τ0, H(τ0), the probability density of having m events at
the ordered times with an intensity of the form in equation (2.1), is

m∏

j=1

λ(tj | H(t−j )) · exp
(
−
∫ τ

τ0

λ(u | H(u−))

)
,

which can be obtained through product integration, see Cook and Lawless (2007). The likelihood of
an event is directly obtainable when the censoring process is completely independent of the recurrent
event process. With model parameters, θ, the likelihood may be written as,

L(θ) =

n∏

i=1

Li(θ),

where i denotes the individual (i = 1, . . . , n). The likelihood is based on the conditional probability
of observing mi events at ti1 < . . . < timi

times for individual i. Under the Andersen and Gill
model, the likelihood takes the form

Li(θ) =

mi∏

j=1

{λ0(tij) exp(βTZ(tij))} · exp
(
−
∫ τ

τ0

Yi(u)λ0(u) exp(β
TZi(u)) du

)
,

where τ = max{τ1, . . . , τn}. If the censoring process is conditionally independent of the recurrent
event process, L(θ) is a partial likelihood. As long as the observation process, Y (t), only depends
on information in the history, H(t−), the partial likelihood may be treated as a standard likelihood.

The partial maximum likelihood estimator, θ̂, may be obtained by maximizing the partial likelihood,
L(θ). Under some regularity conditions, θ̂ has well-behaved large sample properties. Breslow-type
estimators are available for estimating the cumulative baseline hazard.

The inference for frailty models is more complex and is discussed in Chapter 3 and 6 in Cook and
Lawless (2007) and in detail in Hougaard (2000). Of note, the likelihood contribution for individual
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i for the (shared) frailty model conditional on the frailty, νi, takes the form,

Li(θ | νi) =
mi∏

j=1

{νiλ0(tij) exp(βTZ(tij))} · exp
(
−
∫ τ

τ0

νiYi(u)λ0(u) exp(β
TZi(u)) du

)
.

For semi-parametric frailty models, inference is usually based on the Expectation-Maximization
(EM) algorithm or penalised likelihood as the likelihood cannot be maximised directly (Balan and
Putter (2020)).

3.2 Marginal models for recurrent events

Assume first that there are no terminal events. A marginal Cox model for the waiting time to the
k’th recurrent event was suggested by Wei, Lin, and Weissfeld (1989). This models the waiting time
from randomisation until each event. It is assumed that the marginal intensities, λk(t | Z), are given
by

λk(t | Z(t)) = λ0k(t) exp(β
T
k Z(t)), k = 1, 2, . . . ,

where λ0k(t) denotes the unspecified baseline intensity function for the event k and βk is event-
specific effect of covariates Z(t). Cook and Lawless (2007) discuss shortcomings of this model; the
specification of the hazard requires a choice of the maximum number of recurrent events, individuals
are at risk for all events from the beginning and it is implausible that a proportional hazards model
will hold for each recurrent event. The model is known as the WLW model.

A regression model for the rate of recurrent events, dµ(t | Z(t)), given possibly time-varying external
covariates, Z(t), was formulated by Lin, Wei, Yang, and Ying (2000), where

dµ(t | Z(t)) = E(dN∗(t) | Z(t)) = exp(βTZ(t))dµ0(t). (3.1)

Here, dµ0(t) denotes the unspecified baseline rate function and βT is the effect of covariates Z(t).
This model is a proportional rates model. If there are only time-fixed covariates, such that Z(t) = Z,
the model simplifies to

µ(t | Z) = E(N∗(t) | Z) = exp(βTZ)µ0(t), (3.2)

where µ0(t) is the baseline mean function. This is referred to as the proportional means model.

The Lin, Wei, Yang, and Ying (LWYY) model will be mis-specified in the presence of terminal
events. This is similar to the situation for the non-parametric estimators of the expected number of
recurrent events with terminal events discussed in Chapter 2. In the presence of competing risks,
Ghosh and Lin (2002) suggested an adjustment of the proportional means and rates model. The fact
that no recurrent events can occur after death is technically handled in the estimation using inverse
probability of censoring weights (IPCW) or inverse probability of survival weights (IPSW). IPCW
gives more weight to the alive subjects and thus compensates for the fact that the censoring times
are unknown for dead subjects. Equations (3.1) and (3.2) are assumed to be fulfilled corresponding
to either the proportional rates or means model. Here, N∗(t) has no jumps after D∗ has occurred.
Hence, with no time-varying covariates, the Ghosh and Lin (GL) model targets the expected num-
ber of recurrent events by time t in a world where individuals may die. This implies that number
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of events cannot be interpreted alone without considering the distribution in survival among the
selected covariates. A large value of µ(· | Z) could be the result of an increased survival for Z, an
increased event rate while alive or a combination of the two. The same pattern is clear when consid-
ering the non-parametric estimator of µ(t) in the presence of competing risks as given in equation
(2.4) in Section 2. A similar analogy holds when consideration marginal inference, e.g., cumulative
incidences, in a competing risks model. Therefore, Andersen, Geskus, et al. (2012) highlight that
both rates and risks for all competing events are useful when studying models for competing risks.

An alternative approach is to define a composite endpoint consisting of both recurrent events and
death. Mao and Lin (2016) suggested to model the weighted composite endpoint which consists of
one or more recurrent event types and has death component. Each k’th event type, including death,
is given a weight, wk, which indicates the severity for k = 1, . . . ,K. For each event type, N∗

k (t)
counts the number of events by time t. The overall number of severity-weighted events by time t,
N∗(t), is given by

N∗(t) =

K∑

k=1

wkN
∗
k (t). (3.3)

It is assumed that Z(t) has a multiplicative effect on the marginal rate funtion of N∗(t), such that

dµ(t | Z(t)) = E(dN∗(t) | Z(t)) = exp(βTZ(t)) dµ0(t).

This reduces to the proportional means model if there is no time-varying covariates, such that
E(N∗(t) | Z) = exp(βTZ)µ0(t). Thus, the inference is now on the weighted composite counting
process. The resulting estimates will be a mixture of the covariate’s effects on the composite end-
point. Difference in mortality for covariates will be an explicit part of the model in contrast to the
Ghosh and Lin model. The introduction of weights, allows the user to quantify how much worse
experiencing a death is compared to the recurrent events.

The model suggested by Mao and Lin models a composite recurrent event where death is a
component. In the context of clinical relevance of the composite recurrent event endpoint, it may
be of interest to model a composite event which only has a specific type of death included as a com-
ponent. An example could be composite recurrent heart failure hospitalisation and cardiovascular
death (see Figure 2.10). Here, the effect of the covariates, Z(t), on this composite cardiovascular
endpoint is of interest. Naturally, the model of Mao and Lin is no longer fulfilled, since a competing
risk of non-cardiovascular death occurs. Furberg, Rasmussen, et al. (2022) suggest a modification
of the procedure which accommodates this situation (Manuscript I). Any dependent censoring in-
troduced by death is handled using IPCW, that is, for both cardiovascular and non-cardiovascular
death in this example. Inference remains to only focus on the marginal rate of recurrent heart failure
hospitalisation and cardiovascular death.

Inference

Inference from the WLW model relies on maximizing the partial likelihood for the k’th failure,
as discussed in Section 3.1. For the remaining marginal models, inference is based on estimating
equations. The inference is based on specifying the following type of estimating equations,

U(β, t) =

n∑

i=1

∫ t

0

{Zi(u)− Z̄(β, u)} dNi(u).
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For the LWYY model, Z̄(β, u), takes the form,

Z̄(β, u) =
1
n

∑n
i=1 Yi(t)Zi(t) exp(β

TZi(t))
1
n

∑n
i=1 Yi(t) exp(β

TZi(t))

The solution to the estimating equations, U(β, τ) = 0, is denoted β̂. Under independent censoring

and some additional regularity conditions, the estimator β̂ is consistent and asymptotically normal.
Moreover, an asymptotically well-behaved Breslow-type estimator may be constructed for µ0(t).
The specification of Z̄(β, u) depends on the specific model.

3.3 Compatibility of conditional and marginal models

In general, a conditional intensity-based model does not ensure that a known marginal model for
recurrent events holds. This is equivalent to the loss in one-to-one correspondence between risks and
rates for competing risk models (Andersen, Geskus, et al. (2012)). For example, the LWYY model
with a binary time-fixed covariate implies that

µ(t | Z) = µ0(t) exp(βZ).

Whereas, the AG model with a binary time-fixed covariate assumes that

λ(t | Z) = λ0(t) exp(βZ).

The point estimates from these models will be the same but standard error estimates will remain
different if there is dependence among recurrent events for an individual as discussed by Lin et al.
(2000) and Amorim and Cai (2015).

Hougaard (2000) discusses frailty-type models for recurrent events extensively. In Chapter 7 (pg.
232), it is emphasised that proportional conditional hazards (e.g., a frailty model) does not gen-
erally correspond to proportional marginal hazards. An exception happens when using a positive
stable frailty distribution. Moreover, he highlights that the benefit of marginal models is that the
dependence between recurrent events does not need to be specified. However, as a result, a marginal
model will not always enable inference on such dependency parameters (Chapter 13.3, pg. 431).

The concept of collapsibility was discussed by Greenland et al. (1999). Due to non-linearity,
certain adjusted and non-adjusted effects may not be the same. If a treatment effect was collapsible,
the same effects would be obtainable while adjusting for additional predictive covariates or not.
Daniel et al. (2021) discuss collapsible effects for binary and time-to-event outcomes.



Chapter 4

Treatment effect measures for
recurrent events

The goal of this chapter is to recommend and suggest clinically relevant treatment effect measures
for analysing recurrent events with and without terminal events for randomised controlled trials.
Therefore, the concept of estimands will be introduced. Estimands quantify the treatment effect
of interest. The focus of this chapter will restrict attention to setting of randomised trials with
a single covariate of interest, namely the randomised treatment, Z. Without of loss of generality,
we assume that the treatment is binary, such that Z ∈ {0, 1}. In this setting, this chapter will
discuss what inference may be drawn using the regression models described in the previous chapter.
Moreover, relevant non-parametric estimates will be briefly discussed. We will distinguish between
conditional and marginal parameters in line with the distinction between conditional (intensity-
based) and marginal models discussed in the previous chapter. Furthermore, the relevance of other
treatment effect measures will be discussed.

A key lesson from analysing randomised trials is not to condition on anything occurring post-baseline
as this may bias the treatment effect. Clearly, the same holds when analysing recurrent events. Thus,
intensity models which condition on the previous number of recurrent events may bias the treat-
ment effect, as argued by Cook and Lawless (2007). If the treatment has an effect on the number
of recurrent events, conditioning both on recurrent events and the previous number of events will
condition some of the treatment effect away. Analogous considerations apply to modelling gap times
as individuals will be differently selected into gap times after the first gap time (Cook and Lawless
(2007), Hougaard (2022)). Thus, the interest will mainly be on Markov multi-state models modelling
total time. Due to these facts, Cook and Lawless (2007) and Bühler et al. (2023) argue that focus
should be placed on marginal models as it can be hard to correctly specify the intensity models
when analysing randomised controlled trials. The following chapter will discuss interpretation of
treatment effects for recurrent event models presented in the Chapter 3. Due to randomisation, all
models will only consider a single binary treatment covariate. We distinguish between the situation
with competing terminal events or not and their impact on interpretation.

The interpretation of treatment effects for randomised controlled trials discussed in this chapter
provides background for Manuscripts I, II(x), III, and IV. Manuscript I focus on challenges in
obtaining clinically relevant treatment effects from recurrent event data with terminal events through
a case study using a randomised controlled trial. Manuscripts II(x) suggest a bivariate procedure to
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overcome some of the difficulties discussed in this chapter and Manuscript I. The discussions in this
chapter form the basis of the choice of marginal models considered in Manuscript III and IV.

4.1 Estimand

The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH) issued an addendum to ICH E9 (1998) on the importance of estimands and
related statistical concepts in randomised trials which was adopted by both EMA (2020a) and FDA
(2021). The description of a treatment effect should be facilitated by construction of the estimand.
This estimand corresponds to a clinical question of interest and is specified to aid communication.
The estimand consists of five key components,

1. Treatment describes the treatment of interest and the comparator

2. Population describes patients targeted by the clinical question

3. Variable describes the endpoint to be obtained for each patient to address the clinical question

4. Intercurrent events describes any events that may influence or prevent the observation of
the variable of interest. Precise definition of treatment, population, and variable will likely
address any intercurrent events

5. Population-level summary describes a population-level summary between the treatments
based on the variable

The specification of the above should make it possible to clearly distinguish “between the target of
estimation (trial objective, estimand), the method of estimation (estimator), the numerical result
(estimate), ...” (EMA (2020a), FDA (2021)). Moreover, they explain that the goal of the treatment
effect, the estimand, should be to summarise “at a population level what the outcomes would be
in the same patients under different treatment conditions being compared”. This statement exactly
coincides with the definition of a causal treatment effect. Causal treatment effects will be discussed
in more detail in Chapter 7.

The variable describes the endpoint of interest for each patient. Such variables may be formulated
in several ways. Relevant examples for recurrent events include total number of hospitalisations,
times until hospitalisations, and length of stays in the hospital.

The addendum mentions that several strategies may be considered for addressing intercurrent events
upon defining the clinical question of interest. Five main strategies are highlighted in the addendum:
treatment policy, hypothetical, composite variable, while on treatment, and principal stratum. For the
treatment policy strategy, the occurrence of the intercurrent event is considered irrelevant for defining
the treatment effect of interest. For the hypothetical strategy, the treatment effect is estimated in
the hypothetical scenario where the intercurrent event could not occur. For the composite variable
strategy, the occurrence of the intercurrent event is considered important for the patient’s outcome
and is thus incorporated into the definition of the endpoint. Hence, the endpoint will be a composite
of the event of interest and the intercurrent event. The while on treatment strategy tries to quantify
the effect on the variable prior to the occurrence of the intercurrent effect. If the intercurrent event
was death, the strategy would be called a while alive strategy. For the principal stratum strategy,
emphasis is placed on a certain subgroup of patients in which the intercurrent event would or would
not occur.

A terminal event is an intercurrent event of importance since it precludes the observation of any
subsequent recurrent events. A hypothetical strategy to analysing recurrent events in the presence
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of terminal events could be to estimate the expected number of events while assuming that deaths
cannot occur. Specifically, this would happen if terminal events were treated as censorings while
estimating the expected number of recurrent events using a LWYY model. This scenario will be
discussed later. In general, the addendum states that even though the variable of interest cannot be
measured after death, this data should not be considered missing. For recurrent events with terminal
events, the composite strategy is popular. Examples include composite heart failure hospitalisation
and cardiovascular death or composite non-fatal stroke, non-fatal myocardial infarction, or cardio-
vascular death. Each of these components represent cardiovascular burdens for an individual. The
treatment effect on a composite recurrent event and death endpoint will generally differ from the
treatment effect on recurrent events alone. That is, if treatment affects mortality, the effect on the
composite event will be a mixture of such effects.

In the setting of recurrent events, several estimands may be formulated. An applicant group of
statisticians from the pharmaceutical industry (Akacha et al. (2018)) sought a qualification opinion
on EMA’s thoughts on the statistical analysis of recurrent events. In this qualification opinion,
the applicant group claimed that clinically relevant treatment effect measures may be extracted
from analysing recurrent events. Additionally, they state that the statistical analyses are more
efficient compared to those based on first events. In their simulations, they mainly focus on the
negative binomial, the LWYY, the PWP, and the WLW models comparing them to a Cox model for
first events. The qualification opinion from EMA stated that the presented recurrent event methods
provide clinically interpretable treatment effects if there are no terminal events. If there are terminal
events, the suggested methods still lack justification (EMA (2020b)). EMA state that an analysis
method which provides separate estimates for the treatment effect on recurrent event while alive
and the terminal event would be of interest for confirmatory decision making. They state that such
an analysis method should have transparent modelling assumptions and be unbiased (regardless of
the impact of terminal events). Moreover, the assessment of the treatment effect on the terminal
event should precede the assessment of the treatment effect on recurrent events.

Schmidli et al. (2021) discuss causal estimands for recurrent events with terminal events and
how to estimate these using statistical tools. Their discussion on which statistical models to use,
however, lacks clarity.

4.2 Recurrent events without terminal events

The regression models presented in the previous chapter may be used in order to draw inference on
the effect of treatment on recurrent events either through conditional or marginal models. In the
present section, the interpretation of the models for recurrent events is discussed in the situation
without terminal events. This corresponds to the multi-state models in Figures 2.4 and 2.5.

Conditional parameters

Intensity-based models may be used to characterise process dynamics within a multi-state model.
Conditional parameters can be extracted from intensity-based models.

The Andersen and Gill model with a single binary treatment covariate models the recurrent event
intensity given treatment. Hence, the regression parameter β from this model expresses the log-
hazard ratio when comparing Z = 1 to Z = 0. A Poisson model with the logarithm of the risk time
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as an offset corresponds to the AG model with a constant baseline intensity. If this assumption is
reasonable, the two models will provide similar results.

Similarly, the PWP model will also provide a log-hazard ratio for comparing Z = 1 to Z = 0
under another model for the recurrent event intensity function. The model, however, will quickly
be mis-specified due to the stratification according to the previous number of events. A treatment
effect per transition, βk, or an overall treatment effect, β, could be impacted by a treatment effect
on the first events through the stratification, analogous to the impact on the AG model conditional
on both treatment and previous number of events.

Inference based on the frailty model will have a subject specific interpretation, that is, β ex-
presses the subject specific log-hazard ratio between Z = 1 and Z = 0 for a given frailty level. Since
individuals in randomised controlled trials are (usually) only given one of two treatments, it is ambi-
tious to try to extract this contrast. The addendum to ICH E9 highlights that the treatment effect
should have a population-level interpretation (EMA (2020a)). Due to non-collapsibility of the frailty
Cox-type model, the subject specific treatment estimates will not correspond to a population-level
treatment effect (Martinussen and Vansteelandt (2013)). However, the frailty models allow for a
dependence between recurrent events through the frailty variance. That is, some individuals may
be more prone to experience recurrent events than others. This dependence is imposed without too
many modelling assumptions. Hence, the frailty model may be good at describing process dynamics
intended for simulation or further multi-state modelling. A negative binomial model with the loga-
rithm of the risk time as an offset corresponds to the gamma frailty model with a constant baseline
intensity. Hence, if the assumption of a constant baseline intensity is reasonable, the two models
will provide similar results.

Inference based on generalised linear models may be adequate if there is no specific desire to model
the entire time. Piece-wise constant versions of both the Poisson and negative binomial model may
be used to relax the assumption of constant baseline intensities. In the presence of terminal events,
the interpretation of inference drawn from a Poisson, negative binomial or Quasi-Poisson models
changes. This will be discussed in the next section.

The Nelson-Aalen estimator may be used to obtain non-parametric estimates of cumulative hazard
of recurrent events as discussed in Chapter 2. An estimate may be compared for each treatment
group and compared using a log-rank test.

Marginal parameters

The WLW model with an overall treatment effect models the marginal waiting time from randomi-
sation to the k’th event, when it is assumed that the treatment affects each waiting time in the same
manner. Thus, the regression parameter, β, from this model expresses the marginal log-hazard ratio
when comparing Z = 1 to Z = 0. Instead with a treatment effect per transition, βk expresses
the marginal log-hazard ratio on event k when comparing Z = 1 to Z = 0. However, as noted by
Metcalfe and Thompson (2007), the construction of the risk sets implies that the treatment effects
will be ‘carried over’ from event k to event k+ 1, as a delayed waiting time for event k will imply a
delayed waiting time for event k + 1. Hence, treatment effects may be impacted by the constructed
risk sets using the WLW model with an overall effect or an effect per event.

The LWYY model provides inference on the expected number of events per treatment group. Thus,
the regression parameter, β expresses the log-mean ratio for comparing Z = 1 to Z = 0. A benefit
of the model is that the dependence structure between recurrent events for an individual does not
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need to be specified.

The Nelson-Aalen estimator may be used to obtain non-parametric estimates of marginal mean of
recurrent events as discussed in Chapter 2. With only a binary treatment variable and no terminal
events, the estimate of the cumulative hazard of recurrent events and the expected number of
recurrent events by time t coincides. The expected number of events per treatment group can be
compared using a log-rank type test where robust standard errors are used (Lawless and Nadeau
(1995)).

4.3 Recurrent events with terminal events

In the following section, the interpretation of the models for recurrent events with terminal events
is discussed. This corresponds to the multi-state models in Figures 2.8, 2.7, 2.10, and 2.11. The
interpretation of the conditional and marginal models based on multi-state models with terminal
events is different from the interpretation without terminal events. This subtleties will be discussed
in the following section.

Conditional parameters

In the presence of terminal events, the Andersen and Gill model with a binary treatment covariate
models the cause-specific hazard function for recurrent events. Thus, the regression parameter, β,
from this model expresses the logarithm of the cause-specific hazard ratio when comparing Z = 1
to Z = 0. A Poisson model for the rate of recurrent events will be equivalent to the Andersen and
Gill model with a constant baseline intensity. The PWP model will also provide inference on the
cause-specific log-hazard ratio comparing Z = 1 to Z = 0.

Analogously, the frailty model targets the cause-specific hazard function conditional on the sub-
ject specific frailty. Again, the subject specific interpretation will still be present with terminal
events. Moreover, the frailty model assumes that censoring is independent of frailty. If a high frailty
of recurrent events implies that the frailty of death is high or vice versa, this censoring assumption
may be violated. That is, the inference drawn from the cause-specific hazard function if there is
dependence between frailty-levels for recurrent events and deaths, can be questionable as discussed
in Chapter 3. A negative binomial model for the rate of recurrent events will be equivalent to
a gamma frailty model with a constant baseline hazard. Hence, inference from such a model can
also be questionable if the censoring assumption is violated by treating terminal events as censorings.

The joint frailty model specifies two cause-specific hazard functions; one for recurrent events and
one for terminal events. Hence, two treatment effects are obtained. With only a binary treatment
variable, the cause-specific hazards of recurrent events and deaths are modelled. For recurrent
events, β expresses the logarithm of the conditional cause-specific hazard ratio comparing Z = 1
to Z = 0 for an individual. For terminal events, α also expresses the conditional cause-specific
hazard ratio comparing Z = 1 to Z = 0. An assumption is still that the censoring is independent
of the frailty. Since the hazards of both recurrent and terminal events are modelled explicitly, it
is less likely that this assumption is violated. Again, the model parameters have a subject-specific
interpretation which is not compatible with population-level estimates.
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Marginal parameters

The WLW model with a single binary treatment variable targets the marginal cause-specific hazard.
That is, with an overall treatment effect, β, expresses the marginal cause-specific hazard ratio
comparing Z = 1 to Z = 0. Li and Lagakos (1997) emphasised that the WLW model estimates the
marginal hazard of recurrent events in a world where it is not possible to die with terminal events due
to an infringement of the independent censoring assumption. Neither interpretation seems relevant
for describing a treatment effect from a randomised trial in a simple and understandable manner.
Moreover, the risk sets are still constructed in an undesirable way.

The LWYY model with a single treatment covariate may be used to estimate the expected
number of recurrent events. However, with terminal events, the model will estimate the expected
number of events in a hypothetical population where it is not possible to die. Hence, the log-mean
ratio extracted from this model compares Z = 1 to Z = 0 for the hypothetical population.

The Ghosh and Lin model with a single treatment covariate models the expected number of
recurrent events by time t. Here, the regression parameter, β, expresses the log-mean ratio between
the two treatment groups. The expected number of events in this model is the number of recurrent
events that would be observed in a world where it is possible to die from other causes. Hence, it is
also important to analyse the impact of treatment on mortality, e.g., using a Cox model.

The Mao and Lin model formulated using a single treatment covariate models the expected
number of weighted composite events including death by time t. Again, the parameter of interest is
a log-mean ratio comparing Z = 1 to Z = 0. However, now it expresses the effect of each treatment
on the number of composite events. Since death is included in the composite endpoint, the impact
of treatment on both recurrent events and death is explored simultaneously. Conversely, this fact
also makes it hard to disentangle the effect of treatment on each component since the result will be
a mixture of both. The Mao and Lin model may be formulated using a larger weight for the death
component and hierarchically smaller weights for recurrent events according to severity. This can
reflect that experiencing death is a much worse clinical outcome for a patient. However, it might be
hard to choose the actual weights in practice.

The updated Mao and Lin model suggested by Furberg, Rasmussen, et al. (2022) (Manuscript I)
analogously models the expected number of weighted composite events, only including some mortal-
ity in the composite event, by time t. With a single treatment covariate, the regression parameter,
β, still expresses the log-mean ratio comparing Z = 1 to Z = 0. This parameter models the effect
of treatment on the composite event with some type of mortality included. Since other causes of
mortality act as competing risks, it should be considered whether there could be an imbalance be-
tween treatments. Else, the skewed distribution between the two treatment groups in terms of the
competing causes should be considered when drawing inference from this model.

4.4 Other estimands

Other estimands of interest may be considered for the analysis of recurrent events with or without
terminal events. This chapter has discussed inference from conditional or marginal multiplicative
regression models.

State occupation probabilities and average time spent in a state may also be marginal parameters
of interest for analysing recurrent events with or without terminal events. A treatment effect could
be based on such a comparison either through non-parametric estimates or regression models.
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Claggett et al. (2018) suggest to focus on the area under the marginal mean function until time
τ ,
∫ τ

0
µ(t) dt. The interpretation of this measure may be less clear, however. A while-alive estimator

which focuses on the ratio between the marginal mean function and the restricted mean survival
time has been suggested as a relevant measure for analysing recurrent events in the presence of
terminal events. See Wei, Mütze, et al. (2022) and Mao (2022) for discussion of such an estimand.
The ratio is given by,

µ(t)

ε(t)
=

µ(t)∫ t

0
S(u) du

.

Again, the aim of this is to extract a single measure from a two-dimensional problem. The expected
number of recurrent events will be down-scaled according to mortality.

Cook and Lawless (2007, Chapter 8) advocate for the use of a mixed Poisson model for the rate or
mean of recurrent events to capture a treatment effect from a randomised trial in a simple way. If
νi denotes a subject-specific random effect with E(νi) = 1, the rate model states that

E(dN∗
i (t) | νi, Zi) = νidµ0(t) exp(βZi)dt,

which may be reformulated as a mean model since

E(N∗
i (t) | νi, Zi) = νiµ0(t) exp(βZi).

This model has the benefit of facilitating a simple estimand, a rate or mean ratio, comparing treat-
ment Z = 1 to Z = 0. For this model, the subject-specific and population-average treatment effects,
exp(β), are the same, since

E(N∗
i (t) | Zi) = µ0(t) exp(βZi).

Additionally, model parameters may be estimated robustly and the multiplicative model can be
extended to include time-varying effects. We recommend marginal models that do not specify the
dependence between individuals to limit the influence of the frailty distribution and make the model
as general as possible (e.g., Lin et al. (2000) and Ghosh and Lin (2002)).

Pocock et al. (2012) suggested the win ratio method for the analysis of composite endpoints. The
method quantifies ratio of ‘winners’ versus ‘losers’ according to a pre-specified order of endpoints in
a matched or unmatched manner. An example could be first a comparison of cardiovascular death,
followed by a comparison of hospitalisation for heart failure. This ranking reflects the fact that
cardiovascular death is more severe than hospitalisation for heart failure. The parameter of interest
is the win-ratio which measures the number of ‘winners’ with treatment equal to Z = 1 versus
the number of ‘losers’ with Z = 1. The interpretation of this estimand is less clear even though
clinical relevance may be ensured through ranking. The win-ratio method has become popular for
the analysis of recurrent events with terminal events as it condenses the treatment effect into a single
measure. Oakes (2016) highlighted that the win-ratio parameter will depend on the distribution of
follow-up times. If treatment affects mortality and therefore follow-up times, this is an undesirable
feature. In the simulation studies of Fritsch et al. (2021), the win-ratio approach performed similar
in terms of power to first composite events analysed using a Cox model.

Another approach is to focus on utilities as discussed in Glasziou et al. (1990) and Cook, Lawless,
and Lee (2003). In the utility-based approach, an utility is assigned to each state k in the multi-state
model. Through this framework, estimates of the cumulative cost or quality of life may be derived.
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The win ratio approach may be derived as a special case within the cumulative utility framework as
argued by Bühler et al. (2023). Usefulness of the utility framework relies on the ability to specify
the utilities associated with each state. This might be easy, but if not, they suffer from the same
shortcomings as methods based on assigning weights. Within the field of clinical trials for heart
failure, Anker, Schroeder, et al. (2016) state that there is a lack of consensus on how to define the
relative weights making statistical models based on a weighting scheme less useful. As mentioned,
the Mao and Lin (2016) model is a type of utility model that can be formulated using different
utilities or weights for the components of the composite endpoint.



Chapter 5

Pseudo-observations

Andersen, Klein, and Rosthøj (2003) suggested to use pseudo-observations within the field of life
history data. This is an alternative to the common methods within survival analysis that address
right-censoring. In summary, the original incomplete data is used to compute pseudo-observations.
The pseudo-observations ensures that each individual has a valid observation. The new data is sub-
sequently used as response in a generalised linear model conditioning on a selection of covariates.
Thus, this mimics a traditional regression approach, however, with a pre-step involving the compu-
tation of pseudo-observations.

The method of pseudo-observations introduced in this chapter forms the basis for Manuscripts II(x)
and IV. Manuscripts II(x) suggest a bivariate procedure based on pseudo-observations which models
recurrent events and terminal events simultaneously. Manuscript IV suggest a modified pseudo-
observation method based on estimators that accounts for presence of covariate dependent censoring.
Inference may be based on pseudo-observations for several parameters of interest as introduced as
examples in this chapter. These parameters may be combined to make higher dimensional inference
simultaneously. This idea was explored in Manuscript II(x).

The general idea behind pseudo-observations is as follows. Let (Xi, i = 1, . . . , n), be independent
and identically distributed random variables with distribution P on the sample space Ω. Here, each
Xi may be multivariate, either a vector Xi = (Xil, l = 1, . . . , ki) or a process Xi = {Xi(t), t ≥ 0}.
Imagine that we are interested in the expectation, θ, of some function, f , of X = (X1, . . . , Xn), i.e.

θ = EP (f(X)) =

∫

Ω

f(x)P (dx).

Moreover, assume that an unbiased estimator, θ̂, of θ exists, such that

EP (θ̂) =

∫

Ω

θ̂(x)P (dx) = θ.

Assume that the covariates Z = (Z1, . . . , Zn) are independent and identically distributed random
variables with distribution Q on Ω. Let R be the joint distribution of (X,Z). Then,

θ =

∫

Ω

f(x)P (dx) =

∫

Ω

∫

Ω

f(x)R(dx, dz) =

∫

Ω

E(f(X) | Z)Q(dz).
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Let

θi = θi(Zi) = E(f(Xi) | Zi), i = 1, . . . , n.

Moreover, define their average as

θ̃ =
1

n

∑

i

θi(Zi).

Define the pseudo-observation for individual i as

θ̂i = θ̂i(X) = nθ̂(X)− (n− 1)θ̂−i(X),

where θ̂(X) is the estimate based on the entire sample and θ̂−i(X) is the leave-one-out estimator
based on the entire sample where the observations from individual i is omitted. Here,

ER(θ̂i(X)) = ER(θ̃i(Zi)),

since ER(θ̂(X)) = ER(θ̃(Z)) = θ. Consequently, the aim is to perform a regression analysis of θ̂i on
Zi. Thus, it is assumed that,

g(θi) = g(E(f(Xi) | Zi)) = βTZi, (5.1)

for some link function g. The mean function, or inverse link function, is defined as

ξ(βTZi) = g−1(βTZi) = θi.

A regression of θ̂i on Zi with mean function ξ(·) is performed in order to estimate the regression pa-
rameters β in equation (5.1). This can be achieved using generalised estimating equations (GEE), see
Liang and Zeger (1986). Estimates may be obtained by solving the following estimating equations,

U(β) =
∑

i

Ui(β) =
∑

i

(
∂

∂β
g−1(βTZi)

)T

V −1
i (θ̂i − g−1(βTZi)) = 0,

here Vi is a working covariance matrix. A sandwich estimator may be used to estimate the variance
of β̂. To that end define,

I(β) =
∑

i

(
∂g−1(βTZi)

∂β

)T

V −1
i

(
∂g−1(βTZi)

∂β

)
,

v̂ar(U(β)) =
∑

i

Ui(β̂)
TUi(β̂),

so that

v̂ar(β̂) = I(β̂)−1v̂ar(U(β))I(β̂)−1.

Andersen, Klein, and Rosthøj (2003) argued that β̂ followed a large sample normal distribution
under some regularity conditions within the GEE framework. Hence,

β̂
as∼ N

(
β, σ2

)
,
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such that β̂ is asymptotically normal with mean β and a variance σ2 which can be consistently
estimated using v̂ar(β̂). Theoretical work by Jacobsen and Martinussen (2016), Overgaard, Parner,
et al. (2017), and Overgaard (2019a) indicate that the pseudo-observations are approximately con-
ditionally unbiased given covariates for a set of situations. Overgaard, Parner, et al. (2017) discuss
general requirements for various estimators which ensures large sample normality for the estimates
derived from GEE based on pseudo-observations. In particular, this relies on the assumption of
independence between censoring and covariates to ensure large sample unbiasedness as discussed in
Overgaard, Parner, et al. (2019). Models for recurrent events based on pseudo-observations with
covariate dependent censoring will be discussed in Chapter 5 and in Manuscript IV. Moreover, work
by the authors indicate that standard errors based on the suggested sandwich variance estimator
tend to be slightly conservative. However, this bias is usually small unless there are very strong
covariate effects. No general framework for the large sample behaviour of the pseudo-observations
exist at the moment and theoretical properties should be explored on a case-to-case situation.

Inference on the pseudo-observations can be based on generalised estimating equations for these
situations. The pseudo-observations may be computed at more than one time-point, such that θ̂i
can be multi-dimensional. This allows one to specify interactions between time and covariates. The
correlation between observations from the same individuals can be specified using the GEE frame-
work.

Introductory examples of pseudo-observations will be given in this chapter and information on model
diagnostic tools for pseudo-observations will not be explained further. Goodness-of-fit for pseudo-
observation models is discussed in Andersen and Perme (2010) as well as in Pavlič et al. (2019).
Examples of appearances of individual pseudo-observations over time may also be found in Andersen
and Perme (2010) and Furberg, Andersen, et al. (2023).

5.1 Pseudo-observations for survival data

The following section provides some examples of interesting parameters within the field of survival
analysis. The parameters apply to situations with or without competing risks (see multi-state models
in Figures 2.1 and 2.2).

Survival probabilities

Let D∗ denote a survival time and let f(D∗) = I(D∗ > t), such that

θ = E(f(D∗)) = E(I(D∗ > t)) = P (D∗ > t) = S(t),

where S(t) denotes the survival probability at time t. The Kaplan-Meier estimator, Ŝ(t) of S(t)
is an approximately unbiased estimator under independent censoring (see Chapter 2). For a fixed
t ∈ [0, τ ], the pseudo-observation for individual i is given by

Ŝi(t) = nŜ(t)− (n− 1)Ŝ−i(t).

Here, a specific t or a selection of time points may be considered. Several link functions may be
considered for the regression model of the survival probabilities, e.g., g(x) = x, g(x) = log(x), or
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g(x) = log(− log(x)). This suggests the following three models,

Model 1: S(t | Z) = βTZ,

Model 2: log(S(t | Z)) = βTZ,

Model 3: log(− log(S(t | Z))) = βTZ.

Model 1 targets risk differences, model 2 targets risk ratios, and model 3 targets (cumulative) hazard
ratios.

Restricted mean life time

An alternative quantity of interest within classical survival analysis could be restricted mean life
time or the restricted mean survival time (RMST). Let ε(t) denote the RMST until time t ≥ 0. For
a fixed τ ∈ (0,∞), this is given by

ε(τ) =

∫ τ

0

S(t) dt.

Due to censoring, it will typically not be feasible to consider this integral on (0,∞), as the tails
of the survival distribution is not observed. Thus, attention is typically restricted to time τ . The
RMST until time τ , ε(τ), provides an estimate of the expected event-free time until τ . Here,

θ = E(D∗ ∧ τ) =
∫ τ

0

S(t) dt,

with f(D∗) = D∗ ∧ τ . Consider the estimator, ε̂(τ), given by

ε̂(τ) =

∫ τ

0

Ŝ(t) dt,

where Ŝ(t) is the Kaplan-Meier estimator of S(t). This estimator, ε̂(τ), is approximately unbiased
under independent censoring as the Kaplan-Meier estimator is approximately unbiased (see Chapter
2). Thus, the pseudo-observation for individual i may be computed as,

ε̂i(τ) = nε̂(τ)− (n− 1)ε̂−i(τ)

= n

∫ τ

0

Ŝ(t) dt− (n− 1)

∫ τ

0

Ŝ−i(t) dt

=

∫ τ

0

Ŝi(t) dt.

In order to formulate regression models for the restricted mean survival time, one could consider the
link functions g(x) = x and g(x) = log(x). For a given τ , this suggests the following models,

Model 1: ε(τ | Z) = βTZ,

Model 2: log(ε(τ | Z)) = βTZ.

Model 1 targets differences in restricted mean survival times and model 2 targets ratios of restricted
mean survival times at time τ .
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Cumulative incidences

Let (D∗,∆) denote survival time and cause-of-death indicator corresponding to competing risks
model with ∆ causes of death (see Figure 2.2). Then, the parameter of interest for cause h, is

θh = E(I(D∗ ≤ t,∆ = h)) = P (D∗ ≤ t,∆ = h) = Fh(t) for h ∈ ∆,

where Fh(t) denotes the cumulative incidence for cause h. The Aalen-Johansen estimator, F̂h(t), is an
approximately unbiased estimator of the cumulative incidence, Fh(t), under independent censoring
(see Chapter 2). For a fixed t ∈ [0, τ ], the pseudo-observation for individual i is given by

F̂ih(t) = nF̂h(t)− (n− 1)F̂−ih(t).

We consider the three link functions, g(x) = x, g(x) = log(x), or g(x) = log(− log(1 − x)), for the
regression models for the cumulative incidences. This suggests the following three models,

Model 1: Fh(t | Z) = βTZ,

Model 2: log(Fh(t | Z)) = βTZ,

Model 3: log(− log(1− Fh(t | Z))) = βTZ.

Model 1 targets risk differences for cause h, model 2 targets risk ratios for cause h, and model 3
targets (cumulative) sub-distribution hazard ratios for cause h. Model 3 corresponds to a Fine-Gray
model (Fine and Gray (1999)).

5.2 Pseudo-observations for recurrent events

Regression models for recurrent events could also be formulated using pseudo-observations. This
could be models for recurrent events with or without the influence of competing deaths.

Expected number of events

Let N∗(t) denote the number of recurrent events by time t. Then the parameter of interest is

θ = µ(t) = E(N∗(t)).

Under independent censoring and when there are no competing deaths, the Nelson-Aalen estimator
is an approximately unbiased estimator of µ(t) (see Chapter 2). In the presence of competing risks,
the estimator suggested by Cook and Lawless (1997) may be considered instead, see equation (2.4).
Under independent censoring, this estimator is approximately unbiased. Let µ̂(t) denote the relevant
estimator depending on whether there is competing risks or not. Thus, for a fixed t ∈ [0, τ ], the
pseudo-observation for individual i is given by

µ̂i(t) = nµ̂(t)− (n− 1)µ̂−i(t).

We consider the link functions, g(x) = x or g(x) = log(x), to formulate regression models for the
expected number of recurrent events. These link functions suggest the following two models,

Model 1: µ(t | Z) = βTZ,

Model 2: log(µ(t | Z)) = βTZ.

Model 1 targets mean differences and model 2 targets mean ratios. Model 2 corresponds to the
proportional means model as formulated by Lin, Wei, Yang, and Ying (no competing risks) or
Ghosh and Lin (with competing risks) (Lin et al. (2000), Ghosh and Lin (2002)).
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State occupation probabilities

Andersen and Klein (2007) and Andersen, Angst, et al. (2019) studied pseudo-observations of state
occupation probabilities. Let X(t) denote the state occupied by time t and let S = {0, . . . ,K}
denote the state space in a continuous multi-state model. Then the parameter of interest is given
by

θk = E(I(X(t) = k)) = P (X(t) = k) = ψk(t) for k ∈ S.

Under independent censoring, the Aalen-Johansen estimator is an approximately unbiased estimator
of P (X(t) = k) (Datta and Satten (2001), Overgaard (2019b)). Thus, for a fixed t ∈ [0, τ ], the
pseudo-observation for individual i is given by

ψ̂ik(t) = nψ̂k(t)− (n− 1)ψ̂−ik(t).

We consider the following link functions, g(x) = x or g(x) = log(x), which suggests the models,

Model 1: ψk(t | Z) = βTZ,

Model 2: log(ψk(t | Z)) = βTZ.

Model 1 targets risk differences and model 2 targets risk ratios.

Average time spent in a state

Alternatively, the average time spent in a given state until time τ may be of interest for a given
multi-state model. Following the notation of the previous example, the parameter of interest is

θkτ = E

(∫ τ

0

I(X(u) = k) du

)
=

∫ τ

0

P (X(t) = k) dt = ϕk(τ) for k ∈ S,

Thus, it can be utilised that the Aalen-Johansen estimator is an approximately unbiased estimator
of P (X(t) = k) under independent censoring. Then the continuous mapping theorem and linearity

of the integral implies that ϕ̂k(τ) =
∫ τ

0
ψ̂k(u) du also will be an approximately unbiased estimator

of ϕk(τ). Thus, the pseudo-observation for individual i and state k may be computed as

ϕ̂ik(τ) = nϕ̂k(τ)− (n− 1)ϕ̂−ik(τ).

We consider the following link functions, g(x) = x or g(x) = log(x), which suggests the models,

Model 1: ϕk(τ | Z) = βTZ,

Model 2: log(ϕk(τ | Z)) = βTZ.

Model 1 targets differences in average time spent in state k before time τ and model 2 targets ratios
of average time spent in state k before time τ . Model 2 will ensure that the model predictions remain
positive.



Chapter 6

Trial planning

Randomised controlled trials (RCTs) are planned to provide knowledge on a specific scientific ques-
tion. The study population, collected data, and pre-defined hypotheses are carefully selected in order
to ensure that the desired knowledge can be extracted. Well-defined interventions and their effects on
endpoints are studied. Without loss of generality, we assume that we focus on a comparison between
an active and a placebo treatment. Typically, hypotheses involving superiority or non-inferiority of
the active treatment (Z = 1) versus the placebo treatment (Z = 0) is investigated. Let µ1 and µ0

denote the mean response of the active and placebo treatment, respectively. Let ω denote the treat-
ment effect, which could be difference, ω = µ0−µ1, or a log-ratio, ω = log(µ0/µ1) = log(µ0)−log(µ1)
or something similar. Consider the superiority hypotheses,

H0 : ω ≤ 0, HA : ω > 0.

For a superiority trial, the aim is to claim that the active treatment is better than placebo. The
randomised trial is planned to ensure that the hypothesis of interest can be met using a sample size
calculation. A decision rule determines whether the null hypothesis will be rejected. A decision rule
could be associated with critical values of a test statistic. If the test statistic is higher than some
threshold, the decision is to reject the null hypothesis. Upon this decision, either a correct or one of
two wrong choices has been made. The error of the first kind, a type I error, is the decision to reject
the null hypothesis when it is true. The error of the second kind, a type II error, is the decision to
accept the null hypothesis when the alternative hypothesis is true. This is visualised in Table 6.1.

Testing scenarios
Reality
H0 true Ha true

Decision
Accept H0 Correct Type II error
Reject H0 Type I error Correct

Table 6.1: Display of type I and type II errors.

In general, tests are constructed such as to minimize the risk of committing both error types.
Conventionally, a bound of the probability of committing a type I error is set, and the probability
of committing a type II error is minimised. Hence, the significance level is chosen as a number,
α ∈ (0, 1), such that

P (Type I error) = PH0 true (Reject H0) ≤ α.
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Then, under the above condition, the target is to minimise

P (Type II error) = PHa true (Accept H0).

Equivalently, we may choose to maximise the power, which is given as P (Reject H0) when Ha is
true. In the following chapter, we will discuss planning a randomised trial where the primary interest
is a recurrent event endpoint.

The concepts surrounding trial design introduced in this chapter forms the basis for Manuscript
III. Manuscript III suggest a simulation-based sample size estimation procedure for recurrent events
with terminal events based on marginal models.

6.1 Design

The sponsors design their randomised trials to unveil the scientific hypotheses of interest. From a
statistical point-of-view, this implies that the hypotheses can be explored using statistics. Clearly,
this depends on the choice of estimand as well as other design characteristics. One of the first choices
is to decide which recurrent event endpoint and estimand to consider (see Chapter 4 for an elaborate
discussion of this).
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Figure 6.1: Lexis diagram: Illustration of calendar time versus follow-up time for 10 individuals.

Enrolment and study length

Randomised trials which collect life history data are dependent on the duration of follow-up. That is,
the longer individuals are observed, the more events are collected. From a practical and economical
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perspective, only trials of a certain length may be feasible. The closure of a trial according to
some fixed day introduces administrative censoring for the event-free individuals. Additionally, it
will be unrealistic to enrol all patients in the trials from the same day. Thus, subjects will enrol
with delayed entry according to when they were randomised. Figure 6.1 illustrates a Lexis diagram
visualising calendar time versus follow-up for 10 individuals according to their enrolment. A long
period of enrolment, or accrual, will result in less time to observe life history data. Thus, both study
length and accrual are important ingredients when planning a randomised trial with a survival type
outcome. Figure 6.2 illustrates uniform accrual and study closure for six individuals.

t: time0 τa τmax

Figure 6.2: Illustration of enrolment and study closure for six individuals. The filled, unfilled, and
crossed-out circles represent recurrent events, censoring, and death, respectively. The subjects are
uniformly accrued until τa. The study had a duration of τmax. The fifth individual was lost-to-
follow-up prior to the study closure, τmax. Individual three and six died prior to study closure.

The number of enrolled individuals, the sample size, is chosen to be high enough to investigate the
hypothesis of interest for a fixed significance level and power. This will depend on enrolment, length
of follow-up, effect size(s), and event rates. Once a sample size is determined, expected number
recurrent events will typically be obtainable through the assumed event rate.

Testing procedures

In order to secure safety of future patients, error control is a topic of importance. In the superiority
setting, a type I error corresponds to deeming a worse treatment better. Approval of such a drug
could jeopardise the health of future patients. Thus, regulatory agencies require type I error control
in the strong sense (EMA (1998)). This implies that all confirmatory endpoints, that is, endpoints
which the sponsor wish to make a claim on, should all have type I error control on the same overall
α-level. If this error rate is not controlled, testing more than one hypothesis will lead to error
inflation due to multiplicity.

Hierarchical testing procedures ensure error control by pre-specifying a fixed sequence of ordered
hierarchically hypotheses. Each ordered hypothesis is tested at level α in hierarchical order until the
first non-rejection. Alternatively, graphical testing procedures may be used to govern type I error
as suggested by Bretz et al. (2009). Here, the hypotheses are specified using a graph and α may be
split and borrowed depending on the chosen graph.

Stopping rules

The clinical trial may be closed down upon pre-defined stopping rules. Trials that collect life history
data for meeting the primary endpoints are usually closed upon reaching a total duration of a
certain length, a minimum length of follow-up per individual or an overall minimum number of
primary events. The trial may be stopped upon a mixture of these.

Clinical trials with a group sequential design allows for interim analyses and possibly early study
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termination with a control over type I error. Group sequential design of trials with recurrent event
endpoints is discussed by Cook and Lawless (2007), Mütze et al. (2019a), and Mütze et al. (2019b).
A group sequential design will typically require a higher sample size compared to a traditional design
due to α-cost associated with the possibility of stopping at interim.



Chapter 7

Causality and dependent censoring

Generally, it is believed that data from a randomised trial allows for a causal interpretation of the
randomised treatment effect. Observational data is not protected by randomisation, but the desire
is to extract causal relationships from this data. In order to do so, the exact meaning of causality
should be explained. This chapter will introduce the concept of causality and causal treatment
effects.

Classical inference based on survival methods often relies on an assumption of independent censor-
ing. That is, the fact that an individual is censored does not leave a unrepresentative sample of
the population. If systematic reasons which introduce censoring exist, inference may be affected.
The statistical methods may be modified to accommodate dependent censoring (see, e.g., Cook
and Lawless (2007)). These ideas are closely related to those from causality. Marginal models for
recurrent events are a powerful analysis tool as argued in the previous chapters. However, these
models (including models based on pseudo-observations) rely heavily on the assumption of inde-
pendent censoring with or without impact of terminal events. Marginal models that accommodate
dependent censoring will be introduced and discussed in this chapter. Marginal models for recurrent
events under dependent censoring will be useful in order to make sensitivity analyses (EMA (2020a)).

The concepts of causality and dependent censoring introduced in this chapter forms the basis for
Manuscript IV. Manuscript IV suggest extensions of marginal models for recurrent events, with or
without terminal events, which can accommodate covariate dependent censoring. The emphasis is
placed on adjustment using baseline covariates. This would answer the following question “what is
the effect of being randomised to treatment A = 1 versus A = 0?”. This corresponds to a treatment
policy estimand as discussed in Chapter 4. However, this may not be the estimand of interest.
Instead, one might wish to answer the following question, “what is the effect of taking treatment
A = 1 versus A = 0 as prescribed?”. With perfect treatment adherence this question is answered by
focusing on the randomised treatment. If not, concepts from causality and causal treatment effects
are vital. Dependent censoring could be introduced by censoring caused by treatment discontinua-
tion where a rigorous definition of target estimand would be important.

42
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7.1 Introduction to causality

Causality will be introduced using the concept of counterfactuals as introduced by Splawa-Neyman et
al. (1923 [1990]) and Rubin (1974). For more details, see Hernán and Robins (2020). For simplicity,
we assume that we are focusing on a binary treatment variable, A ∈ {0, 1}. Due to convention within
causal inference, A is now used to denote treatment as opposed to Z in the previous chapters. The
outcome of interest is denoted by Y . Hence, we wish to extract a causal treatment effect contrasting
treatment a = 1 versus a = 0. Following the concept of counterfactuals, each individual i has
two potential outcomes; one if they were given treatment a = 0, Y a=0

i , and one if they were given
treatment a = 1, Y a=1

i . Since each individual is only given one of the treatments, either Y a=0
i or

Y a=1
i is observed, and the other remains counterfactual. The individual causal effect is given by

Y a=1
i − Y a=0

i ,

but since only one of the treatments are given, this can never be observed or estimated. Instead,
focus is placed on the average causal effect (ACE), denoted η, which is given by

η = E(Y a=1 − Y a=0) = E(Y a=1)− E(Y a=0), (7.1)

here E(Y a=1) and E(Y a=0) denotes the expected outcome if everyone in the population were given
treatment a = 1 or a = 0, respectively. As seen from equation (7.1), η targets the treatment effect
which compares the difference in expected outcome if everyone were given treatment a = 1 versus
if everyone were given treatment a = 0. Without a loss of generality, η may target ratios instead of
differences. Moreover, with a binary outcome η may compare probabilities.

Assume that we have L measured baseline covariates. In order to draw a causal effect from
observational data, the following assumptions are usually required,

1. Consistency: E(Ya | L,A = a) = E(Y | L,A = a),

2. Exchangeability: Ya ⊥⊥ A = a | L,

3. Positivity: P (A) > 0.

Consistency relates to the fact that the considered treatments should correspond to well-defined
interventions. Exchangeability means that the conditional probability of receiving a certain treat-
ment should only depend on measured covariates. Exchangeability is related to the concept of “no
unmeasured confounders”. Positivity implies that every individual in the population should have a
positive probability of receiving both treatments.

7.2 Causal marginal models

Hernán and Robins (2020) introduce causal survival analysis in Chapter 17 of their book “Causal
inference: What If?”. Here, the lack of a causal interpretation of hazard ratios is discussed. Thus, the
Cox model has been criticised for providing a parameter which does not have a causal interpretation
(Hernán (2010) and Aalen, Cook, et al. (2015)). Thus, inference based on cause-specific hazard
functions for recurrent events will also lack a causal interpretation. This is a disadvantage of the
parameters derived from intensity-based methods. Luckily, marginal parameters estimated from a
randomised trial usually allows for a causal interpretation. If these parameters can be updated to
potential dependent censoring, a causal interpretation will also be possible in such a setting.
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G-formula

The parametric g-formula was introduced by Robins (1986). The estimated ACE from the g-formula
is given by

η̂ = Ȳ ∗
1 − Ȳ ∗

0 ,

where

Ȳ ∗
a =

1

n

n∑

i=1

Ê (Yi | Li, Ai = a) ,

here Ê (Yi | Li, Ai = a) corresponds to the predicted outcome for individual i for his or her covariate
values, Li, with treatment fixed at Ai = a. Thus, regardless of the actual treatment assignment, the
response is predicted for each individual given their covariate values and with both a = 1 and a = 0,
leading to two predicted values (regardless of the observed outcome). This prediction requires that
an outcome model, E(Y | L,A), is specified. Thus, in order to make correct inference it is required
that the outcome model is correct.

The g-formula adjusts for any imbalances that may be present due to a different distribution of
covariate values (L) per treatment. If randomisation works well, the distribution of covariate values
should be similar across the treatment, and this adjustment will not have an effect.

Su et al. (2022) discuss causal inference for recurrent event data focusing on the comparison of mean
functions using the g-formula and other approaches. In line with this, we may place emphasis on a
proportional means model for recurrent events as the outcome model, which models the expected
number of recurrent events by time t. Here, for t ∈ [0, τ ],

Y ∗
a (t) =

1

n

n∑

i=1

µ̂i(t | Li, Ai = a) =
1

n

n∑

i=1

Ê(N∗
i (t) | Li, Ai = a).

Here, µ̂i(t | Li, Ai = a) can be derived from a regression model for the proportional mean. If there
are no competing risks, the LWYY model may be used to estimate µ̂i(·) (Lin et al. (2000)). In the
presence of competing risks, the GL model may be used to estimate µ̂i(·) (Ghosh and Lin (2002)).
Subsequently, the average causal effect may be targeted as a mean-difference, mean-ratio or log-mean
ratio for a fixed t, i.e.

1 : η̂1 = Y ∗
1 (t)− Y ∗

0 (t),

2 : η̂2 =
Y ∗
1 (t)

Y ∗
0 (t)

,

3 : η̂3 = log

(
Y ∗
1 (t)

Y ∗
0 (t)

)
= log(Y ∗

1 (t))− log(Y ∗
0 (t)).

The choice of scale for the average causal effect depends on the scientific question of interest.

Inverse probability of treatment weights

An alternative way to adjust for any imbalances in covariate values per treatment is to consider
inverse probability of treatment weights (IPTW). Here, an individual is weighted according to their
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probability of receiving the treatment that they actually did receive. The probability of receiving
treatment a = 1 given covariates is denoted by,

p(l) = P (A = 1 | L = l).

This probability is also known as the propensity score. Then, the inverse probability of treatment
weights are given by wi =

1
p(Li)

for an individual with Ai = 1 and wi =
1

1−p(Li)
for an individual

with Ai = 0. Then, E(Y | A) may be fitted using the estimated individual weights ŵi, where

ŵi =
1

p̂(Li)
if Ai = 1,

ŵi =
1

1− p̂(Li)
if Ai = 0.

The estimated ÂCE can be extracted by estimating β1 from the following type of regression model,

E(Y | A = a) = β0 + β1a,

fitted using the inverse probability of treatment weights. In order for this method to provide correct
inference, the propensity model, P (A | L), must be correctly specified. The scale of the average
causal effect is chosen by specification of the outcome model.

For recurrent events, an appropriate propensity model may be formulated, P (A | L). Subsequently,
the outcome model may be a proportional means model fitted using the inverse probability of
treatment weights, i.e. a model for E(N∗(t) | A) with the weights ŵi.

Note that both the g-formula and IPTW may only be of relevance if a randomised comparison
cannot be based on the randomised treatment but should be additionally adjusted according to
skewness in distribution of other baseline covariates. These approaches do not per se allow for
adjustment according to a differential censoring pattern. Su et al. (2022) discuss using IPTW and
g-formula for inference on the cumulative rate of recurrent events without terminal events. They
also discuss an estimator based on pseudo-observations as well as a doubly robust estimator (robust
towards mis-specifying either the outcome model or the propensity model). Alternatively, these
causal methods would be relevant if focusing on a treatment effect different from the effect of being
randomised, e.g., “efficacy” versus “effectiveness” estimand (EMA (2020a)).

7.3 Marginal models accommodating dependent censoring

Dependent censoring which compromises randomisation can be an issue. Marginal models that
explicitly accommodate dependent censoring are thus of interest. These models can be used as sen-
sitivity analyses of the primary analyses, where the censoring process is assumed to be independent of
the recurrent event process. Primary and confirmatory endpoints are expected to have pre-specified
sensitivity analyses which explore various assumptions from the primary or confirmatory analyses.
Marginal models are recommended for the analysis of recurrent events in randomised trials. Thus,
the focus of this section is to extend the marginal models discussed in Chapter 3 and Chapter 5 to
include a degree of dependent censoring. The Ghosh and Lin model (discussed in Chapter 3) could
be a candidate for a primary analysis of recurrent events with terminal events.

Missing data should be limited to the extent possible as it represents a source of potential bias
as discussed in the ICH E9 guideline for statistical principles for the analysis of clinical trials (see



46 CHAPTER 7. CAUSALITY AND DEPENDENT CENSORING

EMA (1998)). Similar considerations apply to the presence of censored observations during follow-
up. Administrative censoring caused by study closure is usually not perceived as a source of bias or
relevant to consider for potential dependent censoring. Any relevant information should be collected
from censored individuals. At best, the statistical models can try to adjust for potential censoring
patterns.

Janvin et al. (2022) discuss causal estimands for recurrent event with terminal events with a special
focus on separable treatment effects as suggested by Stensrud et al. (2022). They also suggest
focusing on the expected number of recurrent events.

Inverse probability of censoring weights

The method of inverse probability of censoring weights (IPCW) was first suggested by Robins and
Rotnitzky (1992) and Robins (1993). This was intended as a tool to reduce the bias that may
be introduced if individuals switch treatment arms as may be done in cancer trials due to ethical
reasons. Treatment switching compromises the randomisation and at such, a randomised comparison
is no longer ensured. This may be remedied by using IPCW.

The usability of IPCW methods will be illustrated using an example of non-parametric inference
on the marginal rate or mean of recurrent events without terminal events. Assume that we wish to
make inference on the recurrent event counting process, N(t), where Ni(t) denotes the process for
individual i. The mean function is denoted µ(t) and the rate function dµ(t) = ρ(t)dt. Following the
notation of Cook, Lawless, Lakhal-Chaieb, et al. (2009), we consider the estimating equations,

n∑

i=1

Ui(t) =

n∑

i=1

Ci(t){dNi(t)− dµ(t)} = 0, (7.2)

where Ci(t) = I(t ≤ Ci) indicates whether individual i is under observation at time t. Lawless and
Nadeau (1995) suggested to focus on the non-parametric estimator,

dµ̂(t) =

∑n
i=1 Ci(t) dNi(t)∑n

i=1 Ci(t)
,

where µ̂(t) =
∫ t

0
dµ̂(u) is the Nelson-Aalen estimate (see Chapter 2). Large sample unbiasedness

relies on the following independence assumption

E(dNi(t) | Ci ≥ t) = E(dNi(t)) = dµ(t),

that is, the recurrent event counting process is completely independent of the censoring process.
Intensity models will typically only require conditional independence, E(dNi(t) | Ci ≥ t,Hi(t

−)) =
E(dNi(t) | Hi(t

−)), to make valid inference (Cook, Lawless, Lakhal-Chaieb, et al. (2009)). Equation
(7.2) may be modified using the inverse probability of being censored to the following,

n∑

i=1

Ũi(t) =

n∑

i=1

Ci(t)

Gi(t)
{dNi(t)− dµ(t)} = 0, (7.3)

where Gi(t) = P (Ci ≥ t | Hi(t
−)) denotes the censoring distribution which is assumed to depend

only on the event history up to time t. Equation (7.3) will be valid under conditional independence

as specified through Gi(t). In order to apply the method, Gi(t) must be estimated. Let Ĝi(t) denote
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this estimate. The censoring distribution may be estimated using parametric, semi-parametric or
non-parametric methods. Correct inference, however, relies on the ability to specify the censoring
distribution correctly. Based on the estimated censoring distribution, an inverse probability of
censoring weighted estimator of the rate function can be suggested as

d̂̃µ(t) =
∑n

i=1 Ci(t) dNi(t)/Ĝi(t)∑n
i=1 Ci(t)/Ĝi(t)

,

where ̂̃µ(t) =
∫ t

0
d̂̃µ(t) denotes a weighted Nelson-Aalen estimate. Analogous derivations apply for

the extensions of several other models (see, e.g., Cook and Lawless (2007) or Ghosh and Lin (2002)).

The proportional means regression model suggested by Ghosh and Lin (2002) utilises IPCW to
account for terminal events (or more accurately, that there is no observed censoring time for dead
individuals). In order to estimate these weights, the censoring distribution should be estimated. If
it is believed that no covariates impact the probability of being censored, a Kaplan-Meier estimate
of Ĝ(t) may be utilised. If censoring is believed to depend on some observed baseline covariates, the
censoring probability may be estimated through a Cox model for the censoring hazard. Hence, it
may be reasonable to assume that the hazard of being censored can be formulated in the following
way,

λC(t | A = a, L = l) = λC0 (t) exp(βaa+ βll),

where λC0 (t) denotes the baseline censoring hazard, βa expresses the effect of treatment and βl
expresses the effect of another baseline covariate. Then, the estimated probability of censored for
A = a and L = l is given by,

Ĝ(t | A = a, L = l) = exp

(
−
∫ t

0

λ̂C0 (u) exp(β̂aa+ β̂ll) du

)

= exp
(
−Λ̂C

0 (t) exp(β̂aa+ β̂ll)
)
.

It would be reasonable to choose the Ghosh and Lin model with weights computed through an
assumption of independence between recurrent events and censoring (e.g., using Kaplan-Meier to

estimate Ĝ(t)) as a primary analysis for recurrent events in the presence of terminal events. Other
censoring weights may be explored as pre-specified sensitivity analyses.

Non-parametric estimators of marginal mean or rate functions may also be updated using IPCW.
This holds for the relevant estimators with or without terminal events. The Ghosh and Lin model
may also be adjusted to account for potential dependent censoring by updating the estimating
equations using IPCW.

Pseudo-observations

The pseudo-observation approach will only provide valid inference if the underlying non-parametric
estimators are approximately unbiased (see Chapter 5). Moreover, well-behaved large sample re-
sults of estimates derived from generalised estimating equations based on pseudo-observations relies
on additional regularity conditions on the underlying non-parametric estimators as discussed in
Overgaard, Parner, et al. (2017). In particular, Overgaard, Parner, et al. (2019) highlight that
regression analysis for survival probabilities based on pseudo-observations may biased if based on a
Kaplan-Meier estimator under dependent censoring. Instead, they study the large sample behaviour
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of inverse probability weighted non-parametric estimators of survival probabilities and cumulative
incidences instead. Hence, updating the suggested non-parametric estimators to other estimators
which can handle dependent censoring, i.e., approximately unbiased again, would (hopefully) ensure
that the method still suffices. Large sample behaviour should however be explored on a case-to-case
basis as discussed in Chapter 5. Andersen and Perme (2010) as well as Binder et al. (2014) discuss
extensions of methods based on pseudo-observations for survival probabilities and cumulative inci-
dences which adjusts for dependent censoring.

Suppose that the interest is to model the expected number of recurrent events using a regression
model based on pseudo-observations. Assume first that there are no competing risks. As noted,
when there is dependent censoring, the Nelson-Aalen estimator will be biased. Instead, another
estimator is suggested by Cook and Lawless (2007) which utilises inverse probability of censoring
weights. Cook, Lawless, Lakhal-Chaieb, et al. (2009) discuss various extensions of non-parametric
estimators to accommodate dependent censoring for estimation of the marginal rate function for
recurrent event with terminal events. Pseudo-observations may be based on inverse probability of
censoring weighted versions of either estimator.





Chapter 8

Summary of manuscripts

During the PhD, a total of three manuscripts have been submitted. Manuscripts I and II have
been published in peer-reviewed journals. Manuscript III has been submitted and is under revision.
Manuscript IV is in preparation. The final pages in the thesis include the manuscripts. Software
has been created in relation to Manuscripts II, IIx, and III. Vignettes which provide additional
details and examples of the R functions as they appear on GitHub have been included after each
manuscript. Table 8.1 provides an overview of the manuscripts. In summary, the manuscripts
contain the following,

Manuscript I discusses challenges in analysing recurrent events with or without competing
risks in randomised controlled trials through a case study.

Manuscript II introduces a new method for analysing recurrent events and terminal events.
simultaneously using bivariate pseudo-observations.

Manuscript IIx is an R-package for computation of pseudo-observations for recurrent events.

Manuscript III proposes a procedure for sample size estimation for a primary recurrent event
endpoint with non-negligible terminal events in a randomised controlled trial.

Manuscript IV introduces appropriate methods to handle dependent censoring when using
marginal models for recurrent events with or without terminal events.

The discussion in Chapter 9 provides a further summary of the results.

Manuscript I

Manuscript I provides an overview of methods used to analyse recurrent events with or without
competing deaths. Here, the challenges in obtaining a clinically relevant treatment effect on recurrent
events from a randomised controlled trial based on various models are discussed. The issues are
exemplified through two endpoints from the large randomised controlled trial, LEADER (Marso
et al. (2016)). The LEADER trial was sponsored by Novo Nordisk and investigated the effects of
the drug liraglutide versus placebo on cardiovascular outcomes. Recurrent myocardial infarction and
recurrent MACE (composite myocardial infarction, stroke, and cardiovascular death) were explored.
For recurrent myocardial infarction, all-cause death acts as a competing risk. Whereas, for the
recurrent composite endpoint, non-cardiovascular death acts as a competing risk, but cardiovascular
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Manuscript Title Status
I Methodological challenges in the analysis of re-

current events for randomised controlled tri-
als with application to cardiovascular events
in LEADER

Published in Pharmaceu-
tical Statistics

II Bivariate pseudo-observations for recurrent
event analysis with terminal events

Published in Lifetime
Data Analysis

IIx R-package ‘recurrentpseudo’: Creates Pseudo-
Observations and Analysis for Recurrent
Event Data

Published on CRAN

III Simulation-based sample size calculations for
recurrent events with competing risks

Under revision for Phar-
maceutical Statistics

IV Marginal models for recurrent events under
covariate dependent censoring

In preparation

Table 8.1: Overview of manuscripts and their status.

death is also included in the recurrent event process.
An extension of the model suggested by Mao and Lin (2016) was proposed. This enables

the modelling of the expected number of recurrent composite MACE events with competing non-
cardiovascular death. This would be an appropriate model when modelling such data as both
cardiovascular and non-cardiovascular death should be handled with care in estimation. Composite
recurrent events which includes cardiovascular death are often explored in exploratory or confirma-
tory analyses without proper attention to how this should be addressed in analyses. Näıve analyses
of recurrent composite endpoints will overestimate the marginal mean estimates and regression pa-
rameters may be biased.

Differences in estimands for various analysis methods are unclear for the current applications
within recurrent events with terminal events. Better practice and understanding of estimands is key
for further develop the statistical methodology within recurrent events. Manuscript I distinguish
between intensity and marginal models for the analysis of recurrent events with or without competing
risks. We recommend marginal models for the analysis of treatment effects in randomised controlled
trials. This is motivated by the fact that the marginal models rely on fewer assumptions with
simpler treatment effects as compared to intensity-based models. Marginal models, especially the
proportional means model, provide a modelling framework for analysing recurrent events which
ensures that a clinically relevant and understandable treatment effect can be estimated.

Manuscript II(x)

Manuscript II proposes a new method for analysing recurrent events and deaths simultaneously.
The approach is based on bivariate pseudo-observations formulated for the expected number of
recurrent events and the survival probability at the same time. Regression models can be based on
the bivariate pseudo-observations and inference can be drawn on the effect of covariates on both
recurrent events and deaths at the same time. In the presence of terminal events, it is important
to consider not only the mean number of events. This is due to the fact that an effective way of
reducing the number of recurrent events is by, e.g., administering a treatment which kills individuals.

The regression model is a generalised linear model where the link functions may be chosen
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to ensure that the parameter of interest can be extracted from the model, e.g., a mean ratio for
recurrent events and a risk ratio for terminal events. Large sample normality of the estimators is
shown both using simulation and theoretical considerations. In the situation with a single binary
treatment variable, this ensures that inference can be based on bivariate large sample normality.
Hypothesis tests constructed using this bivariate normality may be more powerful than the univariate
counterparts if a sequential testing procedure is used. Variance estimates based on the sandwich
variance estimator, as suggested in the paper, are shown to be conservative in some situations using
bootstrap and theory. The bivariate pseudo-observation method is illustrated using two examples:
the classical bladder cancer data and recurrent myocardial infarction data from the randomised
Novo Nordisk’s trial LEADER (Byar (1980), Marso et al. (2016)). A three-dimensional extension of
the bivariate model is suggested for analysis of the LEADER data. This model estimates expected
number of myocardial infarction events, the cumulative incidence of cardiovascular death and the
cumulative incidence of non-cardiovascular death simultaneously given covariates based on pseudo-
observations. This allows the user to separate covariate effects, e.g., treatment, associated with
cardiovascular versus non-cardiovascular death.

The bivariate pseudo-observation method is implemented in the R-package recurrentpseudo

which is published on CRAN. Manuscript IIx contains the package documentation. The R-package
also contains functions for computing one-dimensional and three-dimensional pseudo-observations.
The one-dimensional pseudo-observations are based on the expected number of recurrent events.
The three-dimensional pseudo-observations are based on the expected number of recurrent events,
the cumulative incidence of death for cause 1 and the cumulative incidence of death for cause 2.

In EMA’s Qualification Opinion (2020b) they state that “The CHMP could also envisage the
option to provide an analysis which delivers separate estimates which appropriately summarise the
expected effect of the treatment on the (annual event rate for the) recurrent event while alive, and the
effect on the terminal event for confirmatory decision making. These estimates should be unbiased
from a statistical perspective and assumptions of the model should be transparent. Assessment of
the treatment effect on mortality would have to precede the assessment of the treatment effect on
the recurrent event.” The bivariate methods provide separate inference for both recurrent events
and terminal events. Moreover, the assessment of treatment effects on mortality may be done prior
to the assessment of treatment effects on recurrent events using the sequential testing procedure
which utilises the bivariate large sample normality. This may be more powerful than testing each
component using large sample univariate distributions.

Manuscript III

Manuscript III suggests a simulation-based procedure for conducting power estimation for analysing
recurrent events with competing risks. Marginal models for recurrent events and competing deaths
are imposed. Recurrent events are assumed to adhere to a proportional means model given treatment
(Ghosh and Lin (2002)). Competing deaths are assumed to follow Cox’s proportional hazards model
given treatment (Cox (1972)). The input parameters in the procedure are quantities that can be
extracted based on information which would usually be available in literature. Such as the expected
number of recurrent events and the survival probability at one or more times in the reference group as
well as the treatment effect on both expected number of recurrent events and the survival probability.
Uniform accrual during a period as well as a fixed study length can be accommodated.

Two examples are used to illustrate the procedure with a varying rate of recurrent events and
death. Potential power gains of the recurrent event model compared to a model for first events are
explored. These examples indicate that the power gains will be highly dependent on the underlying
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recurrent event rate. Fritsch et al. (2021) considered how to perform power calculations for recurrent
event endpoints with competing deaths based on simulating data from intensities using frailty models.
As discussed in Chapter 3 (Section 3.3), adherence to an intensity model does not ensure that a
known marginal model is true. Fritsch et al. do not describe the estimand of interest and fit various
marginal and conditional models to data simulated using frailty models, which makes interpretation
hard. The suggested procedure ensures that the marginal models are correctly specified and that
these can be targeted in the simulation.

As a downside, simulation of data using the procedure introduces independence between the
recurrent event and death processes. This may not be a realistic if more recurrent events lead to a
higher probability of death. This was explored further in a simulation study. The simulation study
indicated that even though such a dependence is present it does not necessarily have a large impact
on power.

The simulation-based sample size calculation procedure is a valuable tool for designing ran-
domised controlled trials with recurrent events and competing risks. Software for the procedure is
available in R from the GitHub-repository simpowerrecurrent1.

Manuscript IV

Manuscript IV discusses marginal models for recurrent events, with or without terminal events,
that accommodates covariate dependent censoring. The paper focuses on proportional rates or
means models for recurrent events as suggested by Lin et al. (2000) and Ghosh and Lin (2002).
Inverse probability of censoring weights based on the censoring distribution given baseline covariates
are utilised in the estimating equations to ensure unbiased inference from the proportional means
model suggested by Ghosh and Lin (2002). A regression model based on pseudo-observations of
the marginal mean obtained through a weighted Nelson-Aalen estimator is suggested. This is an
extension of the regression model for recurrent events based on pseudo-observations of the marginal
mean discussed by Andersen, Angst, et al. (2019) and proposed in Manuscript II (Furberg, Andersen,
et al. (2023)). Large sample behaviour and theoretical properties of the pseudo-observation approach
based on the weighted estimator should be explored more in future work. Overgaard, Parner, et al.
(2019) discuss large sample properties of pseudo-observation models for survival probabilities and
cumulative incidences under covariate dependent censoring.

Covariate dependent censoring is introduced in a simulation study through a Cox model and a
non-proportional piece-wise constant censoring model given covariates. The behaviour of the models
are explored based on the dependent censoring. Results remain unbiased if the censoring distribution
is correctly specified prior to being used as inverse censoring weights. The methods are illustrated
using an application to hospital readmissions for patients with colorectal cancer (González et al.
(2005)). Further work on application is planned prior to manuscript submission using recurrent
event data which exhibits covariate dependent censoring from a randomised controlled trial from
Novo Nordisk. Potentially, the LEADER data could be used with focus on recurrent cardiovascular
events occurring while on-treatment focusing on differential treatment adherence for US versus non-
US patients but this is to be explored in more detail (Marso et al. (2016)).

The suggested methods will be valuable as sensitivity analyses that explore the assumption of
completely independent censoring in a marginal proportional means model for recurrent events.
Censoring could be believed to depend on treatment alone or in combination with other baseline co-
variates. The primary focus of the paper is a treatment comparison based on randomised treatment,

1https://github.com/JulieKFurberg/simpowerrecurrent
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i.e. the effect of being randomised to a given treatment. If another treatment effect is targeted,
e.g., the effect of taking the drugs as prescribed, the concepts of causality become important. Thus,
depending on the chosen estimand, the appropriate approach may include methods from causal
inference.





Chapter 9

Conclusion and perspectives

This thesis has investigated, developed and implemented statistical methods with clinically inter-
pretable treatment effect measures for the analysis of recurrent event endpoints with and without
presence of terminal events.

9.1 Contributions

This thesis has contributed with the following:

◦ Development and characterisation of statistical methods for recurrent event endpoints, par-
ticularly in the presence of terminal events. A special emphasis is placed on methods that are
used in or applicable for statistical analysis plans for Novo Nordisk’s randomised controlled
trials.

◦ Discussion (benefits and shortcomings) as well as recommendations of statistical methods for
recurrent event endpoints in randomised controlled trials with a focus of clinically interpretable
treatment effects, i.e. estimands.

◦ Implementation of statistical methods for recurrent events in statistical software that is made
publicly available.

These contributions have been made through the research conducted in relation to the manuscripts
included in this thesis. Chapter 8 provides detailed summaries of each manuscript. The following
serves as an overall summary of the contributions of each manuscript,

Manuscript I Methodological challenges in the analysis of recurrent events for randomised con-
trolled trials with application to cardiovascular events in LEADER: This manuscript discusses
current methods for the analysis of recurrent events. The interpretation of the methods are
discussed with focus on extracting a clinically relevant treatment effect on recurrent events
in the presence of terminals events using case studies from a randomised controlled trial.
We recommend focusing on marginal models for the analysis of recurrent events. Moreover,
a semi-parametric regression model for a composite recurrent event including some death
component, but with other competing death causes, is proposed.

Manuscript II Bivariate pseudo-observations for recurrent event analysis with terminal events:
This manuscript proposes a simultaneous regression model for recurrent and terminal events
based on pseudo-observations of the marginal mean and survival probability. Large sample
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behaviour of the estimates derived from the procedure is discussed using simulation and
theoretical derivations. Testing procedures based on the large sample bivariate normality in
the situation with a binary treatment covariate are also discussed.

Manuscript IIx R-package ‘recurrentpseudo’: Creates Pseudo-Observations and Analysis for
Recurrent Event Data: This manuscript contains the documentation for the R-package ‘re-
currentpseudo’. This is an R implementation of the methods discussed in Manuscript II. This
package computes one-dimensional (marginal mean), two-dimensional (marginal mean and
survival probability), or three-dimensional (marginal mean and cumulative incidences for two
death causes) pseudo-observations for recurrent events. This package also provides an in-
terface for the subsequent modelling of the pseudo-observations using generalised estimating
equations.

Manuscript III Simulation-based sample size calculations for recurrent events with competing
risks: This manuscript suggests a simulation-based approach for conducting sample estimation
for recurrent events with terminal events in the setting of a randomised controlled trial. The
simulation procedure is based on a proportional means model for recurrent events and a
proportional hazards model for the terminal event in line with the recommendation of marginal
models. It relies on marginal quantities that usually are obtainable from historical data.

Manuscript IV Marginal models for recurrent events under covariate dependent censoring :
This manuscript discusses current marginal models for recurrent events, with or without
terminal events, which may accommodate covariate dependent censoring. Moreover, the
manuscript suggests a regression model for recurrent events based on pseudo-observations
of the marginal mean computed using inverse censoring weights which adjust for covariate de-
pendent censoring. The existing and new methods are explored using simulation and through
two data examples. Further work on this manuscript is intended prior to submission.

In relation to Manuscripts II(x) and III, R functions and vignettes with examples are available on
GitHub. These vignettes are included as they appear on GitHub after the relevant manuscripts.

9.2 Perspectives and further work

A key objective of this thesis is to recommend clinically relevant treatment effects, estimands, for
analysing recurrent event endpoints with or without competing terminal events. Relevant estimands
for recurrent events are discussed in Chapter 4. Bühler et al. (2023) and we argue that multi-
state models provide a valuable framework for specifying estimands for randomised controlled trials.
Manuscript I provides an overview of existing methods to obtain treatment effects of recurrent
events in the presence of competing risks. Interpretation of the treatment effect from each model
is discussed using clinical data from the LEADER trial on recurrent myocardial infarction and a
composite endpoint (recurrent myocardial infarction, stroke, and cardiovascular death). We argue
that conditional hazard models for recurrent events with competing risks can be hard to correctly
specify. Thus, it would be easier and more safe to impose marginal models as the dependence
between recurrent events can be left unspecified. Frailty models allow for a specification of an
explicit dependence structure but unfortunately the resulting treatment effect has a subject specific
interpretation. Again, marginal models ensure population-based treatment effects. We recommend
focusing on mean ratios for treatment comparisons. This estimand can be obtained by utilizing a
proportional means model. Without competing risks, this treatment effect is the anti-logarithm of
the parameter from the regression model suggested by Lin et al. (2000). In the presence of competing
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risks, the anti-logarithm of the regression parameter from the model suggested by Ghosh and Lin
(2002) may be used. Both models estimate the expected number of recurrent events by time t
per treatment. If the proportionality assumption from either model is questionable, non-parametric
estimates or models based on pseudo-observations may be utilized to estimate the expected number of
recurrent events at a given time. The expected number of recurrent events has an easy interpretation
from a clinical, patient, regulatory, and statistical perspective. Basing inference on such information
would be a benefit since it is easy to understand. This would allow general practitioners to prescribe
treatments, hopefully, with a larger knowledge of what treatment effect is expected. Andersen and
Keiding (2012) suggest three useful principles for the analysis of multi-state models with competing
risks: do not condition on the future; do not regard individuals at risk after they have died; and stick
to this world. These useful principles have been considered in relation to the recommendation of
marginal models for the analysis of recurrent events. Other estimands were discussed in Section 4.4.
Of relevance could be to further explore marginal treatment effects obtained from the while-alive
estimand, µ(t)/ε(t), using pseudo-observations.

Marginal models for recurrent events ensure a clinical interpretation of treatments irrespective
of the potential impact of terminal events. If there are competing deaths, the marginal expected
number of recurrent events cannot be considered alone. The impact of treatment on mortality needs
to be considered alongside the number of recurrent events, since a high mortality rate in one treat-
ment group can directly affect how many recurrent events are observed. This property is partially
remedied by focusing on composite recurrent events and death. However, modelling the composite
process will only provide inference on the combined effect and the components would need to be
analysed separately to obtain individual effects. A marginal proportional means model for recurrent
events and death may be fitted using the model suggested by Mao and Lin (2016). A proportional
means model for recurrent events and only some death component, with other competing causes of
death, may be fitted using the model suggested in Manuscript I. Sample size estimation for both
types of composite recurrent event processes and the suggested marginal models is a topic for further
research.

As argued, since recurrent events can be prevented by transitioning to a terminal state, it is vital
to consider both treatment effects on number of recurrent events and death. The nature of this
issue is dual, as treatment may influence each component differently. Manuscript II proposes a
bivariate regression model based on pseudo-observations for expected number of events and sur-
vival probability simultaneously. This method has the benefit of estimating treatment effects on
both components jointly. Moreover, the correlation between the components given covariates can
be extracted. Generalised linear models based on pseudo-observations can utilise many link func-
tions and explore time-varying treatment effects. This allows for a rich set of statistical models.
Statistical software for estimation of the bivariate pseudo-observations and subsequent regression
modelling is implemented in an R-package: recurrentpseudo. Manuscript IIx covers the content of
the recurrentpseudo package. An R vignette describing the content of the package with examples
has been included after Manuscript IIx. EMA has expressed a desire to obtain separate treatment
effects on recurrent events and terminal events (see EMA (2020b)). This is possible using the bi-
variate pseudo-observation method. Moreover, sequential tests which test the components one at a
time may be specified which utilises the large sample bivariate distribution.

An understanding of how to design randomised trials with recurrent event endpoints is required to
adopt these endpoints into practice. We suggest to base inference on recurrent events on marginal
models, especially the proportional means model is of interest. Suppose that a proportional means
model is chosen as the primary or confirmatory analysis method for the recurrent event endpoint.
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Claiming treatment effects on recurrent events requires the primary or confirmatory endpoint to be
formally included in the testing hierarchy. Inclusion ensures that the type I error rate is controlled.
Sample size estimation for recurrent event endpoints is a necessary tool in order to secure type I error
control and to ensure sufficiently high power. Manuscript III proposes a simulation-based approach
for conducting sample size estimation for recurrent events with competing risks. This procedure
allows the user to specify quantities that are feasible to suggest based on historical data. Software
and an R vignette with examples for the simulation procedure is available on GitHub. The vignette
has been included after Manuscript III. This approach will enable Novo Nordisk, and other spon-
sors, to make an informed choice when deciding to focus on first or recurrent events when designing
clinical trials. Vital for these considerations is the size of both the recurrent and terminal event rates.

Chapter 7 introduces the concept of causality. For randomised trials, it is usually assumed that
a causal treatment effect can be obtained directly by design. Causal effects might be found using
observational data if certain assumptions can be made. A causal treatment effect may also be dif-
ficult to obtain if there is dependent censoring in a randomised controlled trial. If the dependent
censoring can be explained by baseline covariates, a causal treatment effect may again be secured.
Marginal models that investigate the standard assumption of independent censoring would be of in-
terest as sensitivity analyses for recurrent events or to estimate on-treatment estimands. Manuscript
IV discusses ways to explore this assumption; either using a proportional means model with weights
estimated by a specific model for the censoring distribution given important baseline covariates or
based on pseudo-observations where the estimators utilise inverse censoring weights. Such analyses
would be useful to pre-specify as sensitivity analyses for primary or confirmatory recurrent event
endpoints. More work on Manuscript IV is intended before submission. Zhao et al. (2014) suggested
a tipping-point type analysis for time-to-event data based on multiple imputations. A tipping-point
analysis for recurrent events with competing risks is a topic for further research. The introduced
concepts of causality are important if other treatment effects than the effect of being randomised
are targeted. An example would be the treatment effect which would be obtained by taking a drug
as intended.

With the work of this thesis, Novo Nordisk should be able to be front runners for recommending
and applying recurrent event methods to their randomised controlled trials. Hopefully, dialogue
with the regulatory agencies will drive methodological focus within the biostatistical applications of
Novo Nordisk and other sponsors. Specifically, the field would benefit from a discussion of relevant
estimands for recurrent events with or without terminal events. Recommendations for statistical
practice for recurrent events in randomised trials has been discussed from birth to death in this
thesis.



Bibliography

Aalen, O (1978). “Nonparametric inference for a family of counting processes”. In: The Annals of
Statistics, pp. 701–726.

Aalen, OO, RJ Cook, and K Røysland (2015). “Does Cox analysis of a randomized survival study
yield a causal treatment effect?” In: Lifetime Data Analysis 21, pp. 579–593.

Aalen, OO and S Johansen (1978). “An empirical transition matrix for non-homogeneous Markov
chains based on censored observations”. In: Scandinavian Journal of Statistics, pp. 141–150.

Akacha, M et al. (2018). Request for CHMP Qualification Opinion: Clinically interpretable treat-
ment effect measures based on recurrent event endpoints that allow for efficient statistical anal-
yses. url: https://www.ema.europa.eu/en/documents/other/qualification-opinion-
treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.

pdf (visited on 12/14/2020).
Amorim, LDAF and J Cai (2015). “Modelling recurrent events: a tutorial for analysis in epidemiol-

ogy”. In: International Journal of Epidemiology 44.1, pp. 324–333.
Andersen, PK, J Angst, and H Ravn (2019). “Modeling marginal features in studies of recurrent

events in the presence of a terminal event”. In: Lifetime Data Analysis 25, pp. 681–695.
Andersen, PK, Ø Borgan, et al. (1993). Statistical Models Based on Counting Processes. Springer

Series in Statistics.
Andersen, PK, RB Geskus, et al. (2012). “Competing risks in epidemiology: possibilities and pitfalls”.

In: International Journal of Epidemiology 41.3, pp. 861–870.
Andersen, PK and RD Gill (1982). “Cox’s Regression Model for Counting Processes: A Large Sample

Study”. In: The Annals of Statistics 10.4, pp. 1100–1120.
Andersen, PK and N Keiding (2012). “Interpretability and importance of functionals in competing

risks and multistate models”. In: Statistics in Medicine 31.11-12, pp. 1074–1088.
Andersen, PK and JP Klein (2007). “Regression analysis for multistate models based on a pseudo-

value approach, with applications to bone marrow transplantation studies”. In: Scandinavian
Journal of Statistics 34.1, pp. 3–16.

Andersen, PK, JP Klein, and S Rosthøj (2003). “Generalised linear models for correlated pseudo-
observations, with applications to multi-state models”. In: Biometrika 90, pp. 15–27.

Andersen, PK and MP Perme (2010). “Pseudo-observations in survival analysis”. In: Statistical
Methods in Medical Research 19, pp. 71–99.

Anker, SD and JJV McMurray (2012). “Time to move on from ‘time-to-first’: should all events be
included in the analysis of clinical trials?” In: European Heart Journal 33.22, pp. 2764–2765.

Anker, SD, S Schroeder, et al. (2016). “Traditional and new composite endpoints in heart failure
clinical trials: facilitating comprehensive efficacy assessments and improving trial efficiency”. In:
European Journal of Heart Failure 18.5, pp. 482–489.

Balan, TA and H Putter (2020). “A tutorial on frailty models”. In: Statistical Methods in Medical
Research 29.11, pp. 3424–3454.

60

https://www.ema.europa.eu/en/documents/other/qualification-opinion-treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.pdf
https://www.ema.europa.eu/en/documents/other/qualification-opinion-treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.pdf
https://www.ema.europa.eu/en/documents/other/qualification-opinion-treatment-effect-measures-when-using-recurrent-event-endpoints-applicants_en.pdf


BIBLIOGRAPHY 61

Binder, N, TA Gerds, and PK Andersen (2014). “Pseudo-observations for competing risks with
covariate dependent censoring”. In: Lifetime Data Analysis 20.2, pp. 303–315.

Bretz, F et al. (2009). “A graphical approach to sequentially rejective multiple test procedures”. In:
Statistics in Medicine 28.4, pp. 586–604.

Bühler, A, RJ Cook, and JF Lawless (2023). “Multistate Models as a Framework for Estimand
Specification in Clinical Trials of Complex Processes”. In: Statistics in Medicine.

Byar, D (1980). The veterans administration study of chemoprophylaxis for recurrent stage I bladder
tumours: comparisons of placebo, pyridoxine and topical thiotepa. Springer, pp. 363–370.

Claggett, B et al. (2018). “Comparison of time-to-first event and recurrent-event methods in ran-
domized clinical trials”. In: Circulation 138.6, pp. 570–577.

Cook, RJ and JF Lawless (1997). “Marginal Analysis of Recurrent Events and A Terminating Event”.
In: Statistics in Medicine 16, pp. 911–924.

— (2018). Multistate models for the Analysis of Life History Data. Chapman and Hall/CRC.
— (2007). The Statistical Analysis of Recurrent Events. 1st ed. Springer, New York.
Cook, RJ, JF Lawless, L Lakhal-Chaieb, et al. (2009). “Robust estimation of mean functions and

treatment effects for recurrent events under event-dependent censoring and termination: ap-
plication to skeletal complications in cancer metastatic to bone”. In: Journal of the American
Statistical Association 104.485, pp. 60–75.

Cook, RJ, JF Lawless, and K-A Lee (2003). “Cumulative processes related to event histories”. In:
SORT: Statistics and Operations Research Transactions 27.1, pp. 0013–0030.

Cox, DR (1972). “Regression Models and Life-Tables”. In: Journal of the Royal Statistical Society.
Series B (Methodological) 34.2, pp. 187–220.

Daniel, R, J Zhang, and D Farewell (2021). “Making apples from oranges: Comparing noncollapsible
effect estimators and their standard errors after adjustment for different covariate sets”. In:
Biometrical Journal 63.3, pp. 528–557.

Datta, S and GA Satten (2001). “Validity of the Aalen–Johansen estimators of stage occupation prob-
abilities and Nelson–Aalen estimators of integrated transition hazards for non-Markov models”.
In: Statistics & probability letters 55.4, pp. 403–411.

European Medicines Agency (EMA) (2020a). ICH E9 (R1) addendum on estimands and sensitivity
analysis in clinical trials to the guideline on statistical principles for clinical trials (Step 5).
url: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-
addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-

principles_en.pdf (visited on 03/15/2023).
— (1998). ICH Topic E 9 Statistical Principles for Clinical Trials. url: https://www.ema.europa.

eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-

trials-step-5_en.pdf (visited on 02/02/2023).
— (2020b). Qualification opinion of clinically interpretable treatment effect measures based on re-

current event endpoints that allow for efficient statistical analyses. url: https://www.ema.
europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-

treatment-effect-measures-based-recurrent-event_en.pdf (visited on 12/14/2020).
— (2016). Reflection paper on assessment of cardiovascular safety profile of medicinal products.

url: https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-
paper-assessment-cardiovascular-safety-profile-medicinal-products_en.pdf (visited
on 01/18/2023).

Fine, JP and RJ Gray (1999). “A proportional hazards model for the subdistribution of a competing
risk”. In: Journal of the American Statistical Association 94.446, pp. 496–509.

https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e9-r1-addendum-estimands-sensitivity-analysis-clinical-trials-guideline-statistical-principles_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-treatment-effect-measures-based-recurrent-event_en.pdf
https://www.ema.europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-treatment-effect-measures-based-recurrent-event_en.pdf
https://www.ema.europa.eu/en/documents/other/qualification-opinion-clinically-interpretable-treatment-effect-measures-based-recurrent-event_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-assessment-cardiovascular-safety-profile-medicinal-products_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-assessment-cardiovascular-safety-profile-medicinal-products_en.pdf


62 BIBLIOGRAPHY

Food and Drug Administration (FDA) (2021). E9(R1) Stastical Principles for Clinical Trials: Ad-
dendum: Estimands and Sensitivity Analysis in Clinical Trials. url: https://www.fda.gov/
media/148473/download (visited on 01/31/2023).

— (2019). Treatment for Heart Failure: Endpoints for Drug Development. Guidance for Industry.
Draft Guidance. url: https://www.fda.gov/media/128372/download (visited on 01/31/2023).

— (2020). Type 2 Diabetes Mellitus: Evaluating the Safety of New Drugs for Improving Glycemic
Control. Guidance for Industry. url: https://www.fda.gov/media/135936/download (visited
on 02/02/2023).

Fritsch, A et al. (2021). “Efficiency Comparison of Analysis Methods for Recurrent Event and Time-
to-First Event Endpoints in the Presence of Terminal Events—Application to Clinical Trials in
Chronic Heart Failure”. In: Statistics in Biopharmaceutical Research, pp. 1–12.

Furberg, JK, PK Andersen, et al. (2023). “Bivariate pseudo-observations for recurrent event analysis
with terminal events”. In: Lifetime Data Analysis 29, pp. 256–287.

Furberg, JK, S Rasmussen, et al. (2022). “Methodological challenges in the analysis of recurrent
events for randomised controlled trials with application to cardiovascular events in LEADER”.
In: Pharmaceutical Statistics 21.1, pp. 241–267.

Ghosh, D and DY Lin (2002). “Marginal regression models for recurrent and terminal events”. In:
Statistica Sinica 12, pp. 663–688.

— (2000). “Nonparametric analysis of Recurrent Events and Death”. In: Biometrics 56, pp. 554–
562.

Glasziou, PP, RJ Simes, and RD Gelber (1990). “Quality adjusted survival analysis”. In: Statistics
in Medicine 9.11, pp. 1259–1276.
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Abstract

Analysis of recurrent events is becoming increasingly popular for understand-

ing treatment effects in randomised controlled trials. The analysis of recurrent

events can improve efficiency and capture disease burden compared to stan-

dard time-to-first event analyses. However, the added knowledge about the

multi-state process comes at the cost of modelling complexity. High mortality

rates can complicate matters even more. A case study using data from a ran-

domised controlled trial, LEADER, is presented to highlight interpretation of

common methods as well as potential pitfalls when analysing recurrent events

in the presence of a competing risk. The presented methods either target fea-

tures of the underlying intensity functions or marginal traits of a multi-state

process which includes terminal events or not. In particular, approaches to

handle death as a part of an event and as a competing risk are discussed. A

new method targeting the marginal mean function for a composite endpoint,

which includes both death as a component and as a competing risk, will be

introduced. Finally, recommendations for how to capture meaningful treat-

ment effects in randomised controlled trials when analysing recurrent and ter-

minal events will be made.

KEYWORD S

competing risks, randomised controlled trials, recurrent events, treatment effects

1 | INTRODUCTION

The analysis of time-to-event outcomes is well-known for quantifying treatment effects for randomised controlled trials.
A common choice is to analyse the waiting times until the events of interest using a Cox regression model with treat-
ment as a covariate, for instance analysing the time-to-first heart failure or time-to-first stroke.1 Recurrent events are
events, of the same type, that can happen several times for an individual during the course of their life, for example,
hospitalisation or stroke. The analysis of recurrent events has become more popular within the last years, especially
within the field of cardiology.2 This owes to the fact that many classical time-to-event analyses of, for example, heart
failure only focus on the first events, despite the recurrent event structure of the data. Using all events, and conducting
recurrent event analyses, can help capture disease burden, aid understanding of treatment effects and utilise all data
compared to the time-to-first event analyses. However, the analysis of recurrent events can be more complicated in
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terms of interpretation and conducting analyses as these analyses target a more complex process as opposed to first
events. Recently, results from the PARAGON-HF randomised controlled trial were published, where the primary end-
point was a recurrent composite endpoint consisting of hospitalisation for heart failure or death from cardiovascular
disease.3 Two other randomised controlled trials, CHARM-Preserved and PARADIGM-HF, have also been republished
with a focus on recurrent event methods for summarising the results as an alternative to the primary manuscripts
focusing on first events.4–7

Several models and methods have been put forward for the analysis of recurrent events. Classical and more recent
methods will be presented in this paper. The focus will be on the interpretation of treatment effects for these models
when utilised to analyse randomised controlled trials, illustrated by a case study. The methods will be applied to data
from the LEADER trial, a randomised controlled trial, that focused on comparing cardiovascular events between pla-
cebo and an active treatment in a type 2 diabetic population with cardiovascular risk factors.8

Mortality rates can be high in controlled trials, especially in trials which include a sick population. This can intro-
duce issues for the inference on recurrent events as a terminal event will preclude further recurrences. These issues are
similar to problems with competing risks encountered in classical time-to-event analysis. A potential correlation
between recurrent and terminal events can also be present, and treatments may influence mortality. Moreover, the
effect of treatment on mortality may also be an important scientific question. A popular approach for managing this
problem is to consider composite recurrent events, consisting of both, for example, heart failure and death. In this set-
ting, some of the recurrent event process terminates the process itself, and it is not clear which implications this can
have on estimation and interpretation. We will introduce a new method for modelling the marginal mean function for
composite endpoints which includes a death component but also are subject to competing risks. No recommendations
from health authorities exist for the analysis of recurrent events, however clinical relevance of, for example, recurrent
heart failure has been acknowledged by EMA.9 They also emphasise issues with analysis and interpretation of
recurrent events in the presence of terminal events. Thus, they suggest seeking out scientific advice if a recurrent event
endpoint is considered as part of a primary endpoint. Recently, a qualification opinion was submitted to EMA with a
focus on treatment effect measures for recurrent event endpoints.10 Overall, EMA acknowledged the gain of recurrent
event methods as opposed to time-to-first event methods when mortality rates are low. In the situation with both recur-
rent event and terminal events, interpretation and benefits are less clear.11 The present article will have a larger focus
on marginal models compared to the qualification opinion, which especially focuses on intensity models.

As suggested by Cook and Lawless, we will distinguish between intensity models and marginal models for the analy-
sis of recurrent events.12,13 Within each of these, we will elaborate on methods explicitly accommodating competing
risks from death or not. This will be formulated using multi-state models. Each method will be described and applied to
two types of recurrent event endpoints from the LEADER trial: a recurrent myocardial infarction endpoint and a recur-
rent composite endpoint consisting of myocardial infarction, stroke and cardiovascular death. Recently, data from the
LEADER trial was re-analysed considering recurrent events instead of first events.14 That article mainly has a clinical
focus, whereas the emphasis in the present article will be on statistical methodology.

1.1 | Multi-state models for life history data

Life history data captures information about events collected during a period of a lifetime of an individual.15 Due to the
period of collection, this data are typically right-censored. The fact that some individuals will experience the event of
interest during this period, and others will not, characterises the right-censoring. The counting process notation pro-
vides a mathematical framework for life history data, both applicable for time-to-first event and recurrent event data,
see Andersen et al.16

A multi-state process in continuous time is a stochastic process Z tð Þ, t∈T with a finite state space S¼ 0,…,Kf g.
Here T¼ 0,τ½ �, τ<∞ is a time interval and Z tð Þ represents the occupied state at time t. The transition intensity function
between states is defined as

λkl tjH t�ð Þð Þ¼ lim
Δt#0

P Z tþΔt�ð Þ¼ ljZ t�ð Þ¼ k,H t�ð Þð Þ
Δt

ð1Þ

for the states k, l∈S with k≠ l. Here t� denotes a time that is infinitesimally smaller than time t. Moreover, H tð Þ¼
Z sð Þ,0≤ s≤ tf g and H t�ð Þ represents the state occupation history over 0, t½ Þ.15
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A Markov multi-state process is a special case of the general multi-state process that additionally satisfies that
λkl tjH t�ð Þð Þ¼ λkl tð Þ. This implies that the dependence on the history is given only through the current state. This corre-
sponds to so-called total time models: evaluating the time since, for example, randomisation.

For a semi-Markov multi-state process, it holds that λkl tjH t�ð Þð Þ¼ hkl B tð Þð Þ, where hkl tð Þ denotes the transition
intensity function and B tð Þ denotes the time since entry into the current state k. This corresponds to so-called gap time
models: modelling the duration of the stay in a given state. The interpretation of treatment effects in the analysis of gap
times can be difficult for randomised trials, because subjects may be differently selected for the gap times following the
first event. If treatment has an effect on the first gap time, a randomised comparison will be questionable on the follow-
ing gap times.13 Thus, we will not go into further details with gap time models in this article.

This article focuses on non-parametric and semi-parametric methods for quantifying treatments effects. Many of the
semi-parametric approaches, assuming a non-parametric baseline function, could be extended to parametric counter-
parts. But the semi-parametric models impose less assumptions than the parametric models, and the non-parametric
models less than the semi-parametric models. Moreover, this article focuses on multiplicative models as opposed to
additive models, as they are most common in the literature and applications. Additive models do however have nice
properties, which eases the strict assumptions about, for example, proportional hazards. Model checking will not be
elaborated further in this article since the focus will be on the interpretation of treatment effects for the different
methods. For any practical application, model checking is important and relevant.

1.2 | Overview of LEADER data

LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome Results) was a double-
blind randomised controlled trial investigating the cardiovascular effects of liraglutide, a glucagon like peptide-1
(GLP-1) receptor agonist approved for treatment of type 2 diabetes, investigated versus placebo when added to standard
of care in a population with type 2 diabetes and a high cardiovascular risk.8 A total of 9340 subjects were randomised
1:1 to receive either liraglutide or placebo. The primary composite endpoint was a three-component major cardiovascu-
lar adverse events (3-p MACE) endpoint consisting of; non-fatal stroke, non-fatal myocardial infarction or
cardiovascular (CV) death. The primary analysis was a time-to-event analysis using a Cox regression modelling of the
time to first 3-p MACE with treatment as a covariate. The median follow-up time was 3:8 years.

Cardiovascular adverse events of interest were adjudicated using an event adjudication committee to independently
and blindly evaluate the events. Table 1 includes an overview of the number of subjects experiencing the first primary
3-p MACE endpoint and the distribution of subjects experiencing death, MI or stroke per treatment. In the
primary LEADER publication, treatment with liraglutide affected the death rate in a positive manner (HR of 0.85, 95%
CI: [0.74; 0.97]), which was driven by a difference in time-to-first CV death, as analysed using a Cox regression model
with treatment as a covariate.8 The results for CV death (HR of 0.78, 95% CI: [0.66; 0.93]) was in favour of liraglutide,
with no significant difference between treatments on non-CV death (HR of 0.95, 95% CI: [0.77; 1.18]). The same

TABLE 1 Key numbers from the LEADER trial on adjudicated first events per subject

Liraglutide Placebo
(n = 4668) (n = 4672)

Outcome n, (%), r n, (%), r

Primary comp. event (3-p MACE) 608, (13.0%), 3.4 694, (14.9%), 3.9

(First of: non-fatal stroke, non-fatal MI, or CV death)

Death from any cause 381, (8.2%), 2.1 447, (9.6%), 2.5

Cardiovascular death 219, (4.7%), 1.2 278, (6.0%), 1.6

Non-cardiovascular death 162, (3.5%), 0.9 169, (3.6%), 1.0

First myocardial infarction (fatal and non-fatal) 292, (6.3%), 1.6 339, (7.3%), 1.9

First stroke (fatal and non-fatal) 173, (3.7%), 1.0 199, (4.3%), 1.1

Note: n denotes number of randomised subjects. % denotes percentage of total number of randomised subjects. r denotes the incidence rate (number of events
per 100 patient years).
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analysis of myocardial infarction (not a pre-specified analysis) indicated a benefit of liraglutide compared to placebo
(HR of 0.85, 95% CI: [0.73; 1.00]). For stroke, there was not a significant difference between the treatments when ana-
lysing time-to-first events using the same model (also not a pre-specified analysis) (HR of 0.86, 95% CI: [0.71; 1.06]), but
the point estimate has direction in favour of liraglutide. Please be reminded that the LEADER trial was not powered to
detect differences between the individual 3-p MACE components. Note, that there were fewer numbers of stroke events
compared to events of myocardial infarction. For this case study, we will focus on myocardial infarction, stroke and car-
diovascular (and non-cardiovascular) death which all were adjudicated. Specifically, we are focusing on

• Recurrent myocardial infarction (MI). This will be denoted recurrent MI.
• Recurrent composite endpoint consisting of myocardial infarction, stroke and cardiovascular death. This will be den-

oted recurrent 3-p MACE. Note that this endpoint contains all fatal or non-fatal stroke and myocardial infarction
episodes.

In case of either a myocardial infarction or stroke being fatal, this has been coded as an event occurring at the calen-
dar day of the MI or stroke and then a CV death occurring on the following day. Note, that this definition of 3-p MACE
is different from the definition of 3-p MACE used in the recent LEADER article on recurrent events, using 3-p
MACE defined as CV death, non-fatal stroke or non-fatal MI.14 The recurrent MI and 3-p MACE endpoints are illus-
trated in Table 2. For both endpoints, there are few recurrences beyond five events. When comparing the number of
recurrent events as opposed to first events, there are considerably more recurrent events. For recurrent MI, there is a
total of 359 292ð Þ and 421 339ð Þ recurrent (first) events for liraglutide and placebo, respectively. Using first events for MI
here corresponds to using 292/359 = 0.81 (liraglutide) and 339/421 = 0.81 (placebo) of the total number of events. For
recurrent 3-p MACE, using first events corresponds to using 608/768 = 0.79 (liraglutide) and 694/923 = 0.75 (placebo)
of the total number of events. This underlines the number of events that can be gained by using recurrent events as
opposed to first events.

These two recurrent event processes illustrate two different kinds of processes. Recurrent MI is a “natural” recurrent
event process that might be affected by competing risks in the form of death. Recurrent 3-p MACE is a less “natural”
recurrent event process, since CV death is a part of composite endpoint and is considered an event. However, if a CV
death occurs, it is not possible to have any subsequent recurrent events.

TABLE 2 Overview of recurrent MI and 3-p MACE episodes for the LEADER trial

Number of patients with at least e events

Recurrent MI Recurrent 3-p MACE

Liraglutide Placebo Liraglutide Placebo
Number of events, e (n = 4668) (n = 4672) (n = 4668) (n = 4672)

1 292 339 608 694

2 46 59 119 163

3 13 14 25 47

4 5 4 11 13

5 1 2 3 3

6 1 1 1 1

7 1 1 1 1

8 0 1 0 1

Total events 359 421 768 923

No events 4376 4333 4060 3978

Censoring before any event 4047 3960 3923 3845

(Competing) Death before any event 329 373 137 133

Note: n denotes number of randomised subjects.
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Table 1 shows that there are more cardiovascular deaths with placebo than with liraglutide. There is a smaller dif-
ference between the treatments on the number of non-cardiovascular deaths. Due to the magnitude of these deaths,
assuming that there is non-negligible mortality will be wrong for both endpoints. Moreover, we would expect that an
estimated treatment effect for the recurrent MI endpoint to be more affected by the presence of non-negligible death in
LEADER, as both CV death and non-CV death act as competing risks. When assuming negligible mortality, results on
recurrent 3-p MACE will also be affected, but less so with respect to the difference between the treatments, depending
on how CV and non-CV death are handled in these analyses. Table 3 displays the distribution of the event types for the
recurrent 3-p MACE endpoint. Figure 1 shows the cumulative incidences estimated using the Aalen-Johansen estimator
per treatment and per death cause; either cardiovascular, non-cardiovascular death or all-cause death. Please note that
summing the cumulative incidences for CV and non-CV death is equivalent to considering the cumulative incidence
for all-cause death. Small differences between treatments in the cumulative incidences estimates for non-CV death are
noted. For CV death, there is a notable difference between the two groups from around 15 months after randomisation
and beyond.

2 | TARGETS OF ESTIMATION

We are interested in quantifying a clinically relevant treatment effect in terms of the recurrent event process, especially
in the context of randomised controlled trials. Different measures of treatment differences (or ratios) are possible.

Two types of multi-state models will be investigated in this article. The first is a recurrent event process with negligi-
ble or no mortality as illustrated in Figure 2. The second is a recurrent event process with non-negligible mortality as
illustrated in Figure 3. For both these models, there is no “gap” between the at-risk periods. This is to be understood in
the sense that an individual is immediately under risk of a new event once an event has occurred. This is not

TABLE 3 Overview of distribution of recurrent 3-p MACE types per treatment

Number of events

Number of events Liraglutide Placebo

Cardiovascular death 219 278

Myocardial infarction (fatal and non-fatal) 359 421

Stroke (fatal and non-fatal) 190 224

Total 768 923
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FIGURE 1 Aalen-Johansen estimates of the cumulative incidence functions per treatment and per death cause

FURBERG ET AL. 245

 15391612, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2167 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



necessarily the clinical reality as one may experience a period where one is no longer under risk of the event. Recurrent
hospitalisation could be an example, where individuals are not prone to being hospitalised when already in the hospital.
These considerations could also apply to the clinical setting of the LEADER data. However, since only the onset date of
the cardiovascular events where adjudicated (and not the stop date), there is no information on the duration of the
events from the adjudication committee. In the data, some subjects did also experience, for example, MI events quite
close to each other. For instance, one subject had two MI's on two consecutive days. That recurrent events were experi-
enced so closely in time also supports the choice of multi-state models with no “gaps” between at-risk periods.

As we shall see, there is not a single “model for recurrent events.” Rather, there are a variety of models targeting dif-
ferent parameters under various assumptions. Naturally, the choice of model will have an effect on the estimates and
their final interpretation. Models were fitted in R, primarily using the survival and frailtypack packages, with
usage of the coxph and frailtyPenal functions.17–20 The data sets have been structured in counting process style
exemplified in Table 4. These models can also be implemented in SAS mainly through usage of proc phreg.21

Multi-state models provide a general framework for studying stochastic processes. A special case of these are the
recurrent event processes. For the processes that we will consider, the notation can be specified even more. For a single
recurrent event process, we denote the (recurrent) event times by T1,T2,… for event 1, event 2 and so forth. These
events are ordered in the sense that T1 <T2 <…, for example, individuals are experiencing event 1 prior to event 2. The
associated counting process, N tð Þ, counts the cumulative number of events at time t for t∈ 0,τ½ �. The event intensity
function gives the instantaneous probability of an event in a very small time interval,

λ tjH t�ð Þð Þ¼ lim
Δt#0

P ΔN tð Þ¼ 1jH t�ð Þð Þ
Δt

ð2Þ

0: No event 1: 1 event 2: 2 events
01( ) 12( ) 23( )

FIGURE 2 A recurrent events process with no “gaps” between at-risk period. Mortality is negligible

0: No event 1: 1 event 2: 2 events

D: Dead

0 ( )

1 ( )
2 ( )

01( ) 12( ) 23( )

FIGURE 3 A recurrent events process with a terminal event and no “gaps” between at-risk periods. Mortality is non-negligible

TABLE 4 Example of structure of recurrent event data in counting process style. ID denotes the subject identifier. Status denotes the

event indicator at the stop time (0: Censoring, 1: Event, 2: Death)

ID Start time Stop time Status Treatment

1 0 10 1 Placebo

1 10 200 1 Placebo

1 200 350 0 Placebo

2 0 1050 2 Active

3 0 400 1 Active

3 400 1500 2 Active
..
. ..

. ..
. ..

.
..
.
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where ΔN tð Þ¼N tþΔt�ð Þ�N t�ð Þ denotes the number of events in time t, tþΔt½ Þ, and H tð Þ¼ N sð Þ : 0≤ s≤ tf g denotes
the history of the process. This will characterise the recurrent event part of the multi-state models specified in Figures 2
and 3. Note, that the subscript denoting which transition is considered is omitted here, since we are considering the sit-
uation where λ01 tð Þ¼ λ12 tð Þ¼…. Alongside this, we denote the survival time by D.

3 | INTENSITY MODELS

Intensity models specify the full distributional nature of the considered multi-state model. Thus it requires a specifica-
tion of the transition intensities between each of the possible states. Transition intensities and probabilities are condi-
tional on the past as seen from Equations (1) and (2). Hence, model validity and securing no model misspecification
quickly becomes key. The intensity models provide a valuable tool for understanding process dynamics.

If having one event makes you more prone to experiencing a second event and so forth, it is unrealistic to assume a
common event intensity. In order to remedy such a model misspecification introduced by the correlation between the
event probabilities, one solution is to condition on the past, for example, by the number of previous events. However, if
interested in quantifying a treatment effect for a randomised controlled trial, this approach should be used with care.
This is due to the bias that can be introduced by conditioning on the past, but post-randomisation, in terms of, for
example, number of previous events, as the number of subsequent events can be influenced by the treatment. Thus,
Cook and Lawless argue that intensity models that condition on the number of previous events are not optimal when
analysing randomised controlled trials.13 Due to this fact, no post-baseline covariates are included in the considered
models. For simplicity and in line with the primary manuscript of LEADER, all considered models only include a single
covariate, namely the treatment indicator. Other baseline covariates could be included without loss of generality. Let x
denote the binary treatment indicator (x¼ 0 for placebo, x¼ 1 for liraglutide).

Several intensity models have been proposed for modelling recurrent event processes. Many of these are semi-
parametric models which resemble extensions of the Cox regression model known from classical time-to-event analysis.
Some of these semi-parametric approaches carry strong assumptions but have a simple structure.

3.1 | Negligible mortality

The first focus will be on models modelling a multi-state model like the one in Figure 2. For these intensity models, the
focus is on specifying the structure of intensity functions for each transition. The case study LEADER data contains
non-negligible deaths, corresponding to the reality envisioned in Figure 3. Thus, when analysing recurrent events under
the influence of competing risks, this implies that the cause-specific hazard functions λ01 tð Þ,λ12 tð Þ,… in Figure 3 are
modelled in the models to be presented. In practice, this can be done by treating the competing death causes as censor-
ings formally due to the factorisation of the likelihood.22 For the recurrent MI endpoint this implies that both CV and
non-CV death are treated as censorings at the time of death in the model fitting. For the recurrent 3-p MACE endpoint,
this implies that non-CV death is treated as censorings at the time of death (CV death is a part of the event here) in the
model fitting.

3.1.1 | The Andersen–Gill (AG) model

The Andersen–Gill model in its simplest form is an example of a Markov model for recurrent events, suggested as an
extension of the classical Cox model for time-to-event outcomes.23 Here the event intensity function is given by

λ tjxð Þ¼ λ0 tð Þexp βxð Þ ð3Þ

in this context β is the one-dimensional regression coefficient for the treatment effect, and λ0 tð Þ is the unspecified base-
line intensity function. The general model formulation allows for p-dimensional, possibly time-varying, covariates. This
model assumes that the event intensity depends over time on the baseline event intensity and that there is a constant
effect of treatment. The transition probability of moving from 0 to 1 event is the same as when moving from 1 to
2 events given treatment at the same time t. This assumption is questionable if you have a process where the occurrence
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of the event itself will change the rate of further occurrences of the event. For example, if having one stroke, makes you
more prone to subsequent strokes, then this model will not hold. Moreover, you are also assuming that the treatment
has the same multiplicative effect for all transitions. Finally, this method assumes independence between events, which
again may be a questionable assumption. It is possible to fit this model using robust standard errors to ease this assump-
tion. Another remedy to the likely violation of independence could be to condition on the number of previous events,
but as mentioned earlier, this will create a potential bias in estimating a treatment effect. Note, that an AG model with
a constant baseline intensity function corresponds to a Poisson model using the logarithm of the observation time as
offset.

Estimates of the regression coefficients of this model for recurrent MI and 3-p MACE are summarised in Tables 5
and 6. See Table 7 for details on what the estimates mean for each model. The estimated hazard ratios indicate that
liraglutide treatment is associated with a lower rate of both recurrent MI exp β̂

� �¼ 0:849
� �

and recurrent 3-p MACE
exp β̂

� �¼ 0:828
� �

compared to placebo. However, note again, that the presented analysis uses all strokes and MI epi-
sodes for 3-p MACE as opposed to only non-fatal episodes presented in the primary LEADER publication on first events
and the recent LEADER publication on recurrent events.8,14 The results are still in line with the primary manuscript
for LEADER, where the time-to-first event analyses indicated cardiovascular benefits of liraglutide compared to placebo
on the primary composite endpoint (non-fatal stroke, non-fatal MI or CV death) and MI. The results from the analyses
of time-to-first MI and 3-p MACE analysed using a Cox model with treatment as a covariate are also included in
Tables 5 and 6.

3.1.2 | The Prentice–Williams–Peterson (PWP) model

The Prentice–Williams–Peterson model is an example of another Markov model.24 The event intensity function is
given by

λ tjxð Þ¼ λk,kþ1 tð Þexp βk,kþ1x
� � ð4Þ

where λk,kþ1 tð Þ denotes the unspecified baseline intensity function and the βk,kþ1 denotes the effect of treatment for the
transition between states k and kþ1. For this model, the baseline intensities are allowed to vary with each transition.
This is equivalent to allowing a time dependent stratum per transition. Here, each transition is associated with a regres-
sion coefficient for the treatment effect, βk,kþ1. Thus, βk,kþ1 is a conditional estimate that measures the effect of treat-
ment on the individual transitions. It is possible to choose an overall coefficient β¼ βk,kþ1 across all strata, resulting in
the following model

λ tjxð Þ¼ λk,kþ1 tð Þexp βxð Þ ð5Þ

which provides an overall estimate of the treatment effect, β, on the recurrent event process. Note that this estimate is
conditional on the previous number of events through the stratification. This model in turn assumes that the treatment
has the same constant impact on the different baseline intensities. Thus, the assumption is that the treatment will
secure the same, for example, rate decrease (or increase) from 2 to 3 events as from 1 to 2 events, which is proportional
to the baseline intensity for a given strata. Note, that individuals are not under risk of the k'th event until the k�1'th is
experienced. The risk set contains all subjects that are at risk of having the recurrent event. That is, all subjects who
were under observation at time t and able to experience event k (required that all prior events are experienced). The
property of the risk sets can however also break randomisation, since it is not possible to make a randomised compari-
son of treatments beyond the first event. This is analogous to the issue with conditioning on the previous number of
events in the AG model. If treatment affects the occurrence of the first event, fewer treated subjects will be at risk for
the second event. Consequently, some of the treatment effect may be removed through the stratification.

Due to the low number of recurrences beyond five recurrent events for both the MI endpoint and the 3-p MACE
composite endpoint, the model in Equation (4) is considered up to and including transition five, that is, from 0! 1,
1! 2, 2! 3, 3! 4, and 4! 5. Estimates of the regression coefficients of these models for recurrent MI and 3-p MACE
are summarised in Tables 5 and 6. The PWP model with a common effect is denoted PWP 2 in the table, and the model
with an effect per transition is denoted PWP 1. For recurrent MI, the direction of the point estimates indicates that
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liraglutide is more beneficial than placebo, except for transition 3! 4. This is due to the slight imbalance and the
diminished risk sets present for event number four as seen in Table 2: 5 events with liraglutide and 4 events with pla-
cebo. Here, this leads to the interpretation that liraglutide seems to increase the intensity of going from 3 to 4 events,
whereas decreasing the intensity of all other transition compared to placebo. The low number of events and the

TABLE 5 Overview of model results for recurrent MI. Placebo is the reference group. The time-to-first event Cox model has treatment

as a covariate. PWP 1 and PWP 2 denotes the Prentice–Williams–Peterson model with a treatment effect per transition and an overall

treatment effect, respectively. WLW 1 and WLW 2 denotes the Wei–Lin–Weissfeld model with an treatment effect for each event number

and an overall treatment effect, respectively

Model bθ se bθ� �
exp bθ� �

95% CI for exp θð Þ
Cox bβ = �0.159 0:080 0:853 [0.729; 0.997]

(Time-to-first)

AG bβ = �0.164 0:072 0:849 [0.737; 0.977]

(Non-par.)

AG bβ = �0.164 0:072 0:849 [0.737; 0.977]

(Piece. const.)

PWP 1 bβ01 = �0.159 0:080 0:853 [0.729; 0.997]

bβ12 = �0.047 0:197 0:954 [0.649; 1.404]

bβ23 = �0.023 0:400 0:977 [0.446; 2.139]bβ34 = 0.629 0:737 1:875 [0.442; 7.951]

bβ45 = �0.429 1:230 0:651 [0.058; 7.257]

PWP 2 bβ = �0.130 0:072 0:878 [0.762; 1.011]

Frailty bβ = �0.177 0:088 0:838 [0.705; 0.995]

(Non-par.) bϕ = 5.687 Not available from coxpha

Frailty bβ = �0.177 0:088 0:838 [0.705; 0.995]

(Piece. const.) bϕ = 5.694 Not available from coxphb

Joint frailty Convergence failed

(Non-par.)

Joint frailty bβ = �0.186 0:068 0:830 [0.727; 0.949]

(Piece. const.) bα = �0.211 0:078 0:809 [0.694; 0.944]bϕ = 0.896 0:031

bγ = 1.860 0:115

WLW 1 bβ1 = �0.159 0:080 0:853 [0.729; 0.997]bβ2 = �0.255 0:197 0:775 [0.527; 1.139]

bβ3 = �0.084 0:384 0:920 [0.433; 1.953]

bβ4 = 0.219 0:671 1:245 [0.334; 4.639]

bβ5 = �0.701 1:224 0:496 [0.045; 5.461]

WLW 2 bβ = �0.167 0:088 0:846 [0.711; 1.006]

LWYY bβ = �0.164 0:088 0:849 [0.714; 1.009]

GL bβ = �0.159 0:088 0:853 [0.718; 1.013]

Abbreviations: AG, Andersen–Gill; GL, Ghosh–Lin; LWYY, Lin–Wei–Yang–Ying; PWP, Prentice–Williams–Peterson; WLW, Wei–Lin–Weissfeld.
aA frailty model (non-par. baseline hazard fitted using frailtypack): bθ¼ bβ,bϕ� �

¼ �0:177,5:614ð Þ se bθ� �� �
¼ 0:088,0:590ð Þ.

bA frailty model (piece-wise constant baseline hazard with 5 equidistant cuts fitted using frailtypack): bθ¼ bβ,bϕ� �
¼

�0:177,5:598ð Þ se bθ� �� �
¼ 0:088,0:609ð Þ.
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TABLE 6 Overview of model results for recurrent 3-p MACE (stroke, MI or CV death). Placebo is the reference group. The time-to-first

event Cox model has treatment as a covariate. PWP 1 and PWP 2 denotes the Prentice–Williams–Peterson model with a treatment effect per

transition and an overall treatment effect, respectively. WLW 1 and WLW 2 denotes the Wei–Lin–Weissfeld model with an treatment effect

for each event number and an overall treatment effect, respectively. ML 1 denotes the Mao and Lin model that accommodates CV death, but

does not address the competing non-CV death. ML 2 denotes the Mao and Lin type model that accommodates both CV and non-CV death.

Both ML methods had severity c¼ 1,1,1ð Þ

Model bθ se bθ� �
exp bθ� �

95% CI for exp θð Þ
Cox bβ = �0.142 0:056 0:868 [0.778; 0.968]

(Time-to-first)

AG bβ = �0.189 0:049 0:828 [0.752; 0.911]

(Non-par.)

AG bβ = �0.189 0:049 0:828 [0.752; 0.911]

(Piece. const.)

PWP 1 bβ01 = �0.142 0:056 0:868 [0.778; 0.968]

bβ12 = �0.218 0:121 0:804 [0.635; 1.020]

bβ23 = �0.418 0:250 0:659 [0.403; 1.076]

bβ34 = 0.547 0:463 1:727 [0.698; 4.276]

bβ45 = 0.029 1:008 1:029 [0.143; 7.417]

PWP 2 bβ = �0.157 0:049 0:855 [0.777; 0.941]

Frailty bβ = 0.232 0:067 0:793 [0.696; 0.904]

(Non-par.) bϕ = 4.395 Not available from coxpha

Frailty bβ = �0.232 0:067 0:793 [0.696; 0.904]

(Piece. const.) bϕ = 4.403 Not available from coxphb

Joint frailty Convergence failed

(Non-par.)

Joint frailty bβ = �0.207 0:058 0:813 [0.725; 0.911]

(Piece. const.) bα = �0.083 0:108 0:921 [0.746; 1.137]bϕ = 0.951 0:029

bγ = 1.398 0:149

WLW 1 bβ1 = �0.142 0:056 0:868 [0.778; 0.968]

bβ2 = �0.323 0:121 0:724 [0.572; 0.917]

bβ3 = �0.639 0:247 0:528 [0.325; 0.857]

bβ4 = �0.175 0:409 0:839 [0.376; 1.871]

bβ5 = �0.026 0:809 0:975 [0.200; 4.756]

WLW 2 bβ = �0.192 0:062 0:825 [0.731; 0.931]

LWYY bβ = �0.189 0:060 0:828 [0.735; 0.931]

GL bβ = �0.190 0:060 0:827 [0.735; 0.931]

ML 1 bβ = �0.183 0:059 0:833 [0.742; 0.935]

ML 2 bβ = �0.183 0:059 0:832 [0.741; 0.934]

Abbreviations: AG, Andersen–Gill; GL, Ghosh–Lin; LWYY, Lin–Wei–Yang–Ying; ML, Mao–Lin; PWP, Prentice–Williams–Peterson; WLW, Wei–Lin–
Weissfeld.
aA frailty model (non-par. baseline hazard fitted using frailtypack): bθ¼ bβ,bϕ� �

¼ �0:232,4:400ð Þ se bθ� �� �
¼ 0:067,0:315ð Þ.

bA frailty model (piece-wise constant baseline hazard with 10 equidistant cuts fitted using frailtypack): bθ¼ bβ,bϕ� �
¼

�0:231,4:387ð Þ se bθ� �� �
¼ 0:066,0:308ð Þ.
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reduction of the risk sets are reflected in the confidence intervals. A statement like “it reduces the rate of getting 1-3
events, but not the fourth event” does not ring that nice. The picture is clearer for recurrent 3-p MACE, however it still
does not allow an easy interpretation of what the effect of treatment is, since the estimates are per transition. The major
caveat of this model is that randomisation is not preserved past the first transition due to the stratification. If the treat-
ment is effective, some of the treatment effect will be removed through the stratification. This makes the PWP model
less obvious to use to summarise a treatment effect on recurrent events for randomised controlled trials.

3.1.3 | Frailty model

Another common model is the frailty model which can be used for analysing clustered survival data. The frailty termi-
nology was first introduced by Vaupel.25 A random term is present in this multiplicative model in order to account for
possible positive correlation of events within a subject. In the survival context, this random term is known as a frailty,
as certain subjects may be more “frail” to experiencing the event of interest. The event intensity function is given by

λ tjx,νð Þ¼ νλ0 tð Þexp βxð Þ ð6Þ

TABLE 7 Overview of methods for analysing recurrent events with terminal events

Method Model Target of estimation Terminal events

Andersen-Gill Intensity
Semi-parametric

Cause-specific hazard ratio Terminal events correctly handled by technically
censoring at time of death

Prentice–Williams–
Peterson

Intensity
Semi-parametric

Cause-specific (stratified)
hazard ratios

Terminal events correctly handled by technically
censoring at time of death

Frailty Intensity
Semi-parametric

Cause-specific (conditional)
hazard ratio

Terminal events likely handled incorrectly,
technically done by censoring at time of death,
due to plausible violation of the assumption of
independent censoring given frailty

Joint frailty Intensity
Semi-parametric

Cause-specific (conditional)
hazard ratios

Recurrent event and terminal event process
correctly modelled simultaneously

Wei–Lin–Weissfeld Marginal
Semi-parametric

(Marginal) hazard ratio Terminal events incorrectly handled by technically
censoring at time of death. Estimates relate to a
situation where it is not possible to die

Lawless and Nadeau Marginal
Non-parametric

Mean functions Terminal events incorrectly handled by technically
censoring at time of death. Estimates relate to a
situation where it is not possible to die

Lawless and Nadeau,
Lin–Wei–Yang–Ying

Marginal
Semi-parametric

Mean ratio Terminal events incorrectly handled by technically
censoring at time of death. Estimates relate to a
situation where it is not possible to die

Cook and Lawless,
Ghosh and Lin

Marginal
Non-parametric

Mean functions Terminal events correctly handled by adjustment
for death through modelling of survival
distribution

Ghosh and Lin Marginal
Semi-parametric

Mean ratio Terminal events correctly handled by adjustment
for death using IPCW or IPSW

Mao and Lin Marginal
Semi-parametric

Mean ratio Terminal events correctly handled when as
defined as part of the composite endpoint.
Adjustment done using IPCW

Adjusted Mao and Lin Marginal
Semi-parametric

Mean ratio Terminal events correctly handled when as
defined as part of the composite endpoint or
terminal competing events.

Adjustment done using IPCW
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here β and λ0 tð Þ are the regression coefficient for the treatment effect and the unspecified baseline intensity function
given frailty, respectively. The subject specific frailty is denoted ν. A common choice is to choose a Gamma distributed
frailty, with mean equal to 1 and a variance of ϕ. This is what we will consider, although other choices, for example, a
log-normal frailty are possible. This model is sometimes called a shared frailty model, referring to that the frailty term
is shared within a subject, in the sense that it affects all transitions in the same (multiplicative) way.

Frailtymodels are subject specificmodels. Hence, hazard ratios from a frailtymodel will have a subject specific interpretation,
in the sense that the estimates are hazard ratios for a given frailty νð Þ in Equation (6). It is assumed that the treatment effect,
β, is the same for all frailty levels. Keeping the frailty constant, exp βð Þ is interpreted as the increase (or decrease) in
momentarily probability of having an event when considering liraglutide treatment as opposed to placebo treatment.
This interpretation is nicer if one wishes to compare treatments within a cluster, for example, subjects. However, in the
setting of summarising a randomised controlled trial this is likely not an interpretation of interest: You would like an
interpretation on a population level rather than an interpretation on an individual level. Note that fitting a frailty model
with a constant baseline intensity corresponds to fitting a negative binomial model using the logarithm of the observa-
tion time as offset.

Parameter estimates are available in Tables 5 and 6. For recurrent MI, the estimated regression coefficient is β̂¼�0:177
with an estimated ϕ̂¼ 5:69. For recurrent 3-p MACE, it is β̂¼�0:232 with an estimated ϕ̂¼ 4:39. Note, that the esti-
mates for the frailty models are larger on an absolute scale than the corresponding estimates from the AG model. This
is a result of the attenuation of the marginal estimates compared to the conditional estimates. Again, this is due to the
interpretation of the estimates from the two types of models; estimates from the frailty model describe individual haz-
ard ratios, whereas estimates from, for example, the AG model describe population-based hazard ratios.26,27 Note, that
standard error estimates of β̂ from R obtained using coxph does not take the variability of ϕ̂ into account, so these
should be interpreted with care.27,28 Estimation of ϕ̂ using frailtypack allows for variance estimation of ϕ̂.

An underlying assumption of this model, is that conditional on the frailty, censoring is independent.29 However,
when there is non-negligible mortality as for both considered endpoints in the LEADER data, this assumption will most
likely not hold. If being more frail to experience recurrent events as MI or 3-p MACE, also makes you more frail to
experience death, this conditional independence clearly does not hold. Thus, this model should be interpreted with cau-
tion. The limitation of this model is the subject specific interpretation of hazard ratio estimates, and the potential viola-
tion of the independent censoring assumption when considering recurrent event data with competing deaths.

3.2 | Non-negligible mortality

As an alternative to the previous models, it is possible to fully specify the intensities in the multi-state model envisioned
in Figure 3. That is, both fully specifying the cause-specific intensities for recurrent events, λ01 tð Þ,λ12 tð Þ,…, and the
cause-specific intensities for death, λ0D tð Þ,λ1D tð Þ,….

As discussed in the previous section, the frailty model may break down due to dependent censoring in the setting
with competing risks. The next model, the joint frailty model, has been proposed as an alternative, which fully specifies
the intensities for both recurrent events and death.

3.2.1 | Joint frailty model

Liu, Wolfe and Huang suggested a joint frailty model for modelling the intensity function for recurrent events and a ter-
minal event simultaneously using a common frailty ν.30 The model specifies that the intensity function for the recurrent
events, λ tð Þ, and the intensity function for survival, λD tð Þ, is given by

λ tjx,νð Þ¼ νexp βxð Þλ0 tð Þ

λD tjx,νð Þ¼ νγexp αxð ÞλD0 tð Þ

in the special case of only a single covariate, treatment, affecting both the recurrent event process and the death pro-
cess. The baseline intensity functions are given by λ0 tð Þ (recurrence) and λD0 tð Þ (death). Here, ν denotes the common
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frailty term assumed to be Gamma distributed with unit mean and variance ϕ. The regression coefficients, β and α,
quantify the effect of treatment on the recurrent event and death process, respectively. The γ parameter expresses the
relationship between the recurrent event process and the death process given frailty. For example, if γ>0, a higher
frailty will result in a higher rate of both recurrent events and death given frailty.

Liu, Wolfe and Huang suggest using the EM-algorithm for estimation as the density has no closed form solution.30

Rondeau et al suggested to use penalised maximum likelihood for estimation.31 This is implemented in R in the soft-
ware package frailtypack.20 Fitting this joint model involves selecting smoothing parameters, one for the recurrent
events and one for the survival, up front. The authors suggest facilitating this by first fitting two models, a frailty model
for the recurrent event process and a Cox model for the death process, and choose smoothing parameters by cross vali-
dation. These estimates are then to be supplied to the model fit for the joint model. Moreover, the method involves a
non-trivial selection of number of knots for the splines approximating the baseline intensities. Here, the authors suggest
increasing the number of knots from 7 until the graphs of the baseline hazards remain unchanged.

For recurrent MI, λ tjx,νð Þ models recurrent MI episodes and λD tjx,νð Þ models all deaths. For recurrent 3-p MACE,
λ tjx,νð Þ models recurrent 3-p MACE episodes and λD tjx,νð Þ models competing non-CV deaths. The joint frailty model with
non-parametric baseline intensities for these data sets failed to converge using the frailtypack package. This might be
due to the size of the data sets (roughly 10,100 records for the MI data set and 10,500 for the 3-p MACE data set). When try-
ing to fit the model on a smaller subset of the data sets, say first 1000 rows, the model did converge. However, it could also
be due to the non-trivial choices of parameters to be made. The joint frailty model with non-parametric baseline intensities
can be preferable in terms of minimising the number of assumptions. However, the flexibility comes at the cost of selecting
several tuning parameters. Due to the failed convergence of the non-parametric version of the joint frailty model, a para-
metric model with a piece-wise constant baseline hazard was also considered. The piece-wise constant baseline hazard
model is also implemented in frailtypack. For comparability, we also fitted an AG model and a frailty model using a
piece-wise constant baseline hazard function. The intervals were decided using five or ten equally large intervals over the
period of follow-up time, for MI and 3-p MACE respectively. The results are displayed in Tables 5 and 6. For the AG and
frailty model, there were almost no difference between the estimates obtained using either a non-parametric estimate of
the baseline hazard function or the piece-wise constant version for both endpoints. Thus, it should be fair to compare the
results from the fitted joint frailty model with piece-wise constant hazard functions for both the recurrent events and the
deaths to the results from the AG and frailty model. The results from the joint frailty models differ from those obtained for
the frailty model, which may indicate the degree to which the dependent censoring affects the frailty model.

For recurrent MI, the estimated coefficients indicate that liraglutide reduces the rate of MI recurrences
β̂¼�0:186
� �

and the rate of death α̂¼�0:211ð Þ compared to placebo. The effect on the recurrences is larger than the
effect seen for the frailty model β̂¼�0:177

� �
. The estimated γ̂¼ 1:860 indicates that experiencing myocardial infarction

makes you more prone to dying given treatment and frailty. The recurrence rate seems to vary less among patients
ϕ̂¼ 0:896
� �

for the joint model compared to the frailty models ϕ̂¼ 5:69
� �

. This could indicate that the deaths accounts
for a large amount of the heterogeneity. For recurrent 3-p MACE, the estimated coefficients indicate that liraglutide
reduces the rate of 3-p MACE recurrences β̂¼�0:207

� �
and the rate of death α̂¼�0:083ð Þ compared to placebo. The

estimated effect on the recurrences is slightly smaller than the effect observed for the frailty model β̂¼�0:232
� �

.
The effect of treatment on death for 3-p MACE is smaller than for MI, which is not surprising, since CV death acts as
event and only non-CV death is modelled for the death process for 3-p MACE. A positive γ̂¼ 1:398 is observed, indicat-
ing that an increased rate in recurrences of 3-p MACE is positively associated with an increased rate of dying of non-
CV death causes. The variance of the frailty term is seen to be smaller for the joint frailty model ϕ̂¼ 0:951

� �
compared

to the frailty model ϕ̂¼ 4:40
� �

. Again, this may indicate that non-CV death is accounting for a lot of the heterogeneity.
The drawback of the joint frailty model is that the interpretation of the hazard ratio estimates has some of the same

disadvantages as the frailty model described in Section 3.1.3. Namely, that the estimates will have a subject specific
interpretation. However, since the recurrent event process and the death process are modelled simultaneously, the joint
frailty model does not suffer the same probable issues regarding informative censoring as the frailty model.

4 | MARGINAL MODELS

Marginal models provide an alternative to the intensity models. Instead of fully specifying the intensity functions in a multi-
state model, these focus on marginal features of the stochastic process. Marginal approaches specify a partial model targeting a
specific attribute, which typically will not be conditional on the previous event history. Marginal parameters in a multi-state

FURBERG ET AL. 253

 15391612, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2167 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



model for recurrent events include; time (from 0) to entry into a given state, expected number of events E N tð Þð Þð Þ, state occu-
pation probabilities P Z tð Þ¼ lð Þð Þ and average time spent in a state

Ð τ
0P Z tð Þ¼ lð Þdt� �

.15

4.1 | Negligible mortality

The models in this section adhere to the situation in Figure 2. Since the LEADER data contains deaths, a consequence
of the below models is that deaths are treated as censorings. We shall see that this censoring is problematic when
targeting a marginal parameter.

4.1.1 | Wei–Lin–Weissfeld (WLW) model

The Wei–Lin–Weissfeld model is a marginal model that describes the marginal distributions of waiting times until
event one, event two and so forth.32 The intensity function for the l'th event is given by:

λl tjxð Þ¼ λ0l tð Þexp βlxð Þ ð7Þ

here βl and λ0l tð Þ express the effect of treatment and the unspecified baseline intensity function. All subjects are under
risk of the l'th event from randomisation. This model ignores the ordering of events as you are under risk of getting the
third event even before the second (or even first event is experienced). Thus, the risk set is artificially inflated here,
since all subjects are not under risk of getting all possible events from randomisation. As noted by Metcalfe and Thomp-
son, this structure implies that the effects on event k�1 will be “carried over” to event k, as a delayed waiting time for
the first event also will imply a delay in the waiting time for a subsequent event.33 As all subjects are at risk
for experiencing the k'th event (except if they die prior to the k'th event), the WLW model has been praised for preserv-
ing randomisation as opposed to the PWP model.

It is possible to estimate a single treatment effect for this model, by stratifying for the event number and estimating
a fixed treatment effect across all. This model is formulated as

λl tjxð Þ¼ λ0l tð Þexp βxð Þ ð8Þ

β denotes the overall effect of treatment. As pointed out by Li and Lagakos,34 if one targets a marginal hazard, and
then censors for deaths the independent censoring assumption in the WLW model is infringed. In turn, the estimated
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FIGURE 4 The five WLW competing risks models; (A) is the model for the first event, (B) is the model for the second event, (C) is the

model for the third event, (D) is the model for the fourth event, (E) is the model for the fifth event
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marginal hazard refers to situation where it is not possible to die. Instead, Li and Lagakos suggest considering a mar-
ginal WLW model for composite death and recurrent event. One may also perceive the model as describing a marginal
cause-specific hazard, which correctly takes death into account as a competing event, see Figure 4. When fitting the
WLW model, note that the data structure is slightly different from the counting style process structure, see Table 4,
applicable for fitting, for example, the AG model. You need to create a new data set, in which all individuals are under
risk of the different events, say up to five events, already from randomisation.

Due to the low number of recurrences beyond five recurrent events for both the recurrent MI endpoint and the 3-p
MACE endpoint, the models are considered up to and including five events. Figure 4 displays the five relevant compet-
ing risk models, where λDj tð Þ, j¼ 1,…,5 is the cause-specific hazard of death without event number j. The results of
fitting these models are presented in Tables 5 and 6. WLW 1 corresponds to the model in Equation (7), and WLW 2 cor-
responds to the model in Equation (8). For both models, the standard error estimates are robust. Note, that the esti-
mates of β̂1 for the WLW 1 model coincide with the estimates of β̂01 from the PWP 1 model, which again corresponds
to the estimates from the time-to-first event Cox model. We see that the overall direction of the estimates from the
WLW 1 models and the PWP 1 models agree for at least the first three events. However, the enlargement of the treat-
ment effects is also seen as well as the inflated precision, which is due to the constructed risk sets. When comparing
PWP 2 and WLW 2 models, the estimates are smaller for the WLW models for both endpoints, however with larger
standard errors.

Due to the uncompelling nature of the risk sets and their impact, the WLW model would rarely be of interest if
modelling a recurrent event process in the context of a randomised trial. Moreover, with non-negligible mortality the
estimated marginal hazard refers to a hypothetical population in which it is not possible to die or a marginal cause-
specific hazard. All in all, the WLW is not recommendable for analysing recurrent events to capture a treatment effect
in randomised controlled trials, neither in the presence of terminal events or not.

4.1.2 | Lawless and Nadeau

Lawless and Nadeau suggested to consider a non-parametric estimate of the marginal mean function μ tð Þ¼E N tð Þð Þ.35
This is the expected number of events per subject by time t. It turns out that μ tð Þ can be estimated using the Nelson-
Aalen estimator, μ̂ tð Þ¼ Ð t

0
1

Y uð Þ dN uð Þ, where Y tð Þ denotes the number of subjects at risk at time t. Especially, this can be
applied to a two-sample setting, where the marginal mean function is estimated per treatment, which we denote μ̂0 tð Þ
and μ̂1 tð Þ for placebo and liraglutide, respectively.
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FIGURE 5 Non-parametric marginal mean function estimates per treatment for recurrent MI. “Unadjusted (NA)” refers to the Nelson-

Aalen estimates and “Adjusted (GL)” refers to the Ghosh–Lin estimates of μ tð Þ, respectively
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When censoring for death (non-CV death for 3-p MACE), the Nelson-Aalen estimates of the expected number of
events per subject per treatment can be computed easily using standard software. The estimates for recurrent MI and
3-p MACE are shown in Figures 5 and 6. The expected number of both MI and 3-p MACE events per subject are larger
for placebo than liraglutide, with a noticeable difference between the curves after around 1 year. Here we are
addressing what happens in a population where no one dies and are still under risk of a recurrent event after death,
due to the censorings for death. This might be reasonable if you have little or no deaths in your data, but this is not
meaningful with a substantial amount of death as for the LEADER data.

4.1.3 | Lin–Wei–Yang–Ying (LWYY) model

A semi-parametric regression model for the marginal mean was suggested by Lawless and Nadeau and Lin, Wei, Yang
and Ying.35,36 We consider the model that focuses on the marginal mean function, μ tjxð Þ¼E N tð Þjxð Þ. The model is
given by

μ tjxð Þ¼ μ0 tð Þexp βxð Þ

here β and μ0 tð Þ express the regression coefficient for treatment and the baseline mean function, respectively. This is a
semi-parametric model, with β expressing the parametric term and μ0 tð Þ the non-parametric term. Since events are cor-
related, a robust sandwich type estimator is used for estimating the variance of β. The LWYY model does not require a
full specification of the correlation structure of the entire multi-state process.

The estimated mean functions from the LWYY models stated above are available in Figures 7 and 8. The regression esti-
mates for the LWYY models are displayed in Tables 5 and 6. Fitting an AG model with robust standard errors would corre-
spond to fitting a LWYY model, however with an interpretation on an intensity level (rather than a marginal mean level).
The estimating equations for β leave you at the exact same place for the two models. That is why the point estimates for
β̂ for the LWYY model coincide with those of the AG model. However, standard error estimates differ, since the LWYY
model does not assume independence between events, as opposed to the equivalent AG model. Hence, standard errors
are slightly larger for the LWYY model as compared to the AG model, indicating a dependence between events.

If the assumption of the multiplicative form of the marginal mean function for LWYY model is questionable, for
example, if the effect of treatment changes over time, it might be preferable to model μ tð Þ non-parametrically, using the
approach outlined by Lawless and Nadeau (see previous section). A two-sample test for comparing the two treatments
is also available in this non-parametric set-up.
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FIGURE 6 Non-parametric marginal mean function estimates per treatment for recurrent 3-p MACE. “Unadjusted (NA)” refers to the

Nelson-Aalen estimates and “Adjusted (GL)” refers to the Ghosh–Lin estimates of μ tð Þ, respectively
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An assumption of the LWYY model is that the censoring mechanism is independent. This assumption is questionable
when censoring for death as dying implies that no subsequent events can occur. Moreover, it implies that the estimated
mean functions address the expected number of event per subject over time in a population where it is not possible to die.
As for the non-parametric model suggested by Lawless and Nadeau (see previous section), the LWYY model will not be
reasonable to use when analysing recurrent events data with deaths in the magnitude as seen in the LEADER data.

4.2 | Non-negligible mortality

The models in this section describe the reality in Figure 3, where it is both possible to experience recurrent events and
competing deaths. The following marginal models explicitly handles competing deaths.
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FIGURE 7 Model-based marginal mean function estimates per treatment for recurrent MI. “Unadjusted (LWYY)” refers to the Lin–
Wei–Yang–Ying estimate and “Adjusted (GL)” refers to the Ghosh and Lin estimate of μ tjxð Þ, respectively
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FIGURE 8 Model-based marginal mean function estimates per treatment for recurrent 3-p MACE. “Unadjusted (LWYY)” refers to the

Lin–Wei–Yang–Ying estimate and “Adjusted (GL)” refers to the Ghosh and Lin estimate of μ tjxð Þ, respectively
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4.2.1 | Ghosh and Lin (GL)

This approach was first suggested by Cook and Lawless in 1997, and further developed by Ghosh and Lin in 2000.37,38

They suggest a non-parametric method for estimating the marginal expected number of recurrent events per subject up
to time t, namely μ tð Þ¼E N tð Þð Þ, acknowledging that no recurrent events can happen after death. It holds that

μ tð Þ¼
ð t
0
S u�ð ÞdR uð Þ

where S tð Þ¼P D> tð Þ and dR tð Þ¼E dN tð Þ D≥ tj gf . Then μ tð Þ can be estimated by

μ̂ tð Þ¼
ð t
0
Ŝ uð ÞdR̂ uð Þ

where Ŝ tð Þ is the Kaplan–Meier estimate of S and R̂ tð Þ is the Nelson-Aalen estimate of R. This can be estimated per
treatment group, μ̂0 tð Þ and μ̂1 tð Þ.

With no mortality, μ̂ tð Þ¼ R̂ tð Þ. However, with mortality, it holds that μ̂ tð Þ< R̂ tð Þ. Thus, the Nelson-Aalen estimator,
when treating deaths as censoring, overestimates the mean function. This is the same type of issue known from compet-
ing risk: When treating deaths as censorings, you are assuming that dead individuals are still under risk having an
event and the mean will be overestimated.

The estimates of μ̂0 tð Þ and μ̂1 tð Þ obtained from the above is illustrated in Figures 5 and 6. These are plotted alongside
the Nelson-Aalen estimates of μ tð Þ (censoring for competing deaths). As expected, since there is non-negligible mortal-
ity, the Nelson-Aalen estimates are upwards biased as they are not appropriately correcting for the deaths that are
occurring. The impact of this adjustment is larger for recurrent MI compared to recurrent 3-p MACE, as the CV death
component acts as an event for the composite endpoint. The magnitude of this bias depends on the data at hand. For
the 3-p MACE endpoint, a fully correct adjustment should also correct for the CV death. This will be discussed later.

4.2.2 | Ghosh and Lin (GL) model

Ghosh and Lin suggested to consider a regression model for the marginal mean function acknowledging the fact that
no recurrences can happen after death.39 This is an extension of the LWYY model allowing for non-negligible mortality.
Mortality is adjusted for using either an inverse probability of censoring weights (IPCW) or an inverse probability of
survival weights (IPSW). We consider the following model for the mean function

μ tjxð Þ¼ μ0 tð Þexp βxð Þ

here β and μ0 tð Þ express the regression coefficient for treatment and the baseline mean function, respectively. This
model specification coincides with that of the LWYY model formulation above. However, the estimating equations are
updated as to re-weight the data from subjects that have died, either using IPCW or IPSW. While it may be reasonable
to assume that the censoring times are independent of covariates, the same most likely does not hold for the survival
distribution.39 Thus, IPCW may be implemented by either imposing a semi-parametric or a non-parametric model for
the censoring distribution. Whereas, IPSW can be implemented using a semi-parametric model for the survival distribu-
tion. We have focused on the IPCW approach, with weights estimated by estimating the censoring distribution using
Kaplan–Meier (unconditional on any covariates). This bears resemblance to the Fine and Gray model also utilising
IPCW.40 We will denote this by the GL model.

The estimated mean functions are shown from Figures 7 and 8. In these Figures, the estimates obtained from LWYY
model (censoring for competing deaths) and the GL model above are displayed together. As expected, the
LWYY models are overestimating the expected number of events per subjects when censoring for deaths. The estimates
for the regression coefficients are given in Tables 5 and 6. For recurrent MI, the estimated regression coefficient for the
GL model β̂¼�0:159,95%CI : 0:718;1:013½ �� �

was slightly larger compared to the LWYY model estimates
β̂¼�0:164,95%CI : 0:714;1:009½ �� �

, but with similar standard errors. From Table 1, it is seen that more deaths occur in
the placebo group 447 9:6%ð Þð Þ compared to the liraglutide group 381 8:2%ð Þð Þ. This is apparent in the GL estimates
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versus the LWYY estimates. For the GL model, the difference between the treatments in β̂ is smaller, since the placebo
subjects will have less at risk time compared to liraglutide subjects due to the excess deaths. For recurrent 3-p MACE,
the estimated regression coefficients and standard errors for the GL and LWYY model are more or less identical. This is
not surprising due to the very equal distribution of non-CV deaths between liraglutide 162 3:5%ð Þð Þ and placebo
169 3:6%ð Þð Þ as seen in Table 1. Thus, even though the mean functions are overestimated using the LWYY versus the
GL model (see Figure 8), the difference between the two treatments expressed through the regression coefficient is
fairly similar for 3-p MACE.

4.2.3 | Mao and Lin (ML) model

Mao and Lin suggests modelling the mean function for a severity weighted composite endpoint, where death is a part
of the composite endpoint.41 Thus, we only use this method for modelling the recurrent composite 3-p MACE endpoint.
Here it is assumed that there is K different types of events, including the terminal event. For each event type, Nk tð Þ for
k¼ 1,…,K, denotes the cumulative number of the k'th event type experienced by time t. Each event type is assigned a
relative severity, ck, for the severity weighted process N tð Þ¼PK

k¼1ckNk tð Þ. It is assumed that the marginal mean func-
tion satisfies that

μ tjxð Þ¼ μ0 tð Þexp βxð Þ

with β denoting the treatment effect and μ0 tð Þ the baseline mean function. Since the terminal event is a part of the com-
posite event, and occurrence of this precludes any further events from happening, the estimating equations are updated
to re-weight observations from patients that die. This is done using IPCW, as suggested by Ghosh and Lin.39 The esti-
mating equations are the same as those for Ghosh and Lin's model, however now with respect to the severity weighted
counting process. Again, the IPCW weights can be estimated either under an assumption of independence between cen-
soring times and covariates, corresponding to estimating the censoring distribution non-parametrically or under a con-
ditional independence assumption, corresponding to using a semi-parametric model. We have considered the non-
parametric version, where the censoring distribution was estimated using Kaplan–Meier, ensuring comparability
between this and the implemented GL method. For comparability with the previous estimates from the LWYY and GL
models, it will be most relevant to consider equal severity of c¼ c1,c2,c3ð Þ¼ 1,1,1ð Þ. A different choice of severity will
model the expected number of events for a different process, namely the severity weighted counting process. We
will denote this by the ML model.

We are interested in modelling the recurrent composite 3-p MACE endpoint using the method suggested by Mao
and Lin. However, their article considers a situation where all-cause death is a component of the composite endpoint.
Our composite endpoint only includes CV death as a component, and does not include non-CV death, which will act as
a competing risk. Firstly, we have applied the methods of Mao and Lin, adjusting for the CV death part of the composite
event, to the recurrent 3-p MACE data with equal severity of 1, and censoring for non-CV deaths. Secondly, we have
extended the method to additionally adjust for non-CV death in the calculation of the IPCW weights, and applied it to
the recurrent 3-p MACE data with severity c¼ 1,1,1ð Þ. This corresponds to a mixture of a ML and GL approach. Intui-
tively, the first approach should provide an improvement of the results obtained from fitting the LWYY model to 3-p
MACE. Here, non-CV death is censored, but CV death is adjusted for. The second approach should provide an improve-
ment of fitting the GL model to 3-p MACE and only adjusting for non-CV death as a competing event. Here, the adjust-
ment should correct for both the CV death event that is a part of the recurrent event process and for the non-CV death
acting as a competing event. Theoretical details on this method are available in Appendix.

The results are available in Figure 9. The regression coefficient estimates are available in Table 6. The impact of
adjusting for CV-death on the composite 3-p MACE endpoint using the ML method is seen in Figure 9. Clearly and as
expected, not adjusting for a terminating event in the composite recurrent event process overestimates the marginal
mean function. Moreover, this adjustment affects the estimated regression coefficients due to the uneven distribution of
CV deaths among placebo and liraglutide, as seen in Table 6 under “ML 1”. The difference between the two treatments
becomes smaller using the ML 1 approach compared to the LWYY method, when subjects are still under risk of a recur-
rent event after experiencing a CV death. The second approach, adjusting for both CV death and non-CV death using a
slight modification of the ML method is shown in Figure 9. Here, the GL method overestimates the mean function as
the CV deaths in the composite event is not accounted for. The regression coefficient estimates for this approach are
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seen in Table 6 under “ML 2”. These are very comparable with the estimates seen for the first “ML 1” approach, as the
adjustment for non-CV death does not affect the difference between treatments as measured through the regression
coefficient, due to the balanced distribution of non-CV death in each treatment group. It does, however, make a differ-
ence compared to both the GL (and LWYY) methods. The second approach would be more correct in adjusting for the
different kinds of death that can occur in relation to endpoints like this. The relative differences between the methods
are not that big (as seen in Figure 9), but this will depend on the considered data set.

5 | DISCUSSION

This article presents different current non-parametric and semi-parametric models for the analysis of recurrent events,
but it does not provide an exhaustive list of all available methods. The focus has been to emphasise relevant approaches
and potential pitfalls for analysing randomised controlled trials and quantifying a meaningful treatment effect on recur-
rent events. Several large cardiovascular outcome and heart failure trials only consider the first events, and analyse
time-to-first events. This is done even though the endpoint of interest is recurrent in nature, for example, heart failure
hospitalisation. This entails a loss of information, since data past the first event is not used for the analysis. Moreover,
characterising the effect of treatment on the entire course of disease progression could yield valuable information. Also,
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FIGURE 9 Model-based marginal mean function estimates per treatment for recurrent 3-p MACE. “Unadjusted (LWYY)”, “Adjusted
1 (GL)”, “Adjusted 2 (ML 1)” and “Adjusted 3 (ML 2)” refers to the estimates of μ tjxð Þ using the Lin–Wei–Yang–Ying, Ghosh–Lin, Mao and

Lin (adjusted for CV death alone) and the updated Mao and Lin (adjusted for both non-CV and CV death) models, respectively
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if treatment behaves in a similar way on recurrent events as for first events, modelling recurrent events can imply a gain
in efficiency and an increase in power. This paper highlights that the analysis of recurrent events requires careful con-
sideration. This is not surprising as one now tries to capture the behaviour of a more complicated multi-state model as
opposed to a simple and classical time-to-event multi-state model.

The complexity that is introduced in modelling recurrent events in the presence of competing risks should not
be taken lightly, and this requires an understanding of what is being estimated. Table 7 provides an overview of
the different presented models summarising their properties. Depending on the framework, each method has
potential issues and benefits. As a variety of methods exist, it is vital to understand what is being estimated in
each, in order to select a relevant approach and to understand how to interpret results. Data content and model
understanding is key for drawing correct inference: What are you estimating? The focus on estimation comple-
ments the recent ICH guideline on estimands, where it is stated that; “An estimand is a precise description of the
treatment effect reflecting the clinical question posed a given clinical trial object”.42 It is underlined that it is vital
to specify intercurrent events, which are events happening post randomisation that may affect the interpretation of
treatment effects, this could for instance be death. Clearly, deaths are intercurrent events that can influence the
interpretation of treatment effects when analysing recurrent events and should thus be handled in an appropriate
manner.

In the context of analysing recurrent events in the presence of non-negligible mortality for quantifying a treatment
effect in a randomised controlled trial, the following considerations are highlighted for each of the presented methods.
The AG model adjusted for treatment alone will likely be “too” simple a model for application as the independence
assumption will be unrealistic. As a remedy to this, one could consider adjusting for the previous number of events in
the AG model. This will be inappropriate as the treatment effect will be underestimated if recurrent events are corre-
lated and the treatment is effective. The PWP model is also inappropriate as the treatment effect will be underestimated
in a similar fashion, however here through stratification. The WLW model preserves randomisation, but introduces
unrealistic risk sets from a clinical perspective. Also, the interpretation of the marginal model falls short in the presence
of competing deaths. The frailty model estimates a subject specific treatment effect, which is rarely of interest in a ran-
domised controlled trial. Moreover, the model may break down in the presence of competing risks due to dependent
censoring. The joint frailty model targets both recurrent events and deaths at once, and the censoring assumption is
likely no longer violated. But, being a frailty model, the treatment estimates still have a subject specific interpretation.
The marginal LWYY model does not need to model the dependence between events as opposed to the intensity models.
The GL model provides an improvement of the LWYY model, adjusting the risk sets and estimation to reflect deaths.
The model still targets number of events, which can be problematic if a treatment has an effect on death, and in turn
reduces the number of events. The ML model further addresses this, as deaths are considered a part of the severity
weighted event itself. However, it can be difficult to decide which severity to use. In summary, each method has their
benefits but surely also their own set of issues. From a clinical perspective, both recurrent events and deaths are vital
for understanding treatment effects, and it is suitable to consider modelling approaches targeting both at once. Cook
and Lawless advocate for using marginal methods for analysing recurrent events in randomised trials, since intensity
models are conditional on past history and subject to model misspecification.13 For application to recurrent event data
with competing deaths, we believe that the marginal methods suggested by Ghosh and Lin, Mao and Lin or a combina-
tion provide understandable quantities that adequately addresses competing deaths.39,41 These methods come with the
caveat that a treatment effective in killing individuals will also effectively reduce the number of events. The problem
with censoring for deaths when targeting marginal parameters in a recurrent event setting is analogous to the issue
with considering Kaplan–Meier estimates, where competing causes have been censored, in a competing risk setting.22

Here, 1 – Kaplan–Meier estimates will overestimate the true failure probabilities, as the Nelson-Aalen estimates will
overestimate the marginal mean function, if competing deaths are censored. The intensity models do not suffer from
this issue as they are focusing on what happens in an instantaneous moment, and as such, censoring for competing
death causes does not affect inference. Consequently, Hengelbrock et al suggest to present both cause-specific hazard
ratio estimates from intensity models and non-parametric mean frequency estimates per Ghosh and Lin's method
(accounting for competing deaths) to analyse recurrent safety data with competing death causes.43 We believe that a
marginal regression model that simultaneously targets the recurrent event and terminal event at once would be of
value. This is a topic for further research.This case study has presented that in the presence of non-negligible death,
many marginal approaches for modelling means of recurrent events, should accommodate competing deaths. The
impact of not adjusting for terminal events will depend on the analysed data. Several authors have published results
using marginal methods applied to recurrent event data in randomised trials. For PARADIGM, a recurrent composite
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heart failure hospitalisation and CV death endpoint and a recurrent heart failure hospitalisation endpoint were
analysed using a LWYY model.6 The same was done for PARAGON-HF.3 For CHARM-Preserved, a recurrent compos-
ite heart failure hospitalisation and CV death was analysed using a AG model with robust variance estimation, however
where “rate ratios” are reported (as opposed to “hazard ratios”).4 Note, that the LWYY model will not be appropriate if
there are competing deaths, which is the case for these trials. The marginal mean function will be overestimated
if applied naively to data with competing deaths, where the deaths are censored. Results from the REDUCE-IT clinical
trial has also been published using the WLW model to applied to composite endpoints (which included cardiovascular
death).44

An important aspect presented in this article is that defining a composite endpoint which consists not only of a
recurrent event of interest, for example, MI, but also death, for example, CV death, does not salvage all issues related to
estimation and mortality for recurrent event models. Firstly, this does not adequately adjust the risk sets for those sub-
jects that experience a CV death event, since they are assumed to still be under risk of a subsequent recurrent event.
Secondly, if a competing event, say non-CV death, plays a role, this should also be adequately adjusted for. The impact
of not adequately adjusting for both aspects was presented in this article. Composite recurrent endpoints with a death
component are becoming quite popular for the analysis of recurrent events, however care should be taken. Especially,
it should be noted that it is not appropriate to conduct recurrent event analysis targeting a marginal parameter on a
composite endpoint with a death component, due to the implication on the risk sets. With an imbalance in deaths, this
will create a bias in parameter estimates. The exploratory analysis for PARADIGM-HF trial was a LWYY model
adjusted for treatment and region applied to a composite of total heart failure (HF) hospitalisation and CV death
treating non-CV deaths as censorings.6 This exactly carries two of the aforementioned issues: The model does not
acknowledge that you can die from either CV death or non-CV death. Moreover, there seems to be an imbalance
regarding CV deaths for the two treatment groups, thus implying a potential direct bias on the mean ratio by not ade-
quately adjusting for CV deaths.

The win ratio approach for analysing composite endpoints suggested by Pocock has gained focus in the last
years within the cardiovascular community.45 It was applied to the CHARM-Preserved data to analyse recur-
rent heart failure hospitalisation and CV death.4 This method addresses a potential ranking of components for
a composite endpoint, for example, CV death is more severe than hospitalisation. However, this method pro-
vides more of a ranked based approach for analysing a time-to-event endpoints, rather than a focus on captur-
ing a recurrent event process. Moreover, the estimated win-ratio parameter (number of “winners” on
treatment A divided by number of “losers” on treatment A) depends on the distribution of follow-up time, as
also noted by Oakes.46 This might not be the best property, especially when considering treatment with an
effect on mortality. Finally, this method requires some matching of individuals based on risk scores, which
could be problematic in practice.

As mentioned, a paper focusing on recurrent events in LEADER was published within the recent years.14 Many of
the issues discussed in the present article on the inference of treatment effects in a recurrent event setting can be found
there and can be subject to critique. However, and unfortunately these analyses also present methods that are being
applied in practice at the moment for randomised controlled trials. When comparing the time-to-first event analysis
with the recurrent event analysis applied to the two endpoints in Tables 5 and 6, we can see the potential benefit of con-
sidering recurrent event methods. The estimated parameter (hazard ratio, mean ratio) coincides when comparing the
Cox and the GL model for recurrent MI, but the GL method has a narrower confidence interval. The estimates from
the Cox and ML 2 models differ, in the sense that the point estimates are larger with the ML 2 model, but the confi-
dence intervals are also slightly wider. Note that the interpretation of the estimates also differs; hazard ratios versus
mean ratios. Nevertheless, this indicates that efficiency may be gained by focusing on recurrent event methods as
opposed to time-to-first event methods.

ACKNOWLEDGMENTS
The clinical trial LEADER was sponsored by Novo Nordisk A/S. This research was conducted as a part of the PhD edu-
cation of JK Furberg from which she received funding from Novo Nordisk A/S. H Ravn and S Rasmussen are employed
at Novo Nordisk A/S.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

262 FURBERG ET AL.

 15391612, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2167 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



DATA AVAILABILITY STATEMENT
De-identified individual participant data, study protocol and redacted Clinical Study Report will be available
according to Novo Nordisk data sharing commitments. The data will be made available permanently after research
completion and approval of product and product use in both EU and US. Data will be shared with bona fide
researchers submitting a research proposal requesting access to data and for use as approved by the Independent
Review Board according to the IRB Charter (see novonordisk-trials.com). Access request proposal form and the
access criteria can be found at novonordisk-trials.com. The data will be made available on a specialised SAS data
platform.

ORCID
Julie Kjærulff Furberg https://orcid.org/0000-0001-8785-1462

REFERENCES
1. Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 1972;34(2):187-220.
2. Anker SD, McMurray JJV. Time to move on from ‘time-to-first’: should all events be included in the analysis of clinical trials? Eur J

Heart J. 2012;33:2764-2765.
3. Solomon SD, McMurray JJ, Anand IS, et al. Angiotensin–Neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J

Med. 2019;381(17):1609-1620.
4. Rogers JK, Pocock SJ, McMurray JJV, et al. Analysing recurrent hospitalisations in heart failure: a review of statistical methodology,

with application to CHARM-preserved. Eur J Heart Fail. 2014;16(1):33-40.
5. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved leftventricular ejection

fraction: the CHARM-preserved trial. Lancet. 2003;362:777-781.
6. Mogensen UM, Gong J, Jhund PS, et al. Effect of sacubitril/valsartan on recurrent events in the prospective comparison of ARNI with

ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2018;20(4):
760-768.

7. McMurray JJV, Packer M, Desai AS, et al. Angiotension-Neprilysin inhibition versus Enalapril in heart failure. N Engl J Med. 2014;371
(11).993-1004.

8. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):
311-322.

9. EMA Committee for Medicinal Products for Human Use. Guideline on Clinical Investigation of Medicinal Products for the Treatment of
Chronic Heart Failure. Online: European Medicines Agengy (EMA). Committee for Medicinal Products for Human Use (CHMP); 2017.

10. Akacha M, Binkowitz B, Bretz F, et al. Request for CHMP Qualification Opinion: Clinically Interpretable Treatment Effect Measures
Based on Recurrent Event Endpoints that Allow for Efficient Statistical Analyses. 2018.

11. Committee for Medicinal Products for Human Use (CHMP). Qualification Opinion of Clinically Interpretable Treatment Effect Measures
Based on Recurrent Event Endpoints That Allow for Efficient Statistical Analyses. European Medicines Agengy (EMA). Committee for
Medicinal Products for Human Use (CHMP); 2020.

12. Cook RJ, Lawless JF. Analysis of repeated events. Stat Methods Med Res. 2002;11:141-166.
13. Cook RJ, Lawless JF. The Statistical Analysis of Recurrent Events. 1st ed. Springer; 2007.
14. Verma S, Bain BC, Buse JB, et al. Occurrence of first and recurrent major adverse cardiovascular EventsWith Liraglutide treatment

among patients with type 2 diabetes and high risk of cardiovascular events. JAMA Cardiol. 2019;4(12):1214-1220.
15. Cook RJ, Lawless JF. Multistate Models for the Analysis of Life History Data. 1st ed. CRC Press; 2018.
16. Andersen PK, Borgan Ø, Gill RD, Keiding N. Statistical Models Based on Counting Processes. 1st ed. Springer Series in Statistics; 1993.
17. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020.
18. Therneau TM. A Package for Survival Analysis in R. R package version 3.1–11. R; 2020.
19. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer; 2000.
20. Rondeau V, Mazroui Y, Gonzalez JR. Frailtypack: an R package for the analysis of correlated survival data with frailty models using

penalized likelihood estimation or parametrical estimation. J Stat Softw. 2012;47(4):1-28.
21. SAS Institute Inc. SAS/STAT® 13.2 User's Guide The PHREG Procedure; SAS Institute; 2014.
22. Andersen PK, Geskus RB, de Witte T, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012;41(3):

861-870.
23. Andersen PK, Gill RD. Cox's regression model for counting processes: a large sample study. Ann Stat. 1982;10(4):1100-1120.
24. Prentice R, Williams B, Peterson A. On the regression analysis of multivariate failure time data. Biometrika. 1981;68:373-379.
25. Vaupel JW, Manton KW, Stallard E. The impact of heterogeneity in individual frailty on the dynamic of mortality. Demography. 1979;

16(3):439-454.
26. Diggle PJ, Heagerty P, Liang KY, Zeger SL. Analysis of Longitudinal Data. 2nd ed. Oxford Statistical Science Series; 2002.
27. Martinussen T, Scheike T. Dynamic Regression Models for Survival Data. Springer. 1 ed. 2006.
28. Balan TA, Putter H. A tutorial on frailty models. Stat Methods Med Res. 2020;29(11):3424-3454.

FURBERG ET AL. 263

 15391612, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2167 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [13/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



29. Nielsen GG, Gill RD, Andersen PK, Sørensen TIA. A counting process approach to maximum likelihood estimation in frailty models.
Scand J Stat. 1992;19(1):25-43.

30. Lui L, Wolfe RA, Huang X. Shared frailty models for recurrent events and a terminal event. Biometrics. 2004;60:747-756.
31. Rondeau V, Mathoulin-Pelissier S, Jacqmin-Gadda H, Brouste V, Soubeyran P. Joint frailty models for recurring events and death using

maximum penalized likelihood estimation: application on cancer events. Biostatistics. 2007;8:708-721.
32. Wei LJ, Lin DY, Weissfeld L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am

Stat Assoc. 1989;84:1065-1073.
33. Metcalfe C, Thompson SG. Wei, Lin andWeissfeld's marginal analysis of multivariate failure time data: should it be applied to a recur-

rent events outcome? Stat Methods Med Res. 2007;16:103-122.
34. Li QH, Lagakos SW. Use of theWei-Lin-Weissfeld method for the analysis of a recurring and a terminating event. Stat Med. 1998;16:

925-940.
35. Lawless JF, Nadeau JC. Some simple robust methods for the analysis of recurrent events. Dent Tech. 1995;37:158-168.
36. Lin DY, Wei LJ, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc. 2000;62(4):

711-730.
37. Cook R, Lawless JF. Marginal analysis of recurrent events and a terminating event. Stat Med. 1997;16:911-924.
38. Ghosh D, Lin DY. Nonparametric analysis of recurrent events and death. Biometrics. 2000;56:554-562.
39. Ghosh D, Lin DY. Marginal regression models for recurrent and terminal events. Stat Sin. 2002;12:663-688.
40. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496-509.
41. Mao L, Lin DY. Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. Biostatistics. 2016;17:

390-403.
42. ICH: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Addendum on Estimands

and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials (E9 (R1)); European Medicines
Agengy (EMA). Committee for Medicinal Products for Human Use (CHMP); 2019.

43. Hengelbrock J, Gillhaus J, Kloss S, Leverkusb F. Safety data from randomized controlled trials: applying models for recurrent events.
Pharm Stat. 2016;15(4):315-323.

44. Bhatt DL, Steg PG, Miller M, et al. Effects of icosapent ethyl on total ischemic events from REDUCE-IT. J Am Coll Cardiol. 2019;73(22):
2791-2802.

45. Pocock SJ, Ariti CA, Collier TJ, Wang D. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on
clinical priorities. Eur Heart J. 2012;33:176-182.

46. Oakes D. On the win-ratio statistic in clinical trials with multiple types of event. Biostatistics. 2016;103(3):742-745.

How to cite this article: Furberg JK, Rasmussen S, Andersen PK, Ravn H. Methodological challenges in the
analysis of recurrent events for randomised controlled trials with application to cardiovascular events in
LEADER. Pharmaceutical Statistics. 2022;21(1):241-267. doi:10.1002/pst.2167

APPENDIX: A THEORETICAL RESULTS FOR MARGINAL MODEL FOR COMPOSITE EVENTS WITH A
DEATH COMPONENT AND OTHER COMPETING DEATHS

This appendix section contains the theoretical results for the approach outlined in Section 4.2.3 on the combination of
the methods suggested by Ghosh and Lin and Mao and Lin.39,41 The derivations in the following largely resembles the
steps in these articles.

We are interested in modelling a recurrent composite event process where a terminal event is a part of the recurrent
event process, for example, CV death. Moreover, there is competing risks for dying of other causes, for example, non-
CV death. Figures A1 and A2 visualise the processes of interest.

No event 1 event 2 events

: Death from a competing cause

FIGURE A1 A recurrent event process with a competing terminal event
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For k¼ 1,…,K, let N�
k tð Þ denote the cumulative number of the k'th event type by time t. A severity, ck, is assigned to

the k'th event type according to the relative severity. One of the composite event types is a terminal event of some type.
We define the severity weighted sum of the K counting processes: N� tð Þ¼PK

k¼1ckN
�
k tð Þ. We specify the following

regression model for the marginal rate function, acknowledging that no recurrences can occur after death.

E dN� tð Þ Z tð Þj g¼ dμ tð Þ¼ eβ
TZ tð Þdμ0 tð Þ

n
ðA1Þ

where Z tð Þ denotes a p-dimensional, possibly external time-varying, covariate vector which has a multiplicative effect
on the marginal baseline rate function dμ0 tð Þ. μ0 tð Þ is an arbitrary increasing function. With no time-varying covariates,
Equation (A1) reduces to the proportional means model: E N� tð Þ Zj g¼ μ tð Þ¼ eβ

TZμ0 tð Þ
n

, where μ tð Þ denotes the mar-
ginal mean function and μ0 tð Þ denotes the baseline mean function.

Let DN denote the time to the terminal event defined as part of the composite recurrent event process. Let DC

denote the time to the competing terminal event. In practice, N� tð Þ, DC and DN are subject to right censoring. Let
D¼DC ^DN . Let C denote the censoring time, which is assumed to be independent of N� tð Þ, DC and DN given Z tð Þ. Let
N tð Þ¼N� t^Cð Þ, X ¼D^C, and δ¼ I D≤Cð Þ. The observed data consists of Ni tð Þ,Zi tð Þ,Xi,δi; t≤Xif g for sub-
ject i¼ 1,…,n.

To make valid inference for model (A1), we need to exclude the dependent censoring introduced by death from the
“at-risk” indicators from the estimating equations from the classical LWYY model.36 In order to do so, a subject remains
at-risk until independent censoring occurs (even though a subject dies prior to the independent censoring). So one
needs to consider the at-risk indicators given by I C≥ tð Þ instead of I X ≥ tð Þ. Replacing Y tð Þ with I C≥ tð Þ in the estimat-
ing equations yields

Xn
i¼1

ð τ

0
Zi tð Þ�

Pn
I I Cj ≥ t
� �

Zj tð ÞeβTZj tð ÞPn
j¼1I Cj ≥ t

� �
eβ

TZj tð Þ

( )
dNi tð Þ

However, C is not fully observed. An inverse probability of censoring weighting (IPCW) technique can be employed
for estimating I C≥ tð Þ. Let the weights at time t be given by

w tð Þ¼ I C≥D^ tð ÞG tjZð Þ
G D^ tjZð Þ ¼ I C≥D^ tð ÞG tjZð Þ

G X ^ tjZð Þ

which can be estimated by

ŵ tð Þ¼ I C≥D^ tð ÞĜ tjZð Þ
Ĝ D^ tjZð Þ

Event free

: CV death

Stroke 2 strokes

: Non-CV death

FIGURE A2 Example of a composite recurrent event process with CV death as a component and non-CV death as a competing risk
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where Ĝ D^ tjZð Þ is the estimator of G D^ tjZð Þ, either estimated using a proportional hazards model or with a
Kaplan–Meier estimate. Hence I Cj ≥ t

� �
will be replaced by

ŵj tð Þ¼
I Cj ≥Dj^ t
� �

Ĝ tjZj
� �

Ĝ Dj^ tjZj
� �

since E wj tð Þ
� �¼G tð Þ¼E I Cj ≥ t

� �� �
. This leads to the following estimating equation for β

U βð Þ¼
Xn
i¼1

ð τ

0
Zi tð Þ�

Pn
j¼1ŵj tð ÞZj tð ÞeβTZj tð ÞPn

j¼1ŵj tð ÞeβTZj tð Þ

( )
dNi tð Þ

Let β̂ be the solution to U βð Þ¼ 0. Correspondingly, the baseline mean function μ0 tð Þ can be estimated by the
Breslow type estimator

μ̂0 tð Þ¼
Xn
i¼1

ð t

0

dNi uð ÞPn
j¼1ŵj uð Þeβ̂TZj uð Þ

If ŵj tð Þ is estimated using a Kaplan–Meier estimator (assuming that the censoring is independent of the covariates),
it holds that

Theorem 1. The estimator β̂ is consistent and it holds that β̂!a:s: β. Moreover,
ffiffiffi
n

p
β̂�β
� �

converges in distribu-
tion to a zero-mean random normal variables with a covariance matrix that can be consistently estimated by
Γ̂¼ Â

�1
Σ̂Â

�1
. Here

Â¼�n�1 ∂U β̂
� �
∂β

¼n�1
Xn
i¼1

ð τ

0
Zi tð Þ�

Pn
j¼1ŵj tð ÞZj tð Þeβ̂

T
Zj tð ÞPn

j¼1ŵj tð Þeβ̂
T
Zj tð Þ

8<:
9=;

N
2

� ŵj tð Þeβ̂
T
Zj tð ÞPn

j¼1ŵj tð Þeβ̂
T
Zj tð Þ

dNi tð Þ,

Σ̂¼n�1
Xn
i¼1

η̂iþ ψ̂ ið Þ
N

2,

η̂i ¼
ð τ

0
Zi tð Þ�

Pn
j¼1ŵj tð ÞZj tð Þeβ̂

T
Zj tð ÞPn

j¼1ŵj tð Þeβ̂
T
Zj tð Þ

8<:
9=;dM̂i tð Þ,

ψ̂ i ¼
ð τ

0

q̂ tð ÞPn
j¼1Yj tð ÞdM̂

C
i tð Þ,

q̂ tð Þ¼�n�1
Xn
i¼1

ð τ

0
Zi uð Þ�

Pn
j¼1ŵj uð ÞZj uð Þeβ̂TZj uð ÞPn

j¼1ŵj uð Þeβ̂TZj uð Þ

8<:
9=;I u≥ t≥Xið ÞdM̂i uð Þ,

M̂i tð Þ¼
ð t

0
ŵi uð Þ dNi uð Þ� eβ̂Zi uð Þdμ̂0 uð Þ

n o
,

M̂
C
i tð Þ¼ dNC

i tð Þ�
ð t

0
Yi uð ÞdΛ̂0 uð Þ,
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Λ̂0 tð Þ¼
Xn
i¼1

ð t

0

dNC
i uð ÞPn

j¼1Yj uð Þ ,

NC
i tð Þ¼ I Xi ≤ t,δi ¼ 0ð Þ, Yi tð Þ¼ I Xi ≥ tð Þ

Proof. The structure of the estimating equation for β coincides with the estimating equations available in
Ghosh and Lin and Mao and Lin.39,41 For details on the asymptotic derivations for these estimates see
section 2.5 in Ghosh and Lin.39
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Abstract
The analysis of recurrent events in the presence of terminal events requires special
attention. Several approaches have been suggested for such analyses either using inten-
sity models or marginal models. When analysing treatment effects on recurrent events
in controlled trials, special attention should be paid to competing deaths and their
impact on interpretation. This paper proposes a method that formulates a marginal
model for recurrent events and terminal events simultaneously. Estimation is based
on pseudo-observations for both the expected number of events and survival proba-
bilities. Various relevant hypothesis tests in the framework are explored. Theoretical
derivations and simulation studies are conducted to investigate the behaviour of the
method. The method is applied to two real data examples. The bivariate marginal
pseudo-observation model carries the strength of a two-dimensional modelling pro-
cedure and performs well in comparison with available models. Finally, an extension
to a three-dimensional model, which decomposes the terminal event per death cause,
is proposed and exemplified.
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1 Introduction

In many cardiovascular trials, the events of interest are events that can happen several
times for an individual. Examples include recurrent myocardial infarction or recurrent
hospitalisation for heart failure. Often, the trial population will have a high mortality
rate. Moreover, experiencing these severe recurrent events can increase the risk of
dying. Further, death will preclude any subsequent recurrent events. For such situa-
tions, it will be desirable to gain knowledge not only about the recurrence of events
but also mortality.

Various methods and models have been suggested for analysing recurrent events
in the presence of a competing terminal event. Non-parametric and semi-parametric
marginal regression models for estimating the mean number of recurrent events per
subject in the presence of a competing risk have been considered by Cook and Lawless
(1997) and Ghosh and Lin (2000, 2002). Liu et al. (2004) have proposed a joint frailty
regression model that specifies both an intensity function for recurrent events and an
intensity function for death through a subject level shared frailty term. Cause-specific
hazard functions for either recurrent events or a terminal event can be targeted using
standard models such as the Andersen–Gill model (Andersen and Gill 1982) or the
Cox model (Cox 1972), respectively. Figure 1 visualizes a relevant multi-state model
for recurrent events with mortality as a terminal event. Andersen et al. (2019) discuss
the modelling of marginal features of such a multi-state model.

The present paper proposes a joint marginal regression model targeting a two-
dimensional marginal parameter for both recurrence and death: the expected number
of events per subject and the survival probability. The estimation of the parameters in
the marginal model is based on pseudo-observations as suggested by Andersen et al.
(2003). Large sample behaviour will be explored both based on theoretical derivations
and simulation. Moreover, will the performance of the method be investigated against
other models using simulation. Suitable hypothesis tests based on the model will be
explored with a special focus on data from randomised controlled trials. A bootstrap
experiment is conducted to assess variance estimation in the proposed model. The
model will be applied to two data examples: a well-known data set on bladder cancer
recurrences (Byar 1980) and data from a large cardiovascular outcomes trial, LEADER
(Marso et al. 2016).

0: No event 1: 1 event 2: 2 events

D: Dead

λ0D(t)

λ1D(t)

λ2D(t)

λ01(t) λ12(t) λ23(t)

Fig. 1 A recurrent event process with a terminal event
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2 Model andmathematical framework

Let D∗ denote the survival time and let N∗(t) denote the number of recurrent events by
time t .Asno recurrent events canbe experiencedbeyonddeath, N∗(t) remains constant
after D∗. LetC denote the censoring time, which is assumed to be independent of both
D∗ and N∗(t). Due to censoring, neither D∗ nor N∗(t) is fully observed. The data con-
sists of X = {N (·), D, δ, Z}, where N (t) = N∗(t∧C), D = D∗∧C , δ = I (D∗ ≤ C),
and Z denotes p baseline covariates. Additionally, it is assumed that C is independent
of Z . For each individual, i = 1, . . . , n, we observe Xi = {Ni (·), Di , δi , Zi }, which is
assumed to be independent replicates of X = {N (·), D, δ, Z}. In the present setting,
the marginal parameters of interest are the marginal mean function and the survival
probability,

μ(t) = E(N∗(t)) =
∫ t

0
S(u−)dR(u),

S(t) = P(D∗ > t),

where dR(t) = E(dN∗(t) | D∗ ≥ t). We will model (μ(t), S(t)) conditional on
covariates Z simultaneously using a regression model applied to pseudo-observations.
Due to right-censoring, both D∗ and N∗(t) are incompletely observed and require
special attention during analysis. In the absence of censoring, standard regression
models could target both survival probabilities and expected number of events. The
framework of pseudo-observations is a method for analysing event history data using
generalised linear models. The basic idea behind pseudo-observations is as follows.
Let W = (N∗(·), D∗) and let θ be the parameter of interest which has the form
θ = E( f (W )). The pseudo-observation for f (W ) for individual i , θ̂i , is given by

θ̂i = n · θ̂ − (n − 1) · θ̂−i ,

for a sufficiently well-behaved estimator θ̂ . Here, θ̂−i denotes the estimate obtained
by applying θ̂ to the data set where individual i is eliminated. For further details
on pseudo-observations and their usage, see Andersen et al. (2003) or Andersen and
Perme (2010). Subsequently, the incompletely observed f (Wi ) = f (N∗

i (·), D∗
i ) is

replaced by θ̂i for all individuals. Then, θ̂i may be used as the outcome in a generalised
linear model with some link function g,

g(E( f (W ) | Z)) = ξ T Z .

The pseudo-observations are computed for all individuals, censored or not, and used
as responses in the above generalised linear model. The bivariate marginal pseudo-
observation model considers

θ =
(

μ(t)
S(t)

)
=

(
E(N∗(t))

E(I (D∗ > t))

)
.
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Regression models based on pseudo-observations for μ(t) and S(t) separately have
been explored in Andersen et al. (2019). In the presence of competing deaths, Cook
and Lawless (1997) and Ghosh and Lin (2000), suggested to use the estimator of μ(t)
given by

μ̂(t) =
∫ t

0
Ŝ(u−) d R̂(u), (1)

where R̂(t) denotes the Nelson–Aalen estimator of R(t) and Ŝ(t) denotes the Kaplan–
Meier estimator of S(t). Alternatively, μ̂(t) can be expressed using the inverse
probability of censoring (IPCW) form for which

μ̂(t) = 1

n

n∑
i=1

∫ t

0

1

K̂ (u−)
dNi (u), (2)

where K̂ (t) is a Kaplan–Meier estimate of K (t) = P(C > t). The estimator μ̂(t)
is approximately unbiased when the censoring times are independent of the recurrent
events and terminal event processes (Ghosh and Lin 2000). Moreover, the Kaplan–
Meier estimator Ŝ(t) is also approximately unbiased under independent censoring
(Andersen et al. 1993). As an estimator for θ we will consider,

θ̂ =
(

μ̂(t)
Ŝ(t)

)
.

For a given time t ∈ [0, τ ], the pseudo-observation for subject i (i = 1, . . . , n) is
given by

θ̂i =
(

μ̂i (t)
Ŝi (t)

)
=

(
nμ̂(t) − (n − 1)μ̂−i (t)
nŜ(t) − (n − 1)Ŝ−i (t)

)
,

where μ̂(t) denotes the estimate of the marginal mean function based on the entire
sample and μ̂−i (t) denotes the estimate based on leaving out subject i’s observations.
Moreover, Ŝ(t) denotes the estimate of the survival probability based on the entire
sample and Ŝ−i (t) denotes the estimate based on leaving out subject i’s observations.
Regardless of whether an individual was censored, died or experienced a recurrent
event, a pseudo-observation is computed at time t . For a given individual, the behaviour
of θ̂i as a function of t depends on the data for subject i . The μ̂i (t) component is
exemplified for four individuals in Fig. 5 using data from a bladder cancer study.
The Ŝi (t) component is exemplified for different individuals in Andersen and Perme
(2010). The pseudo-observations may take on a variety of different values and are
for instance not necessarily positive, but, with little or no censoring up to time t ,
the pseudo-observations will resemble the true observations, see e.g. Fig. 7. We will
compute pseudo-observations at times t1, . . . , tk for both μ̂i (·) and Ŝi (·). The same
times, t1, . . . , tk , are used for computing μ̂i (·) and Ŝi (·). The model can be extended
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260 J. K. Furberg

to considering different time points for μ̂i (·) and Ŝi (·) but for ease of notation we have
chosen to use the same time points. This implies that

θ̂i =
((

μ̂i (tl)
Ŝi (tl)

)
, l = 1, . . . , k

)

is (2k × 1)-dimensional for individual i . We consider a proportional means model
where

μ(t | Z) = μ0(t) exp(β
T Z).

and a proportional hazards model where

S(t | Z) = exp(−�0(t) exp(γ
T Z)).

This implies that

g

(
μ(t | Z)

S(t | Z)

)
=

(
log (μ0(t)) + βT Z
log (�0(t)) + γ T Z

)
, (3)

which defines a generalised linear model in terms of a vector of model parameters ξ

that consist of β, γ , and the intercepts log (μ0(tl)) and log (�0(tl)) for l = 1, . . . , k
with link function g(x, y) = (log(x), cloglog(y)) = (log(x), log(− log(y))).

The model parameters ξ will be estimated using generalised estimating equations
(GEE) (Liang and Zeger 1986) by doing a regression of θ̂i on Zi with mean function

mi (ξ) = m(ξ ; Zi ) =
(
g−1

(
log (μ0(tl)) + βT Zi

log (�0(tl)) + γ T Zi

)
, l = 1, . . . , k

)
.

Then the estimating equations are given by

U (ξ) =
∑
i

(
∂mi

∂ξ

)T

V−1
i (θ̂i − mi (ξ)) =

∑
i

Ui (ξ) = 0, (4)

where Vi is a 2k × 2k working covariance matrix for θ̂i . Let ξ̂ denote the solution to
U (ξ) = 0. Work by Graw et al. (2009), Jacobsen and Martinussen (2016), Overgaard
et al. (2017) and Overgaard (2019) indicate that β̂ and γ̂ are marginally asymptot-
ically normally distributed. We will argue that (β̂, γ̂ ) has a large sample bivariate
normal distribution using simulation and theoretical derivations. Theoretical details
are included in Appendix A.1. Thus, we can assume that ξ̂ is asymptotically normal
with mean ξ and a covariance matrix which may be estimated by


̂ = I (ξ̂ )−1v̂ar(U (ξ))I (ξ̂ )−1, (5)
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where

I (ξ) =
∑
i

(
∂mi

∂ξ

)T

V−1
i

(
∂mi

∂ξ

)
, v̂ar(U (ξ)) =

∑
i

Ui (ξ̂ )Ui (ξ̂ )T ,

where 
̂ is 2(p + k) × 2(p + k)-dimensional. As a working covariance matrix, we
will use the identity matrix, known as the working independence covariance matrix.
Note, that this is not the same as assuming independence for θi within subject, as
the sandwich covariance estimator in Eq. (5) accounts for dependence within a sub-
ject. Theoretical results indicate that the sandwich variance estimator in Eq. (5) may
tend to be slightly conservative (Jacobsen and Martinussen 2016; Overgaard et al.
2017; Overgaard 2019). The theoretical results in Appendix A.1 also indicate that the
sandwich covariance estimator leads to conservative variance estimates.

The proposed two-dimensional modelling approach could be extended to other
high-dimensional models. For instance, if one is particularly interested in a certain
death cause, the pseudo-observations could be based on cumulative incidences for
those causes in an analogous manner. The example based on LEADER data will
exemplify this by considering a model for the parameter

θ =
⎛
⎝ μ(t)
C1(t)
C2(t)

⎞
⎠ =

⎛
⎝ E(N∗(t))
E(I (D∗ ≤ t,� = 1))
E(I (D∗ ≤ t,� = 2))

⎞
⎠ , (6)

where � = {1, 2} represents a cause-of-death indicator. Thus, C1(t) and C2(t) are the
cumulative incidences for causes 1 and 2, respectively. In this example, we will use
the link functions, h(x, y, z) = (log(x), cloglog(1 − y), cloglog(1 − z)). Other link
functions than these and those chosen for Eq. (3) could be utilized. However, using
the cloglog-link ensures that the estimated probabilities lie between 0 and 1. Whereas,
using the log-link ensures that the estimated expected number of events is positive.

2.1 Hypothesis testing

Assume that we are considering a simple setting where Z is one-dimensional. Here,
we are interested in the effect of treatment, β and γ , on recurrent events and death,
respectively. Let β̂ and γ̂ denote the estimates of β and γ derived from the described
estimation procedure. We will argue that

(
β̂

γ̂

)
as∼ N

((
β

γ

)
,

(
σ11 σ12
σ12 σ22

))
, 
 =

(
σ11 σ12
σ12 σ22

)
. (7)

We will denote the corresponding correlation matrix by , with

 =
(

1 ω12
ω12 1

)
=

(
1 σ12√

σ11
√

σ22
σ12√

σ11
√

σ22
1

)
.
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Under Eq. (7), we wish to create testing procedures for evaluating the effect of treat-
ment on the recurrent events and death. Along the lines of Wei et al. (1989) and Ghosh
and Lin (2002), we consider the following testing approaches.

Local tests

The following local tests are based on the marginal distributions of β̂ and γ̂ and eval-
uates the treatment effect separately. The two hypotheses and the testing procedures
are specified below.

1. H0 : β = 0 versus Ha : β 	= 0. Reject H0 if P(|U | > |β̃|) ≤ α, where

β̃ = β̂√
var(β̂)

and U ∼ N (0, 1).

2. H0 : γ = 0 versus Ha : γ 	= 0. Reject H0 if P(|U | > |γ̃ |) ≤ α, where
γ̃ = γ̂√

var(γ̂ )
and U ∼ N (0, 1).

Global test

This global test is based on the bivariate distribution of (β̂, γ̂ ) and evaluates the
treatment effect simultaneously. The hypothesis and the testing procedure are specified
below.

1. H0 : β = γ = 0 versus Ha : β 	= 0 or γ 	= 0. Let

Tglobal = (
β̂ γ̂

)

̂−1

(
β̂

γ̂

)

H0 is rejected if P(Y > Tglobal) ≤ α, where Y is χ2-distributed with 2 degrees
of freedom.

Sequential tests

The sequential tests are based on the bivariate distribution of (β̂, γ̂ ) first, subsequently
the marginal distribution, and evaluates the treatment effect in a sequential manner.
The two hypotheses and the testing procedures are specified below.

1. Order the values of β̃ and γ̃ according to absolute size. Assume that |β̃| < |γ̃ |
without loss of generality

2. Let Hl : η = 0 be the ordered hypotheses for η = {β, γ } with l = {1, 2}
representing the order

3. H1 is rejected if P(|max(W1,W2)| > |β̃|) ≤ α where (W1,W2) is a bivariate
standard normal variablewith unit variance and correlation given by the correlation
between β̃ and γ̃

4. If H1 is rejected, H2 is tested. H2 is rejected if P(|W2| > |γ̃ |) ≤ α

This multiple testing procedure maintains the overall type I error at α (Ghosh and Lin
2000).
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Alternatively, a hierarchical closed testing procedure that evaluates non-inferiority
with respect to mortality and subsequently superiority with respect to recurrent events
could also be of interest. This would correspond to the following testing procedure,

1. H0 : γ ≥ δ versus Ha : γ < δ, where δ is the non-inferiority margin,
2. H0 : β ≤ 0 versus Ha : β > 0.

The second null hypothesis is only investigated if the first null has been rejected. This
maintains the overall type I error at α.

3 Simulation studies

In order to examine the behaviour of the proposed model, simulation studies were
conducted.

3.1 Data generation

The simulation scheme largely follows the elegant simulation procedure used inGhosh
and Lin (2002).We assume that we have a total sample size of n. Moreover, we assume
that we have a single one-dimensional covariate, namely a binary treatment indicator
for which Z ∼ Bin(1, p) with p = 0.5. We wish to simulate data according to

log (μ(t | Z)) = β0 + βZ ,

log (− log (S(t | Z))) = γ0 + γ Z ,

where β0 and γ0 denote the intercepts on log and cloglog scale, respectively. In this
notation, β0 and γ0 are k-dimensional. It holds that,

μ(t | Z) =
∫ t

0
S(u− | Z) dR(u | Z),

where S(t | Z) = P(D∗ > t | Z) and dR(t | Z) = E(dN∗(t) | D∗ ≥ t, Z) (Cook
and Lawless 1997; Ghosh and Lin 2000). We consider the following data generating
frailty models

λD(t | Z , ν) = ν exp(γDZ)λD
0 , (8)

dR(t | Z , ν) = νS0(t | ν)1−exp(γD Z) exp(βZ) dt, (9)

where S0(t | ν) = exp
(
− ∫ t

0 λD(u | Z = 0, ν) du
)
and ν > 0 is a frailty term that

is assumed to be generated from a positive stable distribution with Laplace transform
exp(−νρ), ρ ∈ (0, 1]. This frailty term introduces dependence between the recurrent
events and the terminal event. The gap times between two successive events and the
survival time will have a Kendall’s tau correlation coefficient of 1−ρ. If ρ = 1, there
is no association between successive recurrent events and deaths. If ρ < 1, there is a
positive association between successive recurrent events and death and the magnitude
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of the association is determined by ρ. Integrating Eqs. (8) and (9) with respect to ν

implies that,

μ(t | Z) =
∫ ∞

0
μ(t | Z , ν) f (ν) dν = μ0(t) exp(βZ),

where f (·) denotes the density of ν and

μ0(t) = 1

λD
0

(
exp

(
−

(
λD
0 t

)ρ)
+ 1

)
.

Then considering a log-link function implies that

log (μ(t | Z)) = log (exp (βZ) μ0(t)) = log(μ0(t)) + βZ ,

where β0 = log(μ0(t)). Moreover, it holds that

S(t | Z) =
∫ ∞

0
S(t | Z , ν) f (ν) dν = exp

(
− exp(γDρZ)

(
λD
0 t

)ρ)
.

Thus, considering a cloglog-link function implies that,

log (− log (S(t | Z))) = log
((

λD
0 t

)ρ)
+ γ Z ,

where γ0 = log
((

λD
0 t

)ρ
)
and γ = γDρ. We will let n = {100, 500, 1000}, λD

0 =
{0.25, 1.5}, β = {0.5}, γD = {−0.2, 0, 0.2}, and ρ = {0.75, 1}. Censoring times
are uniform on [0, 5], independently of N∗(·) and D∗. At time 1 with ρ = 1, this
corresponds to a baseline survival probability of S(1 | Z = 0) = exp(−0.25 · 1) =
0.78 and S(1 | Z = 0) = exp(−1.5 · 1) = 0.22 for λD

0 = {0.25, 1.5}, respectively.

3.2 Choice of k and tk

Theproposedbivariatemarginalmodel basedonpseudo-observations requires a choice
of number of time points, k, and time points, t = (t1, . . . , tk). It is possible to compute
pseudo-observations at all observed event times, but this can quickly become compu-
tationally burdensome. Moreover, it is not ensured that the asymptotic properties of
the estimation procedure will hold for computation at all event times as the theoreti-
cal results have been shown for pseudo-observations computed at a finite number of
times (Overgaard et al. 2017; Overgaard 2019). We suggest selecting t based on one
of three approaches: fixed time points, percentiles of event and death times or equidis-
tantly chosen time points based on event and death times. For analysing randomised
controlled trials, it will be natural to consider fixed time points, due to typical require-
ments of pre-specification. There could for instance be a clinical interest in comparing
survival and expected number of recurrent events two years after randomisation.
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We have compared the performance of the three approaches by simulation for k =
{1, 2, 3, 4, 5, 10} time points. We let (n, λD

0 , β, γD, ρ) = (100, 0.25, 0.5, 0.2, 0.75).
Other parameter choices provide similar results. The results are shown in Fig. 2. All
three approaches are unbiased in estimating both β and γ for all k. The standard
errors appear to be decreasing as a function of k and appear to stabilize after k = 3.
This suggests that little is gained in terms of precision by including more than three
time points. Also, the standard errors appear smaller for the equidistant and fixed time
points approaches. Note, that the fixed time point approach is sensitive to the particular
choice of t . The choice of relevant approach will depend on the application.

3.3 Investigation of normality assumption

In this section, we will investigate the assumption of large sample normality of
(β̂, γ̂ ) estimated using the bivariate marginal pseudo-observation model by sim-
ulation. We will restrict our attention to k = 1 computed at t = 2 based on
(n, λD

0 , β, γD, ρ) = (100, 0.25, 0.5, 0.2, 0.75). A total of 1000 simulations were per-
formed. Figure 3 displays eight plots that investigate the performance of the estimation
using the bivariate marginal pseudo-observation model. The scatter plot displays the
β̂ estimates versus the γ̂ estimates. The true β and γ = γD · ρ values are indicated
by a dashed line. Contour lines have been added for the bivariate normal distribution
with mean (β, γ ) and variance given by the average of the estimated variances across
simulations. The normalised plot has transformed the original scatter plot points using
the bivariate normal distribution. The contour lines correspond to a bivariate standard
normal distribution. Moreover, the number of points within each contour have been
counted and compared to the total number of 1000 simulated points. This count is
compared to the cumulative distribution function of the bivariate standard normal dis-
tribution. Both the simple and normalised scatter plot indicate that (β̂, γ̂ ) follows the
relevant bivariate normal distribution.

Marginal normality of β̂ and γ̂ has been investigated usingQQplots. The theoretical
quantiles of the expected distributions have been compared to the sample quantiles. The
QQ plots indicate that the samples quantiles are aligned with the theoretical quantiles
from the marginal distributions. Moreover, the predicted values of μ̂(2) and Ŝ(2) have
been compared to the true curves. Finally, histograms of the predicted values of μ̂(2)
and Ŝ(2) per treatment group alongside the true values have been displayed.

All visual examinations of the simulations are in line with the assumed bivariate
normality of (β̂, γ̂ ). Similar results were seen for other parameter choices and when
increasing k (see Appendix B). Appendix A.1 contains theoretical derivations that
support the bivariate normality of (β̂, γ̂ ).

3.4 Comparison with other models

For the following, the performance of the marginal two-dimensional pseudo-
observation model has been compared to other regression models for μ(t) and S(t).
For estimation ofμ(t), the pseudo-observationmodel has been compared to that of Lin
et al. (2000), and Ghosh and Lin (2002). The model of Ghosh and Lin has been fitted
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Fig. 2 Estimates obtained from the bivariate marginal pseudo-observation model using time points selected
as either equidistantly, fixed times or percentiles for different k’s based on 100 simulated data sets per k.
The average value of the estimates are colored black and connected with lines for each choice and number
of time points
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using inverse probability of censoring weights (IPCW). These models also assume
that,

μ(t | Z) = μ0(t) exp(βZ).

For estimation of S(t), the model has been compared to the regression model of Cox
(1972). This model also assumes that,

λD(t | Z) = λD
0 (t) exp(γ Z).

The pseudo-observation model presented in the comparisons are based on pseudo-
observations computed at three time points, t = (1, 2, 3). Tables 1 and 2 show the
results from the simulation studies on S(t) and μ(t), respectively. The regression
model of Lin, Wei, Yang and Ying (LWYY) does not accommodate competing deaths
in estimation of μ(t). As a result, the estimated parameters in this model relate to a
worldwhere it is not possible to die. However, when the treatment does not affect death
(γD = 0), the LWYYmodel still performs well in spite of the occurring deaths. When
γD 	= 0, the LWYY model becomes biased, and the direction of bias depends on the
sign of γD . The regression model of Ghosh and Lin (GL) has been applied to estimate
μ(t) and performs well in most parameter settings. The bivariate marginal regression
model based on pseudo-observations (Pseudo) performs similarly to the GL model
in all scenarios. When ρ decreases, making the dependence between recurrent events
and deaths larger, both the GL and Pseudo models have difficulties in estimating the
treatment effect on recurrent events, β, in an unbiased manner.

For estimation of S(t), the bivariate marginal regression model based on pseudo-
observations has been compared to a Cox model. The two models are performing
similarly in terms of bias and precision for all parameter choices.

3.5 Bootstrap experiment

Recent developments within the theoretical field of pseudo-observations allude to
the fact that variance estimation done using a generalised estimating equation (GEE)
framework with a working independence covariance matrix and using the sandwich
variance estimator will overestimate the variance in some scenarios (Jacobsen and
Martinussen 2016; Overgaard et al. 2017; Overgaard 2019). Thus, conservative tests
are to be expected when fitting the model using this approach (see Sect. 2 and Eq. (5)).
However, using this sandwich covariance matrix makes estimation simpler, and as
noted in Jacobsen and Martinussen (2016), Overgaard et al. (2017), and Overgaard
(2019), this will result in a negligible variance bias in most cases. In order to further
investigate the large sample behaviour of the proposed method, a bootstrap experi-
ment is carried out to investigate the distributional nature of (β̂, γ̂ ). This will enable
assessment of potential bias in estimating both parameter estimates and their variance
estimates. The bootstrap experiment is carried out in the following way,

1. A single data set is simulated according to the above simulation scheme with
parameters (n, λD

0 , β, γD, ρ).
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2. Based on this data set, pseudo-observations of (μ(t), S(t)) are computed and a
bivariatemarginalmodel is fitted based on (μ̂i (t), Ŝi (t)) usingGEE as described in
Sect. 2. This estimation uses a working independence covariance matrix assump-
tion. Here, we have chosen k = 1 and t = 2. The estimates β̂, γ̂ and 
̂ are
saved.

3. In order to assess this estimation, the simulated data set is sampled with
replacement. That is, replacement for each individual, since the individuals are
independent and identically distributed replicates. This resampled data set is
then fed into the estimation procedure a total of B times, and the estimates of
β̂boot,b, γ̂boot,b, 
̂boot,b and ̂boot,b for b = 1, . . . , B are saved. Here, the calcu-
lation of the pseudo-observations is a part of the bootstrap step.

4. Based on the B bootstrap samples, the following is computed,

β̂boot = 1

B

B∑
b=1

β̂boot,b, γ̂boot = 1

B

B∑
b=1

γ̂boot,b,

σ̂11,boot = 1

B − 1

B∑
b=1

(β̂boot,b − β̂boot )
2, σ̂22,boot = 1

B − 1

B∑
b=1

(γ̂boot,b − γ̂boot )
2,

σ̂12,boot = 1

B − 1

B∑
b=1

(β̂boot,b − β̂boot )(γ̂boot,b − γ̂boot ),

ω̂12,boot = σ̂12,boot√
σ̂11,boot

√
σ̂22,boot

.

The results of the bootstrap experiment are displayed in Table 3. For all parameter
settings, the pairs (β̂, β̂boot ) and (γ̂ , γ̂boot ) were close to each other. All in all, the
bootstrap variances are very close to the variance estimates from the bivariate marginal
pseudo-observation model for all of the chosen settings. This indicates that the model
is performing well in terms of correctly estimating the variance using the assumed
sandwich covariancematrix [seeEq. (5)]. Themodel is seen to be slightly conservative,
as expected, when looking at other more extreme parameter setting such as when
β = 2. This is also supported by the formula for the asymptotic variance of

√
n(ξ̂ −ξ)

as seen in Appendix A.1.

4 Applications

The suggested model will be applied to two studies, a bladder cancer study and a
cardiovascular trial, LEADER.

4.1 Bladder cancer

Aclinical cancer trial was conducted by theVeteransAdministration CooperativeUro-
logical ResearchGroup (Byar 1980). A total of 118 patients with stage I bladder cancer

123



272 J. K. Furberg

Table 3 Results from bootstrap experiment on the bivariate marginal regression model based on pseudo-
observations

(λD0 , β, γD, ρ) n
√

σ̂11
√

σ̂11,boot
√

σ̂22
√

σ̂22,boot ω̂12 ω̂12,boot

(0.25, 0.5, 0, 1) 100 0.215 0.225 0.335 0.344 −0.363 −0.316

500 0.082 0.080 0.158 0.160 −0.446 −0.449

1000 0.057 0.057 0.117 0.115 −0.447 −0.418

(0.25, 0.5, 0.2, 1) 100 0.194 0.205 0.347 0.366 −0.312 −0.312

500 0.080 0.081 0.158 0.160 −0.409 −0.420

1000 0.060 0.060 0.113 0.116 −0.404 −0.419

(0.25, 0.5,−0.2, 1) 100 0.185 0.191 0.375 0.380 −0.506 −0.521

500 0.081 0.081 0.177 0.180 −0.394 −0.418

1000 0.057 0.057 0.123 0.124 −0.362 −0.360

(0.25, 0.5, 0.2, 0.75) 100 0.313 0.307 0.349 0.368 −0.056 −0.048

500 0.124 0.125 0.152 0.159 −0.015 0.016

1000 0.083 0.082 0.104 0.106 −0.056 −0.052

(0.25, 0.5,−0.2, 0.75) 100 0.222 0.220 0.405 0.442 −0.233 −0.220

500 0.103 0.104 0.152 0.156 −0.010 −0.077

1000 0.080 0.089 0.110 0.116 0.000 −0.001

(0.25, 2, 0, 1) 100 0.220 0.181 0.388 0.395 −0.384 −0.361

500 0.102 0.084 0.158 0.162 −0.303 −0.376

1000 0.078 0.062 0.115 0.115 −0.302 −0.320

(0.25, 2, 1, 1) 100 0.248 0.202 0.353 0.360 −0.127 −0.271

500 0.125 0.101 0.151 0.153 −0.221 −0.367

1000 0.092 0.071 0.105 0.106 −0.240 −0.444

(0.25, 2, −1, 1) 100 0.264 0.252 0.493 0.540 −0.223 −0.150

500 0.102 0.078 0.231 0.235 −0.267 −0.227

1000 0.075 0.061 0.145 0.145 −0.270 −0.250

The results are based on B = 1000. For each parameter setting, a single data set is simulated. Here,
√

σ̂11,√
σ̂22 and ω̂12 denotes the estimates from the bivariate pseudo-observation model fit based on the single

simulated data. The bootstrap estimates,
√

σ̂11,boot ,
√

σ̂22,boot and ω̂12,boot , are computed as described in
the text

were randomised to receive placebo, pyridoxine or thiotepa. Following randomisation,
the patients were examined for occurrences of superficial bladder tumours (recurrent
events) and any deaths were registered. We will focus on the comparison of placebo
and thiotepa (86 patients in total). Across both treatment groups, the median follow-up
time was 30 months.

Figure 4 displays the Kaplan–Meier estimates, Ŝ(t), and the marginal mean esti-
mates computed using Eq. (1), μ̂(t), per treatment group. Pseudo-observations of the
marginal mean function for all times were computed for four select individuals, see
Fig. 5. The pseudo-observations, μ̂i (t), jump at event times. Prior to any events, cen-
soring or death, μ̂i (t) decreases over time. After death, μ̂i (t) decreases over time and
after censoring, μ̂i (t) increases over time.
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Fig. 4 Non-parametric estimates computed on the bladder cancer data. Left hand side: Marginal mean
estimates for recurrent bladder cancer, μ̂(t), per treatment group computed using equation (1).Right hand
side: Kaplan-Meier estimates for any death, Ŝ(t), per treatment group

The bivariate marginal pseudo-observationmodel was applied to the bladder cancer
data. The model was applied to k = 1 with t = (30) and k = 3 with t = (20, 30, 40).
Parameter estimates from the models are available in Table 4. Model predictions are
available in Table 5. In comparison, parameter estimates from the model of Ghosh and
Lin applied to recurrent bladder cancer results in β̂ = −0.406 with SE(β̂) = 0.286.
Similarly, parameter estimates from aCoxmodel applied to death results in γ̂ = 0.281
with SE(γ̂ ) = 0.430.

Based on the parameter estimates from the pseudo-observation model with k = 3,
we have performed the hypotheses tests suggested in Sect. 2.1. For the local tests,

β̃ = β̂√
σ̂11

= −1.533, γ̃ = γ̂√
σ̂22

= 0.139.

As we have two-sided alternatives, the corresponding p-values are computed as,

P(|U | > |β̃|) = 2 · P(U < β̃) = 0.125,

P(|U | > |γ̃ |) = 2 · P(U > γ̃ ) = 0.889,

where U denotes an univariate standard normal variable. Based on the p-values from
the local tests, thiotepa treatment does not seem to be significantly different from
placebo on either recurrent events or death at a 0.05 significance level. For the global
test, under Eq. (7), it holds that,

Tglobal = (−0.427 0.066
)

̂−1

(−0.427
0.066

)
= 2.387.
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Fig. 5 Pseudo-observations, μ̂i (t), over time for four subjects from the bladder cancer data. Subject 10 has
two bladder cancer events at times 12 and 16, and dies at time 18. Subject 12 also has two bladder cancer
events at time 10 and 15 and is censored at time 23. Subject 11 is censored at time 23, and subject 29 dies
at time 34, without previous bladder cancer

For which,

P(Y > Tglobal) = 0.303,

where Y is χ2(2)-distributed. Again, there is no evidence to indicate that the effect
of thiotepa treatment on recurrences or death is different from placebo treatment. For
the sequential test,

P(|max(W1,W2)| > |β̃|) = 2 · P(max(W1,W2) < β̃) = 0.008,

P(|W2| > |γ̃ |) = 2 · P(W2 > γ̃ ) = 0.889,
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Table 4 Parameter estimates from the bivariate marginal pseudo-observation model based on the bladder
cancer data

Model β̂ γ̂ σ̂11 σ̂22 σ̂12
√

σ̂11
√

σ̂22 ω̂12

k = 1, t = (30) −0.464 −0.048 0.075 0.261 −0.001 0.275 0.511 −0.011

k = 3, t = (20, 30, 40) −0.427 0.066 0.078 0.228 0.005 0.279 0.477 0.036

Table 5 Predictions from the bivariate marginal pseudo-observation model based on the bladder cancer
data

Model μ̂(tl | Z = 0) μ̂(tl | Z = 1) Ŝ(tl | Z = 0) Ŝ(tl | Z = 1)

k = 1 t1 = 30 1.666 1.048 0.785 0.794

t1 = 20 1.037 0.693 0.853 0.847

k = 3 t2 = 30 1.640 1.096 0.792 0.784

t3 = 40 1.966 1.313 0.749 0.740

Here Z denotes the binary treatment variable, where Z = 0 denotes placebo and Z = 1 denotes thiotepa

where (W1,W2) is defined as in Section 2.1. The tests indicates that thiotepa treatment
is effective in reducing recurrent events compared to placebo. However, there does not
seem to be a difference between the treatments on mortality.

4.2 LEADER

LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular
outcome Results) (Marso et al. 2016) was a double-blind randomized controlled trial
investigating the cardiovascular effects of liraglutide, a glucagon like peptide-1 (GLP-
1) receptor agonist approved for treatment of type 2 diabetes, investigated versus
placebo when added to standard of care in a population with type 2 diabetes and a
high cardiovascular risk. A total of 9340 subjects were randomised 1:1 to receive
either liraglutide or placebo. The primary composite endpoint was a three-component
major cardiovascular adverse events (3-p MACE) endpoint consisting of; non-fatal
stroke, non-fatalmyocardial infarction (MI) or cardiovascular (CV) death. The primary
analysis was a time-to-event analysis using a Cox regression model considering the
time to first 3-p MACE with treatment as a covariate. The median follow-up time
was 3.8 years. For this application, we will focus on recurrent myocardial infarction,
which consists of both fatal and non-fatal events. If a myocardial infarction was fatal,
this has been coded as an MI event occurring on a given calendar day, and then a
cardiovascular death on the subsequent calendar day.

Figure 6 displays the Ŝ(t) and μ̂(t) per treatment based on LEADER data. The
bivariate marginal pseudo-observation model, with k = 1 and t = (30) and with
k = 3 and t = (20, 30, 40), was applied to the LEADER data. Parameter estimates
from the models are available in Table 6. Model predictions are available in Table
7. In comparison, parameter estimates from the model of Ghosh and Lin applied to
LEADER data results in β̂ = −0.159 with SE(β̂) = 0.088. As a result of the different
estimation procedures, the estimates are slightly different. Similarly, parameter esti-
mates from a Cox model applied to death results in γ̂ = −0.166 with SE(γ̂ ) = 0.070.
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Fig. 6 Non-parametric estimates computed on the LEADER data. Left hand side:marginal mean estimates
for recurrent myocardial infarction, μ̂(t), per treatment group computed using Eq. (1). Right hand side:
Kaplan–Meier estimates for any death, Ŝ(t), per treatment group

Based on the parameter estimates from the pseudo-observation model with k = 3,
we have performed the hypotheses tests suggested in Sect. 2.1. For the local tests,

β̃ = β̂√
σ̂11

= −2.235, γ̃ = γ̂√
σ̂22

= −1.988.

Then,

P(|U | > |β̃|) = 2 · P(U < β̃) = 0.025,

P(|U | > |γ̃ |) = 2 · P(U < γ̃ ) = 0.047.

Thus, there is evidence to indicate that liraglutide treatment is effective in reducing the
number of recurrences and mortality compared to placebo. The evidence is stronger
for the treatment effect on recurrent events. For the global test, under Eq. (7), it holds
that,

Tglobal = (−0.218 −0.163
)

̂−1

(−0.218
−0.163

)
= 8.138.

Forwhich, P(Y > Tglobal) = 0.017.Hence there is evidence indicating that liraglutide
treatment has a significant effect on either recurrent events or death compared to
placebo at a 0.05 level. For the sequential test,

P(|max(W1,W2)| > |β̃|) = 2 · P(max(W1,W2) < β̃) < 0.001,

P(|W2| > |γ̃ |) = 2 · P(W2 < γ̃ ) = 0.047.
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Table 6 Parameter estimates from the bivariate marginal pseudo-observation model based on the LEADER
data

Model β̂ γ̂ σ̂11 σ̂22 σ̂12
√

σ̂11
√

σ̂22 ω̂12

k = 1, t = (30) −0.212 −0.157 0.010 0.009 0.001 0.101 0.093 0.093

k = 3, t = (20, 30, 40) −0.218 −0.163 0.010 0.007 0.001 0.097 0.082 0.100

Table 7 Predictions from the bivariate marginal pseudo-observation model based on the LEADER data

Model μ̂(tl | Z = 0) μ̂(tl | Z = 1) Ŝ(tl | Z = 0) Ŝ(tl | Z = 1)

k = 1 t1 = 30 0.064 0.052 0.946 0.953

t1 = 20 0.042 0.033 0.970 0.975

k = 3 t2 = 30 0.064 0.052 0.946 0.953

t3 = 40 0.081 0.065 0.921 0.932

Here Z denotes the binary treatment variable, where Z = 0 denotes placebo and Z = 1 denotes liraglutide

The sequential test results again substantiates that liraglutide treatment is effective on
both recurrences and death compared to placebo.

The three-dimensional model mentioned in Sect. 2 and Eq. (6) is applied to the
LEADER data. Here, the two death causes of interest are cardiovascular (CV) death
and non-CV death. Thus, the model simultaneously models the marginal expected
number of recurrent MI events, the cumulative incidence of CV death and the cumula-
tive incidence of non-CV death conditional on treatment. The pseudo-observations of
μ̂i (t), Ĉ1i (t) and Ĉ2i (t) for an individual is shown in Fig. 7. This subject had several
recurrent MI events and died of a CV death. The majority of all censorings occur after
40 months, with only 27 out of 9340 subjects censored prior to 40 months. The model
applied to t = 30 results in

ξ̂ =
⎛
⎝−0.212

−0.320
0.093

⎞
⎠ , 
̂ =

⎛
⎝0.010 0.001 0.000
0.001 0.014 0.000
0.000 0.000 0.023

⎞
⎠ , ̂ =

⎛
⎝ 1 0.108 0.013
0.108 1 −0.025
0.013 −0.025 1

⎞
⎠

for μ(t), C1(t), C2(t), respectively. Here, C1(t) and C2(t) denote the cumulative
incidence for CV death and non-CV death, respectively. The estimates indicate that
liraglutide is beneficial in terms of reducing the recurrent MI events and CV mortality
compared to placebo. There does not seem to be a difference between the treatments
in terms of non-CV death. Moreover, we see that the estimated correlation is largest
between the treatment effect on recurrent MI and CV death. When applying the model
to t = (20, 30, 40), the estimates are

ξ̂ =
⎛
⎝−0.218

−0.292
0.034

⎞
⎠ , 
̂ =

⎛
⎝0.010 0.001 0.000
0.001 0.011 0.000
0.000 0.000 0.018

⎞
⎠ , ̂ =

⎛
⎝ 1 0.117 0.012
0.117 1 −0.032
0.012 −0.032 1

⎞
⎠ .

Note, that the estimates for μ(t) in the three-dimensional model coincides with the
estimates for μ(t) from the two-dimensional model. In comparison, fitting a Fine &
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Fig. 7 Pseudo-observations of μ̂i (t), Ĉ1i (t) and Ĉ2i (t) for all times for a given individual based on
LEADER data. The subject experienced three myocardial infarctions at 16, 18 and 24 months after ran-
domisation and died of a cardiovascular death 24 months after randomisation
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Gray model to each death cause results in ξ̂2 = −0.243 (SE(ξ̂2) = 0.090) for CV
death and ξ̂3 = −0.039 (SE(ξ̂3) = 0.110) for non-CV death.

5 Discussion

The proposed bivariate marginal regression model based on pseudo-observations per-
forms similarly to the regression models proposed by Ghosh and Lin (2002) and Cox
(1972), see Sect. 3.4. The suggested model, however, carries the strength of a two-
dimensional modelling approach with joint covariance estimation. Themodel requires
independent censoring for computing both marginal mean estimates and survival esti-
mates in an unbiased manner. Andersen and Perme (2010) and Binder et al. (2014)
address dependent censoring when computing pseudo-observations for survival prob-
abilities or cumulative incidences using stratification and an IPCW approach allowing
the censoring distribution to depend on certain covariates using e.g. a Cox model.
Similar approaches can likely be used to accommodate dependent censoring in the
estimation of μ(t) [see Eq. (2)], but extending the bivariate model to address potential
dependent censoring is a topic for further research.

The simulations focus on a single binary covariate, analogous to a treatment indi-
cator. But the proposed model can be extended to include other baseline covariates
of interest as done in the general model formulation. For assessing the fit of the two-
dimensionalmarginalmodel basedonpseudo-observations, pseudo-residuals explored
by Andersen and Perme (2010) or cumulative sums of pseudo-observations consid-
ered in Pavlič et al. (2019) may be of use. Non-proportional hazards in terms of a
covariate effect may be investigated using a model based on pseudo-observations that
includes an interaction term between the covariate and the time points that are used
in the computation. Hence, any non-constant effect of treatment on either recurrent
events or survival over the chosen time points may be investigated.

The joint frailty model targets intensity functions for recurrent events and death
simultaneously, conditional on a subject level frailty (Liu et al. 2004). The bivariate
marginal regression model based on pseudo-observations also targets the recurrent
event process and the death process jointly. This marginal model estimates a mean
ratio and a hazard ratio parameter for the recurrent event and terminal event process,
respectively. Whereas, the joint frailty model estimates hazard ratios conditional on a
subject level frailty. Hazard ratios can be harder to understand than mean ratio param-
eters. Moreover, the parameters in frailty type models are characterized by having
subject specific interpretations, which may not be desirable if aiming for population
specific estimates. Finally, the joint frailtymodel has a stronger parametric assumption
about the relationship between recurrent events and death than the bivariate marginal
model. Another strength of the pseudo-observationmodel is the flexibility in the choice
of link functions which can make interpretation of the final model easier. This allows
the choice of several different effect parameters compared to the joint frailty model.
It may be desirable to consider an id-link or a log-link for the cumulative incidences
which would correspond to risk differences or ratios. Restricted mean survival times
could be considered as an alternative to cumulative incidences in the bivariatemarginal
model based on pseudo-observations.
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Theoretical properties and large sample behaviour of the proposed model has been
explored through simulation and in theoretical details in Appendix A.1. It has been
shown that estimation of β̂ and γ̂ separately using the suggested approach ensures large
sample normality (Overgaard et al. 2017; Overgaard 2019). Our theoretical results and
the presented simulation studies support that the same holds for the joint estimation
of (β̂, γ̂ ).

The bivariate marginal pseudo-observation model may be extended to more high-
dimensional marginal modelling problems. This is exemplified using the LEADER
data and the three-dimensional model for recurrent myocardial infarction, cardiovas-
cular death and non-cardiovascular death. This model can guide understanding of
how treatment affects each of the components and how these are related. Moreover,
as the sequential tests indicate, power may be gained by utilizing the multivariate dis-
tribution. Often, these high-dimensional issues are analysed using marginal models
for each component. The generalisation of the bivariate marginal pseudo-observation
model targets high-dimensional marginal parameters in a simple manner.
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A Appendix

A.1 Theoretical details on bivariate normality of ( ˆ̌ , �̂)

According to Overgaard et al. (2017), the pseudo-observation approach of this paper
produces consistent and asymptotically normal parameter estimates under essen-
tially two conditions. One condition is that the estimate θ̂ of θ = E( f (W )) can
be seen as a functional, φ, of the empirical distribution, Fn , in a Banach space
setting such that φ is two times (Fréchet) differentiable with a Lipschitz continu-
ous second order derivative and such that ‖Fn‖ converges at a certain rate. This
condition ensures that the close approximation of the pseudo-observation θ̂i =
θ + θ̇ (Xi )+ 1

n−1

∑
j 	=i θ̈ (Xi , X j )+ oP (n− 1

2 ) (uniformly in i) in terms of the estima-

tor’s first and second order influence functions, θ̇ and θ̈ , holds. This, in turn, implies
that the less close approximation θ̂i = θ + θ̇ (Xi ) + oP (1) also holds. The other
condition is therefore that E(θ̇(X) | Z) = E( f (W ) | Z) − θ , which means that
the pseudo-observations carry the right information and ensures that the estimating
equation is unbiased under the model. The result of Overgaard et al. (2017) is formu-
lated for one-dimensional pseudo-observations, but generalizes to multi-dimensional
outcomes. In a multi-dimensional setting, the requirements then need to hold for each
outcome separately.
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For pseudo-observations of the Kaplan–Meier estimate Ŝ(tl), the conditions above
hold under assumption of positivity, i.e. P(C > tl) > 0, and completely independent
censoring, i.e. thatC is independent of (D∗, Z), as described byOvergaard et al. (2017)
based on the work of Graw et al. (2009) and Jacobsen and Martinussen (2016). For
pseudo-observations of μ̂(tl), the conditionswere establishedbyOvergaard (2019), see
Example 8, under similar assumptions of positivity, completely independent censoring,
here thatC is independent of (N∗, D∗, Z), and additionally the assumption that N∗(tl)
has a little more than finite fourth moment.

The result of Overgaard et al. (2017) is that, under regularity conditions, estimates,
ξ̂ = ξ̂n , exist that solve (4) with high probability for large n such that

√
n(ξ̂n − ξ)

is asymptotically normal with mean 0 and variance

M−1�M−1,

where

M = E

((
∂mi

∂ξ

)T

V−1
i

∂mi

∂ξ

)

and

� = Var

((
∂mi

∂ξ

)T

V−1
i (θ + θ̇ (Xi ) − m(ξ ; Zi )) + h(Xi )

)

with

h(x) = E

((
∂mi

∂ξ

)T

V−1
i θ̈ (x, Xi )

)
.

In summary, the suggested pseudo-observation approach produces consistent and
asymptotically normal parameter estimates under the assumptions

1. positivity, P(C > tk) > 0,
2. completely independent censoring, i.e. C is independent of (N∗, D∗, Z),
3. a little more than finite fourth moment of N∗(tk).
It is worth noting that the suggested estimate of � can be expected to consistently

estimate Var
((

∂mi
∂ξ

)T
V−1
i (θ + θ̇ (Xi ) − m(ξ ; Zi ))

)
but not Var

((
∂mi
∂ξ

)T
V−1
i (θ +

θ̇ (Xi ) −m(ξ ; Zi )) + h(Xi )
)
. In other words, any contribution from the second order

terms of h are not included and so the estimate, and thereby the standard errors of the
sandwich variance estimator, can be expected to be biased.

B Plots from simulation of bivariate normality of ( ˆ̌ , �̂)

This appendix displays additional plots visualizing the bivariate normal distribution
of (β̂, γ̂ ) for different parameter settings and k.
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(n,�D
0 ,ˇ,�D,�) = (100, 0.25, 0.5, 0.2, 1) and t = 2

See Appendix Fig. 8.
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Fig. 8 Plots investigating normality assumption of (β̂, γ̂ ) using 1000 simulated data sets and
(n, λD0 , β, γD, ρ) = (100, 0.25, 0.5, 0.2, 1). The pseudo-observations are computed based on k = 1 with
t = 2.
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(n,�D
0 ,ˇ,�D,�) = (100, 0.25, 0.5,−0.2, 1) and t = 2

See Appendix Fig. 9.
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Fig. 9 Plots investigating normality assumption of (β̂, γ̂ ) using 1000 simulated data sets and
(n, λD0 , β, γD, ρ) = (100, 0.25, 0.5,−0.2, 1). The pseudo-observations are computed based on k = 1
with t = 2
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(n,�D
0 ,ˇ,�D,�) = (100, 0.25, 0.5, 0.2, 0.75) and t = (1, 2, 3)

See Appendix Fig. 10.
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Fig. 10 Plots investigating normality assumption of (β̂, γ̂ ) using 1000 simulated data sets and
(n, λD0 , β, γD, ρ) = (100, 0.25, 0.5, 0.2, 0.75). The pseudo-observations are computed based on k = 3
with t = (1, 2, 3)
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(n,�D
0 ,ˇ,�D,�) = (100, 0.25, 0.5, 0.2, 1) and t = (1, 2, 3)

See Appendix Fig. 11.
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Fig. 11 Plots investigating normality assumption of (β̂, γ̂ ) using 1000 simulated data sets and
(n, λD0 , β, γD, ρ) = (100, 0.25, 0.5, 0.2, 1). The pseudo-observations are computed based on k = 3 with
t = (1, 2, 3)
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(n,�D
0 ,ˇ,�D,�) = (100, 0.25, 0.5,−0.2, 1) and t = (1, 2, 3)

See Appendix Fig. 12.
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Fig. 12 Plots investigating normality assumption of (β̂, γ̂ ) using 1000 simulated data sets and
(n, λD0 , β, γD, ρ) = (100, 0.25, 0.5,−0.2, 1). The pseudo-observations are computed based on k = 3
with t = (1, 2, 3)
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Index 9

pseudo.geefit Function that makes GEE model fit for recurrent pseudo-observations

Description

This function fits a GEE model based on pseudo-observations of the marginal mean function, and
the survival probability or cumulative incidences of two death causes as returned by pseudo.onedim()
(marginal mean function), or pseudo.twodim() (marginal mean function and survival probability),
or pseudo.threedim() (marginal mean function and cumulative incidences of death causes 1 and
2)

Usage

pseudo.geefit(pseudodata, covar_names)

Arguments

pseudodata Data set containing pseudo-observations. Expecting output from pseudo.twodim()

covar_names Vector with covariate names to be found in "pseudodata". E.g. covar_names =
c("Z", "Z1")

Value

An object of class pseudo.geefit.

• xi contains the estimated model parameters

• sigma contains the estimated variance matrix corresponding to xi

References

Furberg, J.K., Andersen, P.K., Korn, S. et al. Bivariate pseudo-observations for recurrent event
analysis with terminal events. Lifetime Data Anal (2021). https://doi.org/10.1007/s10985-021-
09533-5

Examples

# Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1
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# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")

head(bladdersub)

# Two-dimensional (bivariate pseudo-obs) model fit

# Computation of pseudo-observations
pseudo_bladder_2d <- pseudo.twodim(tstart = bladdersub$start,

tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
covar_names = "Z",
tk = c(30),
data = bladdersub)

# Data in wide format
head(pseudo_bladder_2d$outdata)

# Data in long format
head(pseudo_bladder_2d$outdata_long)

# GEE fit
fit_bladder_2d <- pseudo.geefit(pseudodata = pseudo_bladder_2d,

covar_names = c("Z"))
fit_bladder_2d

pseudo.onedim Function that computes univariate pseudo-observations

Description

This function computes univariate pseudo-observations of the marginal mean function (in the pres-
ence of terminal events)

Usage

pseudo.onedim(tstart, tstop, status, covar_names, id, tk, data)

Arguments

tstart Start time - expecting counting process notation

tstop Stop time - expecting counting process notation

status Status variable (0 = censoring, 1 = recurrent event, 2 = death)

covar_names Vector containing names of covariates intended for further analysis
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id ID variable for subject

tk Vector of time points to calculate pseudo-observations at

data Data set which contains variables of interest

Value

An object of class pseudo.onedim.

• outdata contains the semi-wide version of the computed pseudo-observations (one row per
time, tk, per id).

• outdata_long contains the long version of the computed pseudo-observations (one row per
observation, several per id).

• indata contains the input data which the pseudo-observations are based on.

• ts vector with time points used for computation of pseudo-observations.

• k number of time points used for computation of pseudo-observations (length(ts)).

References

Furberg, J.K., Andersen, P.K., Korn, S. et al. Bivariate pseudo-observations for recurrent event
analysis with terminal events. Lifetime Data Anal (2021). https://doi.org/10.1007/s10985-021-
09533-5

Examples

# Example: Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1

# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

# Pseudo observations
pseudo_bladder_1d <- pseudo.onedim(tstart = bladdersub$start,

tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
covar_names = "Z",
tk = c(30),
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data = bladdersub)
head(pseudo_bladder_1d$outdata)

# GEE fit
fit_bladder_1d <- pseudo.geefit(pseudodata = pseudo_bladder_1d,

covar_names = c("Z"))
fit_bladder_1d

pseudo.threedim Function that computes 3-dim pseudo-observations

Description

This function computes 3-dimensional pseudo-observations of the marginal mean function (in the
presence of terminal events) and cumulative incidences of death causes 1 and 2

Usage

pseudo.threedim(tstart, tstop, status, covar_names, id, tk, data, deathtype)

Arguments

tstart Start time - expecting counting process notation

tstop Stop time - expecting counting process notation

status Status variable (0 = censoring, 1 = recurrent event, 2 = death)

covar_names Vector containing names of covariates intended for further analysis

id ID variable for subject

tk Vector of time points to calculate pseudo-observations at

data Data set which contains variables of interest

deathtype Type of death (cause 1 or cause 2)

Value

An object of class pseudo.threedim.

• outdata contains the semi-wide version of the computed pseudo-observations (one row per
time, tk, per id).

• outdata_long contains the long version of the computed pseudo-observations (one row per
observation, several per id).

• indata contains the input data which the pseudo-observations are based on.

• ts vector with time points used for computation of pseudo-observations.

• k number of time points used for computation of pseudo-observations (length(ts)).
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References

Furberg, J.K., Andersen, P.K., Korn, S. et al. Bivariate pseudo-observations for recurrent event
analysis with terminal events. Lifetime Data Anal (2021). https://doi.org/10.1007/s10985-021-
09533-5

Examples

# Example: Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1

# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

# Add deathtype variable to bladder data
# Deathtype = 1 (bladder disease death), deathtype = 2 (other death reason)
bladdersub$deathtype <- with(bladdersub, ifelse(status == 2, 1, ifelse(status == 3, 2, 0)))
table(bladdersub$deathtype, bladdersub$status)

# Pseudo-observations
pseudo_bladder_3d <- pseudo.threedim(tstart = bladdersub$start,

tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
deathtype = bladdersub$deathtype,
covar_names = "Z",
tk = c(30),
data = bladdersub)

pseudo_bladder_3d

# GEE fit
fit_bladder_3d <- pseudo.geefit(pseudodata = pseudo_bladder_3d,

covar_names = c("Z"))
fit_bladder_3d

pseudo.twodim Function that computes bivariate pseudo-observations



pseudo.twodim 7

Description

This function computes bivariate pseudo-observations of the marginal mean function (in the pres-
ence of terminal events) and the survival probability

Usage

pseudo.twodim(tstart, tstop, status, covar_names, id, tk, data)

Arguments

tstart Start time - expecting counting process notation

tstop Stop time - expecting counting process notation

status Status variable (0 = censoring, 1 = recurrent event, 2 = death)

covar_names Vector containing names of covariates intended for further analysis

id ID variable for subject

tk Vector of time points to calculate pseudo-observations at

data Data set which contains variables of interest

Value

An object of class pseudo.twodim.

• outdata contains the semi-wide version of the computed pseudo-observations (one row per
time, tk, per id).

• outdata_long contains the long version of the computed pseudo-observations (one row per
observation, several per id).

• indata contains the input data which the pseudo-observations are based on.

• ts vector with time points used for computation of pseudo-observations.

• k number of time points used for computation of pseudo-observations (length(ts)).

References

Furberg, J.K., Andersen, P.K., Korn, S. et al. Bivariate pseudo-observations for recurrent event
analysis with terminal events. Lifetime Data Anal (2021). https://doi.org/10.1007/s10985-021-
09533-5

Examples

# Example: Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
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bladder1[bladder1$id == 49, "stop"] <- 1

# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

# Pseudo observations
pseudo_bladder_2d <- pseudo.twodim(tstart = bladdersub$start,

tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
covar_names = "Z",
tk = c(30),
data = bladdersub)

head(pseudo_bladder_2d$outdata)

# GEE fit
fit_bladder_2d <- pseudo.geefit(pseudodata = pseudo_bladder_2d,

covar_names = c("Z"))
fit_bladder_2d
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recurrentpseudo: An R package for analysing recurrent events in the

presence of terminal events using pseudo-observations

Introduction

This package computes pseudo-observations for recurrent event data in the presence of terminal events.
Three versions exist: One-dimensional, two-dimensional or three-dimensional pseudo-observations.

Following the computation of pseudo-observations, the marginal mean function, survival probability
and/or cumulative incidences can be modelled using generalised estimating equations.

See Furberg et al. (Bivariate pseudo-observations for recurrent event analysis with terminal events (2023)) for
technical details on the procedure.

Package and main functions

Notation

Let  denote the survival time and let  denote the number of recurrent events by time . Let 
denote the time of censoring. Due to right-censoring, the data consists of  where

, ,  and  denotes  baseline covariates.

We observe  for each individual .

We consider the marginal mean function, , given by

and the survival probability, , given by

Moreover, we consider the cumulative incidences for death causes 1, , and 2, 

where  represents a cause-of-death indicator.

# Development version

#require(devtools)
#devtools::install_github("JulieKFurberg/recurrentpseudo", force = TRUE)

require(recurrentpseudo)

# Main functions

#?pseudo.onedim
#?pseudo.twodim
#?pseudo.threedim
#?pseudo.geefit

D∗ (t)N ∗ t C
X = {N(⋅),D, δ,Z}

N(t) = (t ∧ C)N ∗ D = ∧ CD∗ δ = I ( ≤ C)D∗ Z p

= { (⋅), , , }Xi Ni Di δi Zi i = 1, … , n

μ(t)

μ(t) = E( (t)) = S( ) dR(u), dR(t) = E(d (t) ∣ ≥ t)N ∗ ∫
t

0

u− N ∗ D∗

S(t)

S(t) = P ( > t).D∗

(t)C1 (t)C2

(t) = E(I( ≤ t, Δ = 1)), (t) = E(I( ≤ t, Δ = 2))C1 D∗ C2 D∗

Δ = {1, 2}



Introduction to pseudo-observations

The following section serves as a fast introduction to pseudo-observations, which the methods of this
package is based on.

For more detailed information, please see

Andersen and Perme (Pseudo-observations in survival analysis (2010)) or

Andersen, Klein and Rosthøj (Generalised linear models for correlated pseudo-observations, with
applications to multi-state models (2003))

We wish to formulate a model for

where  denotes a vector of survival times (or other survival data) for  individuals and 
denotes some function. An example would be .

Assume that a sufficiently nice estimator  of  exists. For a fixed time, , the pseudo-observation
for the i’th individual at  is given by

where  denotes the estimate based on the total data set, and  denotes the estimate based on
the same data set but omitting observations from individual i.

Since the survival times are subject to right-censoring, standard inference on survival data is adjusted to
accommodate this, e.g. in likelihood estimation.

However, since all subjects has a valid pseudo-observation, , at one or more times, these can be used
as an outcome variable in a generalised linear model. Note, that this is regardless of the whether a subject
is alive, censored or died at time t.

Assume that  denotes a link function, then we wish to fit

Following,  is replaced by  in the model fit.

The model parameters, , are estimated using generalised estimating equations (GEE), see Liang and Zeger
(Longitudinal data analysis using generalized linear models (1986)).

The GEE procedure accommodates the fact that each individual can have several (pseudo-)observations.

One-dimensional pseudo-observations

The one-dimensional pseudo-observations model is based on the parameter , which is estimated
by

where  denotes the Kaplan-Meier estimator of  and  denotes the Nelson-Aalen estimator of
.

We assume that

θ = E(f(X))

X = , … ,X1 Xn n f
θ = E(I( > t)) = P ( > t)D∗ D∗

θ̂ θ t ∈ [0, τ]
t

(t) = n ⋅ (t) − (n − 1) ⋅ (t)θ̂ i θ̂ θ̂
−i

(t)θ̂ (t)θ̂
−i

(t)θ̂ i

g

g(E(f(X) ∣ Z)) = Z.ξT

f(X) (⋅)θ̂ i

ξ

θ = μ(t)

= (t) = ( ) d (u),θ̂ μ̂ ∫
t

0

Ŝ u− R̂

(t)Ŝ S(t) (t)R̂
R(t)

log(μ(t ∣ Z)) = log( (t)) + Z.μ0 βT



Two-dimensional pseudo-observations

The two-dimensional pseudo-observations model is based on the parameter , which is
estimated by

We assume that

Three-dimensional pseudo-observations

The three-dimensional pseudo-observations model is based on the parameter ,
which is estimated by

where  and  are the Aalen-Johansen estimates of the cumulative incidences for causes 1,
, and 2, , respectively.

We assume that

Example - Bladder cancer data from survival package

The functions in recurrentpseudo will be exemplified using the well-known bladder cancer data from the
survival package. This data set considers data from a clinical cancer trial conducted by the Veterans
Administration Cooperative Urological Research Group (Byar: The veterans administration study of
chemoprophylaxis for recurrent stage I bladder tumours: comparisons of placebo, pyridoxine and topical
thiotepa (1980)) Here, 118 patients with stage I bladder cancer were randomised to receive placebo,
pyridoxine or thiotepa. After randomisation, information on occurrences of superficial bladder tumours
and any deaths were collected.

We focus on the comparison between placebo and thiotepa (  in total). We model recurrent bladder
tumours, and adjust for death (cause 1: bladder cancer disease death, cause 2: other causes).

One-, two- and three-dimensional pseudo-observations are computed based on a single time point,
 months.

For the comparison between placebo and thiotepa on recurrent bladder tumours, the effect measure of
interest is the mean ratio .

θ = (μ(t), S(t))

= ( ) .θ̂
(t)μ̂

(t)Ŝ

( ) = ( ) .
log(μ(t ∣ Z))

cloglog (S(t ∣ Z))

log( (t)) + Zμ0 βT

log( (t)) + ZΛ0 γT

θ = (μ(t), (t), (t))C1 C2

=θ̂

⎛

⎝
⎜⎜

(t)μ̂

(t)Ĉ1

(t)Ĉ2

⎞

⎠
⎟⎟

(t)Ĉ1 (t)Ĉ2

(t)C1 (t)C2

= .
⎛

⎝
⎜

log(μ(t ∣ Z))

cloglog (1 − (t ∣ Z))C1

cloglog (1 − (t ∣ Z))C2

⎞

⎠
⎟

⎛

⎝
⎜

log( (t)) + Zμ0 βT

log( (t)) + ZΛ10 γ1
T

log( (t)) + ZΛ20 γ2
T

⎞

⎠
⎟

n = 86

t = 30

exp(β)

# Example: Bladder cancer data from survival package
require(survival)
#> Indlæser krævet pakke: survival



We fit the univariate pseudo-observation model using the binary treatment indicator as covariate, i.e. we
model

One-dimensional pseudo-observations and GEE fit can be computed using the following code,

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1

# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)
#>   id treatment number size recur start stop status rtumor rsize enum status3
#> 1  1   placebo      1    1     0     0    1      3      .     .    1       2
#> 2  2   placebo      1    3     0     0    1      3      .     .    1       2
#> 3  3   placebo      2    1     0     0    4      0      .     .    1       0
#> 4  4   placebo      1    1     0     0    7      0      .     .    1       0
#> 5  5   placebo      5    1     0     0   10      3      .     .    1       2
#> 6  6   placebo      4    1     1     0    6      1      1     1    1       1
#>         Z
#> 1 placebo
#> 2 placebo
#> 3 placebo
#> 4 placebo
#> 5 placebo
#> 6 placebo

log(μ(t ∣ Z)) = log( (t)) + βZμ0

# Pseudo observations at t = 30
pseudo_bladder_1d <- pseudo.onedim(tstart = bladdersub$start,
                                   tstop = bladdersub$stop,
                                   status = bladdersub$status3,
                                   id = bladdersub$id,
                                   covar_names = "Z",
                                   tk = c(30),
                                   data = bladdersub)
head(pseudo_bladder_1d$outdata)
#>              mu k ts id       Z
#> 1 -0.0004269178 1 30  1 placebo
#> 2 -0.0004269178 1 30  2 placebo
#> 3  1.2359654463 1 30  3 placebo
#> 4  1.0739859010 1 30  4 placebo
#> 5 -0.0958639918 1 30  5 placebo
#> 6  1.0122441163 1 30  6 placebo

# GEE fit
fit_bladder_1d <- pseudo.geefit(pseudodata = pseudo_bladder_1d,
                                covar_names = c("Z"))
fit_bladder_1d



Thus, the estimated mean ratio is  0.6466789 (standard error and confidence intervals can be
found using the Delta method).

Alternatively, the bivariate pseudo-observation model using the binary treatment indicator as covariate
can be fitted, i.e. 

Two-dimensional pseudo-observations and GEE fit can be computed using the following code

#> $xi
#>                       
#> (Intercept)  0.5590869
#> Zthiotepa   -0.4359054
#> 
#> $sigma
#>             (Intercept)   Zthiotepa
#> (Intercept)  0.02662095 -0.02662095
#> Zthiotepa   -0.02662095  0.07934314
#> 
#> attr(,"class")
#> [1] "pseudo.geefit"

# Treatment differences
xi_diff_1d <- as.matrix(c(fit_bladder_1d$xi[2]), ncol = 1)

mslabels <- c("treat, mu")
rownames(xi_diff_1d) <- mslabels
colnames(xi_diff_1d) <- ""
xi_diff_1d
#>                     
#> treat, mu -0.4359054

# Variance matrix for differences
sigma_diff_1d <- matrix(c(fit_bladder_1d$sigma[2,2]),
                          ncol = 1, nrow = 1,
                          byrow = T)

rownames(sigma_diff_1d) <- colnames(sigma_diff_1d) <- mslabels
sigma_diff_1d
#>            treat, mu
#> treat, mu 0.07934314

exp( ) =β̂

( ) = ( )
log(μ(t ∣ Z))

cloglog (S(t ∣ Z))

log( (t)) + βZμ0

log( (t)) + γZΛ0

# Pseudo observations at t = 30
pseudo_bladder_2d <- pseudo.twodim(tstart = bladdersub$start,
                                   tstop = bladdersub$stop,
                                   status = bladdersub$status3,
                                   id = bladdersub$id,
                                   covar_names = "Z",
                                   tk = c(30),
                                   data = bladdersub)
head(pseudo_bladder_2d$outdata)
#>              mu          surv k ts id       Z
#> 1 -0.0004269178  1.421085e-14 1 30  1 placebo
#> 2 -0.0004269178  1.421085e-14 1 30  2 placebo
#> 3  1.2359654463  8.170875e-01 1 30  3 placebo
#> 4  1.0739859010  8.170875e-01 1 30  4 placebo



Finally, one could fit the three-dimensional pseudo-observation model to the bladder cancer data.

#> 5 -0.0958639918 -5.305763e-02 1 30  5 placebo
#> 6  1.0122441163 -5.305763e-02 1 30  6 placebo

# GEE fit
fit_bladder_2d <- pseudo.geefit(pseudodata = pseudo_bladder_2d,
                                covar_names = c("Z"))
fit_bladder_2d
#> $xi
#>                                  
#> esttypemu              0.55908687
#> esttypemu:Zthiotepa   -0.43590539
#> esttypesurv           -1.41652478
#> esttypesurv:Zthiotepa -0.04800778
#> 
#> $sigma
#>                          esttypemu esttypemu:Zthiotepa  esttypesurv
#> esttypemu              0.026620952        -0.026620952 -0.003481085
#> esttypemu:Zthiotepa   -0.026620952         0.079343139  0.003481085
#> esttypesurv           -0.003481085         0.003481085  0.123251791
#> esttypesurv:Zthiotepa  0.003481085         0.002758847 -0.123251791
#>                       esttypesurv:Zthiotepa
#> esttypemu                       0.003481085
#> esttypemu:Zthiotepa             0.002758847
#> esttypesurv                    -0.123251791
#> esttypesurv:Zthiotepa           0.260915569
#> 
#> attr(,"class")
#> [1] "pseudo.geefit"

# Treatment differences
xi_diff_2d <- as.matrix(c(fit_bladder_2d$xi[2],
                          fit_bladder_2d$xi[4]), ncol = 1)

mslabels <- c("treat, mu", "treat, surv")
rownames(xi_diff_2d) <- mslabels
colnames(xi_diff_2d) <- ""
xi_diff_2d
#>                        
#> treat, mu   -0.43590539
#> treat, surv -0.04800778

# Variance matrix for differences
sigma_diff_2d <- matrix(c(fit_bladder_2d$sigma[2,2],
                          fit_bladder_2d$sigma[2,4],
                          fit_bladder_2d$sigma[2,4],
                          fit_bladder_2d$sigma[4,4]),
                          ncol = 2, nrow = 2,
                          byrow = T)

rownames(sigma_diff_2d) <- colnames(sigma_diff_2d) <- mslabels
sigma_diff_2d
#>               treat, mu treat, surv
#> treat, mu   0.079343139 0.002758847
#> treat, surv 0.002758847 0.260915569



Three-dimensional pseudo-observations and GEE fit can be computed using the following code

# Add deathtype variable to bladder data
# Deathtype = 1 (bladder disease death), deathtype = 2 (other death reason)
bladdersub$deathtype <- with(bladdersub, ifelse(status == 2, 1, ifelse(status == 3, 2, 0)))
table(bladdersub$deathtype, bladdersub$status)
#>    
#>       0   1   2   3
#>   0  55 132   0   0
#>   1   0   0   2   0
#>   2   0   0   0  20

# Pseudo-observations
pseudo_bladder_3d <- pseudo.threedim(tstart = bladdersub$start,
                                     tstop = bladdersub$stop,
                                     status = bladdersub$status3,
                                     id = bladdersub$id,
                                     deathtype = bladdersub$deathtype,
                                     covar_names = "Z",
                                     tk = c(30), 
                                     data = bladdersub)
head(pseudo_bladder_3d$outdata_long)
#>   k ts id esttype             y       Z
#> 1 1 30  1      mu -4.269178e-04 placebo
#> 2 1 30  1    surv  1.421085e-14 placebo
#> 3 1 30  1    cif1  0.000000e+00 placebo
#> 4 1 30  1    cif2  1.000000e+00 placebo
#> 5 1 30  2      mu -4.269178e-04 placebo
#> 6 1 30  2    surv  1.421085e-14 placebo

# GEE fit
fit_bladder_3d <- pseudo.geefit(pseudodata = pseudo_bladder_3d,
                                covar_names = c("Z"))
fit_bladder_3d
#> $xi
#>                                 
#> esttypemu              0.5590869
#> esttypemu:Zthiotepa   -0.4359054
#> esttypecif1           -3.7618319
#> esttypecif1:Zthiotepa  0.2930357
#> esttypecif2           -1.5431978
#> esttypecif2:Zthiotepa -0.1005109
#> 
#> $sigma
#>                          esttypemu esttypemu:Zthiotepa esttypecif1
#> esttypemu              0.026620952        -0.026620952  0.01663610
#> esttypemu:Zthiotepa   -0.026620952         0.079343139 -0.01663610
#> esttypecif1            0.016636098        -0.016636098  1.07839851
#> esttypecif1:Zthiotepa -0.016636098         0.013359996 -1.07839851
#> esttypecif2           -0.006027688         0.006027688 -0.02642283
#> esttypecif2:Zthiotepa  0.006027688         0.001779996  0.02642283
#>                       esttypecif1:Zthiotepa  esttypecif2 esttypecif2:Zthiotepa
#> esttypemu                       -0.01663610 -0.006027688           0.006027688
#> esttypemu:Zthiotepa              0.01336000  0.006027688           0.001779996
#> esttypecif1                     -1.07839851 -0.026422825           0.026422825
#> esttypecif1:Zthiotepa            2.01305239  0.026422825          -0.057715255
#> esttypecif2                      0.02642283  0.138167379          -0.138167379



We can compare the three model fits. Note, that the  components match each other.

#> esttypecif2:Zthiotepa           -0.05771525 -0.138167379           0.299045959
#> 
#> attr(,"class")
#> [1] "pseudo.geefit"

# Treatment differences
xi_diff_3d <- as.matrix(c(fit_bladder_3d$xi[2],
                          fit_bladder_3d$xi[4],
                          fit_bladder_3d$xi[6]), ncol = 1)

mslabels <- c("treat, mu", "treat, cif1", "treat, cif2")
rownames(xi_diff_3d) <- mslabels
colnames(xi_diff_3d) <- ""
xi_diff_3d
#>                       
#> treat, mu   -0.4359054
#> treat, cif1  0.2930357
#> treat, cif2 -0.1005109

# Variance matrix for differences
sigma_diff_3d <- matrix(c(fit_bladder_3d$sigma[2,2],
                          fit_bladder_3d$sigma[2,4],
                          fit_bladder_3d$sigma[2,6],

                          fit_bladder_3d$sigma[2,4],
                          fit_bladder_3d$sigma[4,4],
                          fit_bladder_3d$sigma[4,6],

                          fit_bladder_3d$sigma[2,6],
                          fit_bladder_3d$sigma[4,6],
                          fit_bladder_3d$sigma[6,6]

                          ),
                        ncol = 3, nrow = 3,
                        byrow = T)

rownames(sigma_diff_3d) <- colnames(sigma_diff_3d) <- mslabels
sigma_diff_3d
#>               treat, mu treat, cif1  treat, cif2
#> treat, mu   0.079343139  0.01336000  0.001779996
#> treat, cif1 0.013359996  2.01305239 -0.057715255
#> treat, cif2 0.001779996 -0.05771525  0.299045959

μ

# Compare - should match for mu elements 
xi_diff_1d
#>                     
#> treat, mu -0.4359054
xi_diff_2d
#>                        
#> treat, mu   -0.43590539
#> treat, surv -0.04800778
xi_diff_3d
#>                       
#> treat, mu   -0.4359054



More covariates

Assume that we wish to add extra baseline covariates to the model fit. For the sake of illustration, we have
simulated a continuous covariate, , and a categorical covariate, . The covariate  corresponds to the
binary treatment covariate (  is thiotepa and  is placebo). In order to make estimation for
these models possible, the pseudo-observations are calculated at three time points, namely

 months.

For the one-dimensional model for  it holds that,

This can be fitted using the below code,

#> treat, cif1  0.2930357
#> treat, cif2 -0.1005109

sigma_diff_1d
#>            treat, mu
#> treat, mu 0.07934314
sigma_diff_2d
#>               treat, mu treat, surv
#> treat, mu   0.079343139 0.002758847
#> treat, surv 0.002758847 0.260915569
sigma_diff_3d
#>               treat, mu treat, cif1  treat, cif2
#> treat, mu   0.079343139  0.01336000  0.001779996
#> treat, cif1 0.013359996  2.01305239 -0.057715255
#> treat, cif2 0.001779996 -0.05771525  0.299045959

Z2 Z3 Z1

Z = 1 Z = 0

t = 20, 30, 40

μ

log(μ(t ∣ Z)) = log( (t)) + + + .μ0 β1Z1 β2Z2 β3Z3

require(dplyr)

## One-dim
# A binary variable, Z1_
# A continuous variable, Z2_
# A categorical variable, Z3_
set.seed(0308)

bladdersub <- as.data.frame(
  bladdersub %>% group_by(id) %>% 
  mutate(Z1_ = Z,
         Z2_ = rnorm(1, mean = 3, sd = 1),
         Z3_ = sample(x = c("A", "B", "C"), 
                      size = 1, replace = TRUE, 
                      prob = c(1/4, 1/2, 1/4))
         ))
# head(bladdersub, 20)

# Make pseudo obs at more timepoints (more data)
# Pseudo observations at t = 20, 30, 40
pseudo_bladder_1d_3t <- pseudo.onedim(tstart = bladdersub$start,
                                      tstop = bladdersub$stop,
                                      status = bladdersub$status3,
                                      id = bladdersub$id,
                                      covar_names = c("Z1_", "Z2_", "Z3_"),
                                      tk = c(20, 30, 40),
                                      data = bladdersub)



Or for two-dimensional pseudo-observations, it holds that

Or for three-dimensional pseudo-observations, it holds that

These two models are fitted using the below code,

fit1 <- pseudo.geefit(pseudodata = pseudo_bladder_1d_3t, 
                      covar_names = c("Z1_", "Z2_", "Z3_"))

fit1$xi
#>                        
#> (Intercept)  0.39412273
#> Ztime30      0.42336922
#> Ztime40      0.59966454
#> Z1_thiotepa -0.29479824
#> Z2_         -0.08253287
#> Z3_B         0.01965615
#> Z3_C        -0.38332247
fit1$sigma
#>              (Intercept)       Ztime30       Ztime40  Z1_thiotepa           Z2_
#> (Intercept)  0.136673486 -0.0061702979 -0.0109943095 -0.036100986 -0.0247560186
#> Ztime30     -0.006170298  0.0046658382  0.0061013009  0.001167246  0.0002746085
#> Ztime40     -0.010994310  0.0061013009  0.0100442253  0.005504053 -0.0004015364
#> Z1_thiotepa -0.036100986  0.0011672458  0.0055040527  0.090063224 -0.0078557067
#> Z2_         -0.024756019  0.0002746085 -0.0004015364 -0.007855707  0.0109918233
#> Z3_B        -0.055441417  0.0005892506  0.0051883496  0.037829933 -0.0035769385
#> Z3_C        -0.041748863  0.0075014896  0.0141048652  0.023020550 -0.0082026411
#>                      Z3_B         Z3_C
#> (Intercept) -0.0554414168 -0.041748863
#> Ztime30      0.0005892506  0.007501490
#> Ztime40      0.0051883496  0.014104865
#> Z1_thiotepa  0.0378299330  0.023020550
#> Z2_         -0.0035769385 -0.008202641
#> Z3_B         0.0869004239  0.050773663
#> Z3_C         0.0507736625  0.200303239

fit1$xi[4]
#> [1] -0.2947982

( ) = ( ) .
log(μ(t ∣ Z))

cloglog (S(t ∣ Z))

log( (t)) + + +μ0 β1Z1 β2Z2 β3Z3

log( (t)) + + +Λ0 γ1Z1 γ2Z2 γ3Z3

= .
⎛

⎝
⎜

log(μ(t ∣ Z))

cloglog (1 − (t ∣ Z))C1

cloglog (1 − (t ∣ Z))C2

⎞

⎠
⎟

⎛

⎝
⎜

log( (t)) + + +μ0 β1Z1 β2Z2 β3Z3

log( (t)) + + +Λ10 γ11Z1 γ12Z2 γ13Z3

log( (t)) + + +Λ20 γ21Z1 γ22Z2 γ23Z3

⎞

⎠
⎟

## Two-dim
# Pseudo observations at t = 20, 30, 40
pseudo_bladder_2d_3t <- pseudo.twodim(tstart = bladdersub$start,
                                      tstop = bladdersub$stop,
                                      status = bladdersub$status3,
                                      id = bladdersub$id,
                                      covar_names = c("Z1_", "Z2_", "Z3_"),
                                      tk = c(20, 30, 40),
                                      data = bladdersub)
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fit2 <- pseudo.geefit(pseudodata = pseudo_bladder_2d_3t, 
                      covar_names = c("Z1_", "Z2_", "Z3_"))

# fit2$xi
# fit2$sigma

## Three-dim
pseudo_bladder_3d_3t <- pseudo.threedim(tstart = bladdersub$start,
                                        tstop = bladdersub$stop,
                                        status = bladdersub$status3,
                                        id = bladdersub$id,
                                        covar_names = c("Z1_", "Z2_", "Z3_"),
                                        deathtype = bladdersub$deathtype,
                                        tk = c(20, 30, 40),
                                        data = bladdersub)

fit3 <- pseudo.geefit(pseudodata = pseudo_bladder_3d_3t, 
                      covar_names = c("Z1_", "Z2_", "Z3_"))

# fit3$xi
# fit3$sigma

## Compare for mu
fit1$xi[4]
#> [1] -0.2947982
fit2$xi[4]
#> [1] -0.2947982
fit3$xi[4]
#> [1] -0.2948043
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Abstract
In randomised controlled trials, the outcome of interest could be recurrent events,
such as hospitalisations for heart failure. If mortality rates are non-negligible, both
recurrent events and competing terminal events need to be addressed when formu-
lating the estimand and statistical analysis is no longer trivial. In order to design
future trials with primary recurrent event endpoints with competing risks, it is neces-
sary to be able to perform power calculations to determine sample sizes. This paper
introduces a simulation-based approach for power estimation based on a proportional
means model for recurrent events and a proportional hazards model for terminal
events. The simulation procedure is presented along with a discussion of what the
user needs to specify to use the approach. Data from a randomised controlled trial,
LEADER, is used as the basis for generating data for a future trial. Finally, potential
power gains of recurrent event methods as opposed to first event methods are dis-
cussed.
KEYWORDS:
Sample size calculation, recurrent events, competing risks, treatment effects, randomised controlled trials

1 INTRODUCTION

The application of methods from life history analysis is common and encountered in various fields of medical research, for
instance in clinical trials within diseases, such as cancer, heart failure and diabetes. For randomised controlled trials (RCTs),
the aim could be to compare two treatments and their effect on a survival outcome, e.g. an analysis of time-to-death comparing
two treatments. Within recent years, the analysis of recurrent events has gained more focus. Recurrent events, as opposed to
terminal events, are events that can happen several times for an individual over the course of their life, e.g. hospitalisation for
heart failure. Methods and tools for sample size calculation for time-to-event outcomes are available using standard software,
however, the same does not hold for recurrent event analyses. Several estimands may be targeted in estimation depending on the
scientific question of interest.? 1 This, in turn, impacts the feasibility of conducting a sample size calculation in the recurrent
event setting. At times, the recurrent event process of interest can be stopped by the occurrence of a terminal event (see Figure
1). When such a transition to a final state is possible, attention should be paid to the proposed analysis of recurrent events, similar
to the extra care that needs to be taken when conducting an analysis of time-to-first events in the presence of competing risks.2

For this paper, the goal is to estimate a sample size for an RCT to detect a difference between two treatments on a recurrent
event endpoint in the presence of competing deaths. Here, the aim is to compare two treatments in terms of their effect on the
expected number of events. This can be achieved by modelling the marginal mean function, 𝜇(𝑡) and the estimand considered
in this paper concentrates on the ratio of the expected number of recurrent events between two treatments for all 𝑡, a parameter
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0: No event 1: 1 event 2: 2 events

D: Dead

FIGURE 1 A recurrent event process with a terminal event.

that may be estimated using the proportional means model suggested by Ghosh and Lin.3 Moreover, a Cox model is assumed
for the hazard of death.4 A large number of trials fulfilling criteria specified by the user will be simulated according to these
models in order to estimate the power at a given significance level for a specific sample size. For a fixed desired power, e.g.
80%, an approximate sample size can also be found using this approach. Data is simulated in flexible ways allowing for various
shapes of baseline marginal mean function for recurrent events and baseline cumulative hazards for death. The method is illus-
trated using several applications, including a real life application using data from the large randomised trial, LEADER, as the
basis for designing a future trial.5 For clinical trials with complex designs or assumptions, simulation-based power estimation
is a important tool. For instance, simulation-based power estimation of complex group-sequential design trials with survival
outcomes is an option in the R-package rpact.6

Recently, there has been an increased focus on applying recurrent event methods when the target is in fact recurrent, e.g. heart
failure.7 8 This would ensure better use of data and improve the understanding of the total disease burden. Potential power gains
when applying recurrent event methods as opposed to time-to-first-event methods will also be explored using simulation in this
paper.

2 MATHEMATICAL SETTING AND ESTIMAND

In the present setting, the desire is to model the expected number of events in the presence of terminal events when both are
subject to right-censoring (see Figure 1). Let 𝐷∗ denote the survival time and let 𝑁∗(𝑡) denote the number of recurrent events
by time 𝑡. After death, 𝐷∗, has occurred, 𝑁∗(𝑡) has no further jumps since no additional recurrent events can happen. Let 𝐶
denote the censoring time. Neither 𝐷∗ nor 𝑁∗(𝑡) are fully observed due to right-censoring, and we observe 𝑁(𝑡) = 𝑁∗(𝑡 ∧ 𝐶),
𝐷 = 𝐷∗ ∧ 𝐶 and 𝛿 = 𝐼(𝐷∗ ≤ 𝐶). It is assumed that there is a binary treatment variable, 𝑍. Hence, the data consists of
𝑋 = {𝑁(⋅), 𝐷, 𝛿, 𝑍}. For each subject 𝑖 = 1,… , 𝑛, we observe 𝑋𝑖 = {𝑁𝑖(⋅), 𝐷𝑖, 𝛿𝑖, 𝑍𝑖} which are independent and identically
distributed replicates of 𝑋. It is assumed that 𝐶 is independent of 𝑁∗(⋅), 𝐷∗ and 𝑍.

In order to draw inference, the expected number of events in situations where competing terminal events can occur is modelled.
This is done by considering the marginal mean function, 𝜇(𝑡), given by

𝜇(𝑡) = 𝐸(𝑁∗(𝑡)) =
𝑡

∫
0

𝑆(𝑢−) 𝑑𝑅(𝑢),

where 𝑆(𝑡) = 𝑃 (𝐷∗ > 𝑡) and 𝑑𝑅(𝑢) = 𝐸(𝑑𝑁∗(𝑡) ∣ 𝐷∗ ≥ 𝑡). Consider, now, a comparison of the expected number of events,
𝜇𝑘(𝑡∗), at time 𝑡∗ between each treatment group, 𝑘 = {0, 1}. This could be a ratio 𝜇1(𝑡∗)

𝜇0(𝑡∗)
or a difference 𝜇1(𝑡∗) − 𝜇0(𝑡∗) or a

log-ratio, log
(

𝜇1(𝑡∗)
𝜇0(𝑡∗)

)
. For this application, focus will be placed on the log-mean ratio. Let

𝜅(𝑡∗) = log
(
𝜇1(𝑡∗)
𝜇0(𝑡∗)

)
= log(𝜇1(𝑡∗)) − log(𝜇0(𝑡∗))

Assume that the interest is to focus on the hypotheses,
𝐻0 ∶ 𝜅(𝑡∗) = 𝜅0, 𝐻𝑎 ∶ 𝜅(𝑡∗) ≠ 𝜅0. (1)



FURBERG, SCHEIKE, ANDERSEN AND RAVN 3

Without loss of generality, we assume that 𝜅0 = 0, but a general 𝜅0 > 0 could easily be accommodated. A simple model for 𝜇(⋅)
can be formulated by considering the semi-parametric proportional means model of Ghosh and Lin3,

𝜇(𝑡 ∣ 𝑍) = 𝜇0(𝑡) exp(𝛽𝑍), (2)
where 𝜇0(𝑡) denotes the unspecified baseline mean function, 𝛽 the effect of treatment 𝑍. The effect of treatment, 𝛽, is assumed
to be constant for all 𝑡. In this setting, 𝛽 is estimated using inverse probability of censoring weights (IPCW) to account for
the competing deaths. When there are no competing deaths, this is equivalent to the estimating equations of Lin, Wang, Ying,
Yang.9 Under equation (2), 𝜅(𝑡∗) simplifies to

𝜅(𝑡∗) = 𝜅 = log
(
𝜇0(𝑡∗) exp(𝛽)

𝜇0(𝑡∗)

)
= log (exp(𝛽)) = 𝛽

for all 𝑡∗. Note, that under this model, it is not necessary to choose 𝑡∗ due to the structure that is imposed on 𝜇(⋅). But if we wish
to calculate power under other models, e.g. using non-parametric estimates of 𝜇(𝑡), it would typically require a choice of 𝑡∗.? 10
For the purpose of this paper, we will assume that the model in equation (2) holds. Hence, an estimate that targets the estimand
of interest can be extracted directly when fitting the Ghosh and Lin model. Thus, in line with equation (1) we shall now consider
the following hypotheses,

𝐻0 ∶ 𝛽 = 0, 𝐻𝑎 ∶ 𝛽 ≠ 0. (3)
The desire is thus to approximate a minimum sample size if one were to design a future trial where the primary analysis was
a Ghosh and Lin analysis of a recurrent event endpoint in the presence of terminal events. Furthermore, it is assumed that the
cumulative hazard of death given treatment, Λ𝐷(𝑡 ∣ 𝑍), follows Cox’s proportional hazards model, such that,4

Λ𝐷(𝑡 ∣ 𝑍) = Λ𝐷
0 (𝑡) exp(𝛾𝑍), (4)

where Λ𝐷
0 (𝑡) denotes the unspecified baseline cumulative hazard of death and 𝛾 is the effect of treatment, 𝑍. The cumulative

hazard of being censored is denotedΛ𝐶 (𝑡), which is assumed not to depend on treatment,𝑍. We will mainly focus on the situation
with exponential censoring times, which implies that Λ𝐶 (𝑡) = 𝑐𝑡 for a constant 𝑐. Furthermore, the addition of administrative
censoring at a fixed time is allowed.

3 SIMULATION OF TRIAL DATA

Simulation is used in order to estimate the minimum sample size (or power) for a future trial targeting the above log-mean
ratio. For a given sample size, effect size, the power can be estimated by simulating a large number of trials according to some
assumed characteristics. We wish to simulate data under equation (2) such that 𝜇(𝑡 ∣ 𝑍) = 𝜇0(𝑡) exp(𝛽𝑍). This is achieved by
using the fact that

𝜇(𝑡 ∣ 𝑍) = 𝐸(𝑁∗(𝑡) ∣ 𝑍) =
𝑡

∫
0

𝑃 (𝐷∗ ≥ 𝑢 ∣ 𝑍)𝐸(𝑑𝑁∗(𝑢) ∣ 𝑍,𝐷∗ ≥ 𝑢).

If the rate of recurrent events at time 𝑡 while still alive given treatment, 𝐸(𝑑𝑁∗(𝑡) ∣ 𝑍,𝐷∗ ≥ 𝑡), satisfies the following,
𝐸(𝑑𝑁∗(𝑡) ∣ 𝑍,𝐷∗ ≥ 𝑡) =

𝑑𝜇0(𝑡) exp(𝛽𝑍)
𝑃 (𝐷∗ ≥ 𝑡 ∣ 𝑍)

, (5)
the survival probabilities cancel out and the proportional means model in equation (2) is fulfilled, such that

𝜇(𝑡 ∣ 𝑍) =
𝑡

∫
0

𝑑𝜇0(𝑢) exp(𝛽𝑍) = 𝜇0(𝑡) exp(𝛽𝑍).

In Section 6, we will elaborate further on the impact of assuming that the rate in equation (5) holds. Moreover, it holds that
𝑃 (𝐷∗ > 𝑡 ∣ 𝑍) = 𝑆(𝑡 ∣ 𝑍) = exp(−Λ𝐷(𝑡 ∣ 𝑍)).

If we further assume a proportional hazards model for death, it holds that
𝑃 (𝐷∗ > 𝑡 ∣ 𝑍) = exp

(
−Λ𝐷

0 (𝑡) exp(𝛾𝑍)
)
. (6)
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Hence, when 𝜇0(𝑡), 𝛽, Λ𝐷
0 (𝑡), and 𝛾 are specified, it is possible to simulate both recurrent events and deaths using equations (5)

and (6). The resulting data then adheres to the proportional means model in equation (2) and the proportional hazards model in
equation (4). The forms of 𝜇0(𝑡) and Λ𝐷

0 (𝑡) are allowed to vary freely. First, censoring times and death times are simulated once
per subject using Λ𝐷(𝑡 ∣ 𝑍) and Λ𝐶 (𝑡). Next, for each subject, recurrent events are simulated while 𝑡 < 𝐷 ∧ 𝐶 using the rate in
equation (5). It is assumed that there is a 1:1 randomisation and that 𝑍 ∼ Bin(1, 𝑝) with 𝑝 = 0.5.

Censoring is simulated as a mixture of exponential censoring (during the trial) and administrative censoring upon a chosen
trial closure. Hence, throughout the trial, the cumulative hazard of censoring is given by Λ𝐶 (𝑡) = Λ𝐶

0 (𝑡) = 𝑐𝑡 for a constant 𝑐.
Furthermore, uniform accrual until a specified trial day can be added.

3.1 Input parameters for planning a future trial
In order to plan a future trial and perform power estimation using the suggested procedure, a number of quantities needs to be
specified:

1. The total sample size, 𝑛. It is assumed that the randomisation is 1:1.
2. A set of values for (𝑡, 𝜇0(𝑡)), i.e. the expected number of events in the reference group at times 𝑡.
3. A set of values for (𝑡,Λ𝐷

0 (𝑡)), i.e. the cumulative hazard of death in the reference group at times 𝑡.
4. The censoring rate through the trial, such that Λ𝐶 (𝑡) = 𝑐𝑡. Here, 𝑐 is supplied.
5. The log-mean ratio, 𝛽, i.e. the effect of treatment on recurrent events.
6. The log-hazard ratio, 𝛾 , i.e. the effect of treatment on death.
7. Length of enrollment, [0, 𝜏𝑎]. Uniform accrual until 𝜏𝑎 is assumed.
8. Total length of study duration, 𝜏𝑚𝑎𝑥. Administrative censoring occurs at 𝜏𝑚𝑎𝑥.

For (𝑡, 𝜇0(𝑡)) and (𝑡,Λ𝐷
0 (𝑡)), either entire trajectories or few time points can be supplied. Piece-wise constant rates are approxi-

mated between each 𝑡. The linear approximation may be less good if there are only a few time points. In order to perform power
estimation, the 𝛼-level is also required.

t: time0 𝜏𝑎 𝜏𝑚𝑎𝑥
FIGURE 2 Illustration of enrollment and study closure for six individuals. The filled circles, unfilled circles, and the crosses
represent recurrent events, censoring and death, respectively. The subjects are uniformly accrued until 𝜏𝑎. The study had a
duration of 𝜏𝑚𝑎𝑥. The fifth individual was lost-to-follow-up prior to the study closure, 𝜏𝑚𝑎𝑥. Individual three and six died prior
to study closure.

Figure 2 illustrates the consequences of 𝜏𝑎 and 𝜏𝑚𝑎𝑥 for six individuals. These six individuals are uniformly accrued between
time 0 and 𝜏𝑎. A single subject is lost-to-follow-up between accrual and study closure, 𝜏𝑚𝑎𝑥. All subjects, that did not die prior
to study closure, were administratively censored at study closure, 𝜏𝑚𝑎𝑥. Figure 3 shows examples of three simulated data sets
according to calendar time with (𝜏𝑎, 𝜏𝑚𝑎𝑥) = {(18,∞), (0, 30), (18, 30)}. A single data set with a planned uniform enrollment of
18 months was simulated (left figure). Another data set with no accrual but with a fixed length of 30 months was simulated (mid-
dle figure). Finally, both 18 months of accrual and 30 months study length was simulated (right figure). Note, that the situation
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with no accrual and a fixed study length, e.g. (𝜏𝑎, 𝜏𝑚𝑎𝑥) = (0, 30), also corresponds to the situation with a fixed follow-up time
per individual and delayed entry according to accrual. Scenarios of interest would typically include a fixed follow-up time for all
individuals or varying follow-up times per individual. These scenarios corresponds to the middle and right figures in Figure 3.

The ingredients are analogous to those required to make a sample size calculation for time-to-event outcomes using a Cox
model. However, since modelling the marginal mean requires both information on the recurrent events and death, reference
rates and treatment effects should be specified for both recurrent events and death. Similar considerations applies if interested
in performing sample size calculations targeting a Fine and Gray model since the cumulative incidences depends on all cause-
specific hazards as discussed in Latouche and Porcher.11
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FIGURE 3 Examples of individual life courses for a subset of three simulated data sets. Left: 18 months of uniform accrual and
no fixed trial length, (𝜏𝑎, 𝜏𝑚𝑎𝑥) = (18,∞). Middle: No accrual and 30 months of fixed trial duration, (𝜏𝑎, 𝜏𝑚𝑎𝑥) = (0, 30). Right:
18 months of uniform accrual and study length of 30 months, (𝜏𝑎, 𝜏𝑚𝑎𝑥) = (18, 30).

4 EXAMPLE OF TRIAL DATA SIMULATION

To illustrate the flexibility of the simulation procedure, a simple setup will be used with linear 𝜇0(𝑡) and Λ𝐷
0 (𝑡), where

𝜇0(𝑡) = 0.1𝑡, Λ𝐷
0 (𝑡) = 0.01𝑡, for 𝑡 ≥ 0.

Moreover, we let 𝛽 = {−0.2, 0, 0.2} and 𝛾 = {−0.2, 0, 0.2}. A 𝛽 = 0.2 corresponds to exp(𝛽) = exp(0.2) = 1.22 more recurrent
events on average with 𝑍 = 1 versus 𝑍 = 0. Figure 4 displays 𝜇(𝑡 ∣ 𝑍) and Λ𝐷(𝑡 ∣ 𝑍) under these choices. It is assumed
that Λ𝐶 (𝑡) = 0.01𝑡. Uniform accrual during 20 days and a fixed study length of 80 days was assumed ((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (20, 80)).
Simulating 𝑛 = 1000 individuals with an even randomisation and 𝛽 = 0.2 and 𝛾 = 0 yields the distribution in Table 1. This
particular data set results in an estimated 𝛽 = 0.189 (se(𝛽) = 0.043). From Figure 5, it is visible that the estimated �̂�0(𝑡) from
the Ghosh and Lin model based on the simulated data follows the true 𝜇0(𝑡) as intended.

Treatment, 𝑍 censoring recurrent event death
0 304 2541 200
1 297 3031 199

TABLE 1 Number of events in a single simulated data set for each treatment group with 𝑛 = 1000, 𝛽 = 0.2 and 𝛾 = 0.
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FIGURE 5 The fully drawn grey line represents the true 𝜇0(𝑡) = 0.1𝑡. The stapled black line is the estimated �̂�0(𝑡) from the
Ghosh and Lin model applied to the simulated data.
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Recurrent events First events
𝛽 𝛾 𝑛 Total no. of P(rej. 𝐻0), Mean Mean P(rej. 𝐻0), Mean Mean P(rej. 𝐻0), P(rej. 𝐻0),

events (per id) GL (Wald) of 𝛽 of se(𝛽) Cox (Wald) of 𝛽 of se(𝛽) Log-rank Gray’s
0.2 0 100 554.93 (5.55) 0.319 0.198 0.138 0.153 0.198 0.220 0.151 0.130

200 1109.55 (5.55) 0.552 0.202 0.097 0.259 0.200 0.155 0.256 0.203
500 2774.51 (5.55) 0.913 0.202 0.062 0.544 0.199 0.097 0.537 0.399

0.2 0.2 100 553.70 (5.54) 0.280 0.193 0.144 0.184 0.229 0.221 0.185 0.113
200 1112.66 (5.56) 0.482 0.199 0.101 0.284 0.209 0.155 0.282 0.166
500 2777.92 (5.56) 0.884 0.199 0.064 0.593 0.214 0.098 0.590 0.315

0.2 -0.2 100 553.32 (5.53) 0.346 0.206 0.134 0.133 0.190 0.220 0.133 0.129
200 1113.88 (5.57) 0.571 0.202 0.094 0.234 0.192 0.154 0.228 0.238
500 2778.80 (5.56) 0.919 0.204 0.059 0.495 0.191 0.097 0.488 0.499

-0.2 0 100 453.04 (4.53) 0.296 -0.201 0.144 0.161 -0.213 0.224 0.158 0.141
200 910.35 (4.55) 0.495 -0.197 0.101 0.255 -0.198 0.157 0.255 0.193
500 2272.39 (4.54) 0.873 -0.200 0.064 0.549 -0.201 0.099 0.551 0.414

-0.2 0.2 100 452.55 (4.53) 0.257 -0.194 0.149 0.127 -0.174 0.224 0.126 0.125
200 907.22 (4.54) 0.472 -0.201 0.105 0.227 -0.188 0.157 0.223 0.231
500 2272.60 (4.55) 0.850 -0.199 0.067 0.431 -0.178 0.099 0.429 0.460

-0.2 -0.2 100 453.95 (4.54) 0.310 -0.199 0.139 0.168 -0.211 0.223 0.166 0.114
200 908.50 (4.54) 0.523 -0.199 0.098 0.270 -0.209 0.157 0.267 0.152
500 2276.10 (4.55) 0.894 -0.202 0.062 0.598 -0.217 0.099 0.595 0.338

0 0 100 499.02 (4.99) 0.064 -0.005 0.140 0.051 0.009 0.221 0.050 0.047
200 995.48 (4.98) 0.053 -0.001 0.099 0.057 0.001 0.155 0.057 0.044
500 2497.45 (4.99) 0.056 0.002 0.063 0.049 0.001 0.098 0.047 0.056

0 0.2 100 502.41 (5.02) 0.049 -0.003 0.145 0.052 0.013 0.222 0.047 0.055
200 998.02 (4.99) 0.053 -0.003 0.103 0.052 0.017 0.156 0.050 0.050
500 2490.16 (4.98) 0.051 -0.002 0.065 0.064 0.015 0.098 0.064 0.051

0 -0.2 100 499.71 (5.00) 0.052 0.001 0.135 0.059 -0.022 0.220 0.056 0.059
200 1000.18 (5.01) 0.061 -0.004 0.096 0.052 -0.018 0.155 0.051 0.052
500 2504.58 (5.01) 0.054 -0.001 0.061 0.051 -0.015 0.097 0.051 0.050

TABLE 2 Probability of rejecting the null based on 1000 simulations and various parameter settings. The average of 𝛽 and se(𝛽)
across the 1000 simulations are also displayed. For recurrent events, a Ghosh and Lin model is applied to the recurrent events.
For first events, a Cox model is applied to the first recurrent events. Here, a Wald test and estimates are reported. Moreover, a log-
rank test comparing the cause-specific cumulative hazards for 𝑍 = 0, 1 and a Gray’s test comparing the cumulative incidences
for 𝑍 = 0, 1 has been computed. The number of recurrent events in total and per subject is averaged across the 1000 simulations.
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FIGURE 6 Non-parametric estimates of the marginal mean function for recurrent events, 𝜇(𝑡), and cumulative incidence for a
first event, 𝐹 (𝑡), per treatment based on a single simulated data set with 𝑛 = 1000 and 𝛽 = 0.2 and 𝛾 = −0.2.
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A total of 1000 simulations were performed for each combination of 𝛽 = {0, 0.2,−0.2} with 𝛾 = {0, 0.2,−0.2} and 𝑛 =
{100, 200, 500}. The results are shown in Table 2 under ‘Recurrent events’. In Table A1 in Appendix A, the distributions of
recurrent events and deaths per treatment is illustrated for 𝛽 = −0.2. When 𝛽 ≠ 0, the alternative hypothesis is true and the
P(reject 𝐻0) corresponds to the approximate power. But when 𝛽 = 0, the null is true and the P(reject 𝐻0) corresponds to the
approximate type I error rate.

As expected, the power increases as a function of the sample size when 𝛽 ≠ 0. Moreover, the effect of 𝛾 on the power is clear.
When treatment increases the cumulative hazard of death (𝛾 > 0), the power is reduced if 𝛽 > 0. Conversely, when treatment
decreases the cumulative hazard of death (𝛾 < 0), the power is increased for 𝛽 > 0. If 𝛽 < 0, the opposite holds true. For 𝛽 = 0,
type I error control is maintained.

Potential power gains of recurrent event methods compared to time-to-first-event methods applied to data with a recurrent nature
has been explored previously.12 13 In Table 4 under ‘First events’ results from analyses of first events have been performed in
order to compare the estimated power for recurrent events with first events. A Cox model has been fitted to the first recurrent
events. This model estimates the cause-specific hazard of having a first event. The results from a Wald test for the proportional
(cause-specific) hazards model has been averaged across the simulations. Analogously, log-rank tests comparing the cause-
specific cumulative hazard of a first recurrent event for each treatment has been performed at each simulation. Alternatively, and
more similar to modelling 𝜇(𝑡) for recurrent events, Gray’s test was calculated in each simulation to compare the cumulative
incidences of having a first event.14 Please note that the null hypotheses that are explored for the first events are different from
the null for recurrent events due to the difference in estimation and modelling. Figure 6 displays the non-parametric estimates
per treatment group of the marginal mean function for recurrent events, 𝜇(𝑡), and cumulative incidence for a first event, 𝐹 (𝑡),
from a single simulated data set. For this simulation, 𝑛 = 1000, 𝛽 = 0.2, 𝛾 = −0.2. Since 𝛽 > 0, treatment 𝑍 = 1 has more
recurrent events on average compared to 𝑍 = 0. But since 𝛾 < 0, the cumulative hazard of dying is smaller with 𝑍 = 1 versus
𝑍 = 0. Hence, when 𝛾 ≠ 0, the results from the Gray’s test are preferable to compare to the results for Wald test for recurrent
events. This is due to the fact that 𝜇(𝑡) and 𝐹 (𝑡) contain information on both recurrent or first events as well as deaths as opposed
to the cause-specific counterparts from the log-rank test or the Cox model. Thus, we focus on the power estimated from the
Gray’s test comparing the cumulative incidences of having an event. For this example, the power gain of focusing on recurrent
events as opposed to first events is clear when comparing results from the Wald test for recurrent events with the Gray’s test for
the first events for all parameter settings.

4.1 Alternative shapes for 𝜇0(𝑡) and Λ𝐷
0 (𝑡)

The shapes of 𝜇0(𝑡) and Λ𝐷
0 (𝑡) may be more complex than just linear functions, such as 𝜇0(𝑡) = 𝑎𝑡 which was explored in the

previous example. Instead, a fast accumulation followed by a slow accumulation of recurrent events, e.g. 𝜇0(𝑡) = 𝑡0.5, could
be considered. Oppositely, in some scenarios, first a slow uptake followed by a fast uptake in recurrent events might also be
possible, e.g. 𝜇0(𝑡) = exp(0.03𝑡)−1. Similar thoughts applies to the form of Λ𝐷

0 (𝑡) which may vary according to the application.
Figure 7 displays these two alternative shapes of 𝜇0(𝑡) along with the base example 𝜇0(𝑡) = 0.1𝑡. For 1000 simulations, let

Λ𝐷
0 (𝑡) = 0.01𝑡, 𝑛 = 500, 𝛽 = 0.2, 𝛾 = 0, (𝜏𝑎, 𝜏𝑚𝑎𝑥) = (20, 80) and 𝑐 = 0.01. When 𝜇0(𝑡) = 𝑡0.5 the estimated power is 0.993.

When 𝜇0(𝑡) = exp(0.03𝑡) − 1, the estimated power is 0.703. This can be compared with the linear accumulation, 𝜇0(𝑡) = 0.1𝑡,
in Table 2, where the estimated power was 0.913 for the same setting. For this example, an initial fast accumulation of recurrent
events will result in a higher power to detect differences and a slow initial uptake will result in a lower power compared to the
linear case. Similar considerations applies for varying the underlying shape of Λ𝐷

0 (𝑡).

5 APPLICATION TO LEADER DATA

The input parameters chosen by the user may advantageously be based on available historic data. In this application, we illus-
trate how to use the procedure based on such data. The baseline rates in the procedure are based on the observed baseline rates
in the previous trial, LEADER. The baseline rates are supplied in three ways, either based on constant rates as estimated from
the trial data, piece-wise constant or using non-parametric estimates directly. Moreover, the impact of varying study length and
accrual is illustrated.
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LEADER (Liraglutide Effect and Action in Diabetes: Evaluation of cardiovascular outcome Results) was a randomized con-
trolled trial investigating the cardiovascular effects of liraglutide, a treatment for type 2 diabetes, investigated versus placebo
when added to standard of care in a population with type 2 diabetes and a high cardiovascular risk.5 A total of 9340 subjects were
randomised 1:1 to receive either liraglutide or placebo. The median follow-up time was 3.8 years. The primary endpoint was a
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FIGURE 9 Linear approximations of 𝜇0(𝑡), Λ𝐷
0 (𝑡), and Λ𝐶 (𝑡) (stapled, green lines) based on occurrence-exposure rates from

LEADER data. Non-parametric estimates of �̂�0(𝑡), Λ̂𝐷
0 (𝑡) and Λ̂𝐶 (𝑡) (fully drawn, black lines) displayed with poine-wise confi-

dence intervals based (dotted, black lines) on LEADER data.

three-component composite major adverse cardiovascular adverse events (MACE) endpoint consisting of time-to-first non-fatal
stroke, non-fatal myocardial infarction or cardiovascular death. For this application, the focus is on recurrent myocardial infarc-
tion where all cause death acts as terminal events. Figure 8 displays the estimated marginal mean function and cumulative hazard
of death for each treatment group using non-parametric estimators for 𝜇(𝑡), �̂�(𝑡) (Cook and Lawless, later Ghosh and Lin), and
Λ𝐷(𝑡), Λ̂𝐷(𝑡) (Nelson-Aalen).3 15 16 17 On average, the placebo group has more recurrent myocardial infarction episodes com-
pared to the liraglutide group. Also, mortality is improved with liraglutide versus placebo. A Ghosh and Lin model applied to
recurrent myocardial infarction results in,

𝛽 = −0.159, se(𝛽) = 0.088.

This corresponds to a Wald test statistic of −1.807 (p-value of 0.071). Thus, with a total sample size of 𝑛 = 9340 it is not
possible to reject the null hypothesis. An estimated 𝛽 = −0.159 corresponds to exp(−0.159) = 0.853 fewer events on average
with liraglutide versus placebo. For all cause death, a Cox model with treatment as a covariate, results in �̂� = −0.166 with
se(�̂�) = 0.070.

Now, we assume that we were to design a future trial similar to the LEADER trial. The aim would be to show that there is
a significant difference between two treatments on recurrent myocardial infarction as modelled using a Ghosh and Lin model.
Hence, the future trial is designed with an active treatment versus a placebo treatment as encountered in LEADER. In line with
the previous models, it is assumed that

𝜇(𝑡 ∣ 𝑍) = 𝑎𝑡 exp(𝛽𝑍), Λ𝐷(𝑡 ∣ 𝑍) = 𝑏𝑡 exp(𝛾𝑍),
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such that 𝜇0(𝑡) = 𝑎𝑡 and Λ𝐷
0 (𝑡) = 𝑏𝑡. Here, 𝑎 and 𝑏 is estimated using LEADER data. The monthly rate of recurrent events

and deaths are estimated to be �̂� = 0.00198 and �̂� = 0.00210, respectively, based on the occurrence-exposure rates (number of
events divided by time at risk). Exponential censoring times are simulated according to the observed censoring distribution in
LEADER. Data beyond 1250 days (41 months) after randomisation are disregarded to avoid the impact by heavy administrative
censoring in the last months of the trial. It is also assumed that Λ𝐶

0 (𝑡) = 𝑐𝑡 during the trial. The monthly rate of censoring is
estimated to be 𝑐 = 0.00117 using the occurrence-exposure rate before 41 months. To begin with, a fixed trial length of 4 years
with no enrollment period is assumed (𝜏𝑎 = 0 and 𝜏𝑚𝑎𝑥 = 4 years). This corresponds to 4 years of follow-up per individual.
Another fixed duration with and without uniform enrollment will be illustrated later. Figure 9 displays the linear approximations
of 𝜇0(𝑡), Λ𝐷

0 (𝑡) and Λ𝐶
0 (𝑡) alongside the non-parametric estimates of �̂�0(𝑡), Λ̂𝐷

0 (𝑡) and Λ̂𝐶
0 (𝑡) based on the LEADER data. Here,

�̂�0(𝑡) is estimated using a non-parametric estimator (see Cook and Lawless, Ghosh and Lin) and Λ̂𝐷
0 (𝑡) and Λ̂𝐶

0 (𝑡) is estimated
using the Nelson-Aalen estimator of the cumulative hazard.? 10 16 The bottom right panel of Figure 9 displays the cumulative
hazard of censoring for the entire period including the administrative censoring which begins to occur after 40 months. The
linear fits are not perfect but may still be adequate.

total subjects censoring recurrent event death
Actual data

placebo 4672 4225 421 447
liraglutide 4668 4287 359 381

Simulated data
placebo 4698 4276 410 422

liraglutide 4642 4266 344 376
TABLE 3 First panel: Event distribution of recurrent myocardial infarction, censoring and death based on LEADER data. Second
panel: Event distribution based on a single data set with 𝑛 = 9340 simulated with similar characteristics as the LEADER data.
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Recurrent events First events
𝛽 𝛾 𝑛 Total no. of P(rej. 𝐻0), Mean Mean P(rej. 𝐻0), Mean Mean P(rej. 𝐻0), P(rej. 𝐻0),

events (per id) GL (Wald) of 𝛽 of se(𝛽) Cox (Wald) of 𝛽 of se(𝛽) Log-rank Gray’s
-0.2 0 5000 420.72 (0.084) 0.556 -0.205 0.098 0.536 -0.204 0.100 0.536 0.541

7500 631.09 (0.084) 0.699 -0.203 0.080 0.683 -0.203 0.082 0.683 0.686
10000 840.80 (0.084) 0.823 -0.201 0.070 0.813 -0.201 0.071 0.813 0.806

-0.2 -0.2 5000 420.50 (0.084) 0.534 -0.201 0.098 0.555 -0.210 0.100 0.555 0.511
7500 631.35 (0.084) 0.686 -0.196 0.080 0.708 -0.206 0.082 0.708 0.672
10000 840.88 (0.084) 0.825 -0.200 0.069 0.839 -0.209 0.071 0.839 0.801

-0.2 0.2 5000 420.87 (0.084) 0.541 -0.203 0.098 0.482 -0.193 0.100 0.482 0.522
7500 630.95 (0.084) 0.698 -0.198 0.080 0.621 -0.188 0.082 0.622 0.670
10000 840.84 (0.084) 0.829 -0.201 0.070 0.768 -0.189 0.071 0.768 0.814

-0.15 0 5000 440.22 (0.086) 0.337 -0.148 0.097 0.328 -0.147 0.099 0.328 0.329
7500 644.31 (0.086) 0.477 -0.151 0.079 0.470 -0.152 0.081 0.471 0.471
10000 860.05 (0.086) 0.603 -0.150 0.069 0.578 -0.150 0.070 0.578 0.584

-0.15 -0.2 5000 431.19 (0.086) 0.320 -0.144 0.097 0.335 -0.152 0.099 0.335 0.305
7500 645.51 (0.086) 0.464 -0.149 0.079 0.485 -0.157 0.081 0.486 0.436
10000 860.94 (0.086) 0.591 -0.151 0.069 0.622 -0.160 0.070 0.622 0.581

-0.15 0.2 5000 430.13 (0.086) 0.347 -0.152 0.097 0.294 -0.141 0.099 0.296 0.338
7500 646.46 (0.086) 0.463 -0.150 0.079 0.393 -0.139 0.081 0.394 0.446
10000 859.64 (0.086) 0.617 -0.154 0.069 0.519 -0.143 0.070 0.522 0.598

-0.1 0 5000 439.62 (0.088) 0.191 -0.102 0.096 0.196 -0.103 0.098 0.197 0.195
7500 660.67 (0.088) 0.227 -0.095 0.078 0.215 -0.095 0.080 0.215 0.220
10000 879.98 (0.088) 0.336 -0.101 0.068 0.311 -0.100 0.069 0.312 0.314

-0.1 -0.2 5000 440.01 (0.088) 0.175 -0.097 0.096 0.196 -0.106 0.098 0.196 0.171
7500 660.54 (0.088) 0.234 -0.098 0.078 0.258 -0.107 0.080 0.258 0.218
10000 881.42 (0.088) 0.311 -0.101 0.068 0.350 -0.111 0.069 0.351 0.306

-0.1 0.2 5000 440.29 (0.088) 0.192 -0.105 0.096 0.156 -0.093 0.098 0.157 0.180
7500 660.18 (0.088) 0.243 -0.101 0.078 0.197 -0.090 0.080 0.197 0.233
10000 880.71 (0.088) 0.326 -0.100 0.068 0.243 -0.089 0.069 0.243 0.308

TABLE 4 Probability of rejecting the null based on 1000 simulations and various parameter settings. Baseline rates for recurrent
events, death and censoring are based on LEADER placebo data. The trial length is assumed to be 4 years.

We let 𝑛 = 9340 and assume that the true values of the parameters were 𝛽 = −0.2 and 𝛾 = −0.2. Table 3 shows an overview
of a distribution of event types based on data from LEADER and on a single simulated data set with the above characteristics.
The simulated data seems to mimic the actual data fairly well in terms of event counts.

Suppose that a power of 80% with a 5% significance level is targeted for the future trial. The power is approximated using 1000
simulations. When 𝑛 = 10000 and 𝛽 = 𝛾 = −0.2 there is a power of 0.825 to detect differences (𝛽 ≠ 0). Hence, this would
be a sufficient sample size to detect a difference of 𝛽 = −0.2 with a 80% power and 5% significance level. This difference
corresponds to exp(𝛽) = 0.82 fewer events on average with active treatment versus placebo given the remaining assumptions.
For 𝛽 = −0.15, the power would be 0.591 instead. Thus, this would require a higher sample size than 10000.

Figure 10 displays the approximate power for 𝛽 = {−0.05,−0.10,−0.15,−0.20,−0.25,−0.30} and 𝛾 = {−0.2, 0, 0.2}
for 𝑛 = 10000. Figure 10 also displays the approximate power for 𝛽 = −0.2 and 𝛾 = {−0.2, 0, 0.2} for sample sizes
in 𝑛 = {5000, 6000, 7000, 8000, 9000, 10000}. Table 4 displays the results of power approximations for 1000 simulations,
𝛽 = {−0.1,−0.15,−0.2}, 𝛾 = {−0.2, 0, 0.2} and 𝑛 = {5000, 7500, 10000} based on LEADER data. In Table A2 in Appendix
A, the distributions of recurrent events and deaths per treatment is illustrated for 𝛽 = −0.2. The approximate power using both
the Ghosh and Lin model on recurrent myocardial infarction and time-to-first myocardial infarction is presented. On average, the
power is higher with the recurrent event method when comparing the average Ghosh-Lin Wald test with the Gray’s test on the
cumulative incidences. The power gains are not substantial but this example has a very low event rate compared to the previous
example in Section 4. This suggests that the power benefits may be quite dependent on how recurrent the endpoint of interest is.

5.1 Alternative shapes for 𝜇0(𝑡) and Λ𝐷
0 (𝑡)

The assumption of a constant rate of recurrent events or death may be too restrictive in practice. Alternatively, piece-wise constant
rates could be considered. Piece-wise constant rates of recurrent events and deaths are estimated based on occurrence-exposure
rates within 12 month intervals until 60 months after randomisation as displayed in Table 5. Alternatively, �̂�0(𝑡) and Λ̂𝐷

0 (𝑡) values
could be read of at each year. It is assumed that 𝜇0(𝑡) = 𝑎𝑡𝑡 and Λ𝐷

0 (𝑡) = 𝑏𝑡𝑡 for 𝑡 in [0, 12], (12, 24], (24, 36], (36, 48] and (48, 60]
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months with the monthly rates given in Table 5. The set of data points (𝑡, 𝜇0(𝑡)) and (𝑡,Λ𝐷
0 (𝑡)) for 𝑡 = 0, 12, 24, 36, 48 and 60

months are used in the simulation procedure. Figure 11 displays the piece-wise linear baseline functions that are assumed in the
simulation alongside the linear baseline functions for the scenario described in the previous section. The piece-wise constant
rates seem to catch the form, especially for 𝜇0(𝑡), fairly well. Based on 1000 simulations, the approximate power is 0.827 when
using the assumed piece-wise constant rates, while keeping all other assumptions fixed. This is comparable to the approximate
power based on the constant rates (0.825). Due to the similarity of the constant and piece-wise constant models in Figure 11, it
is not surprising that the power estimates using either approach is fairly close.

Interval, 𝑡 in months Monthly rate of recurrent events, 𝑎𝑡 Monthly rate of deaths, 𝑏𝑡
[0, 12] 0.00206 0.00120
(12, 24] 0.00237 0.00190
(24, 36] 0.00199 0.00238
(36, 48] 0.00153 0.00231
(48, 60] 0.00103 0.00261

TABLE 5 Estimates of piece-wise constant monthly rates of recurrent events and deaths based on occurrence-exposure rates in
the placebo group from LEADER data.
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FIGURE 11 Constant (green) and piece-wise constant (blue) rates for 𝜇0(𝑡) and Λ𝐷
0 (𝑡) based on five data points based on

occurrence-exposure rates. Non-parametric �̂�0(𝑡) and Λ̂𝐷
0 (𝑡) estimates based on LEADER data (grey).

Instead of assuming some underlying shape of the true 𝜇0(𝑡) and Λ𝐷
0 (𝑡), the baseline estimates from the LEADER data can be

used directly in the simulation. This may be too sensitive to the particular data for designing a future trial. While the remaining
assumptions are fixed as described earlier, we assume that the true baseline functions equal the baseline estimates from data,
i.e. 𝜇0(𝑡) = �̂�0(𝑡) and Λ𝐷

0 (𝑡) = Λ̂𝐷
0 (𝑡). Thus, the set of values (𝑡, �̂�0(𝑡)) and (𝑡, Λ̂𝐷

0 (𝑡)) is supplied to the procedure. Here, the time
points refer to the recurrent event times and death times for �̂�0(𝑡) and Λ̂𝐷

0 (𝑡). With 1000 simulations for 𝛽 = 𝛾 = −0.2 and
𝑛 = 10000, this results in a power of 0.871. The estimated power using the assumption of constant rates was 0.825 under the
same settings. The power using the baseline estimates directly is slightly higher but comparable to the results using either the
constant or piece-wise constant rate assumption.
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5.2 Study length and enrollment
The power calculations presented so far for this example assumed a fixed trial length of 4 years and did not take enrollment
into account ((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (0, 48) months). The impact on power of varying recruitment and study length is explored in this
section. Based on the LEADER’s trial design, the total study length was planned to be 60 months with 18 months of enroll-
ment. For the last randomised subjects, this implied a follow-up period of 42 months. This is visible in Figure 9, where the
last randomised subjects are administratively censored around 42 months after randomisation. The power approximations are
modified to accommodate earlier study closure, participant enrollment or both. The underlying assumptions are still the same
as for the first example based on constant rates in Section 5. We will explore uniform accrual in 𝜏𝑎 = 18 months and a fixed
trial length of 𝜏𝑚𝑎𝑥 = 30 months. A total of 1000 simulations were performed. 18 months of uniform accrual was added in
addition to the fixed trial duration of 48 months ((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (18, 48)), which results in a power of 0.814 versus the power of
0.825 ((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (0, 48)). Assume now that the study length was 30 months instead of 48 months with no enrollment period
((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (0, 30)), this would result in a power of 0.638. Including both 18 months of uniform accrual and administrative
censoring after 30 months ((𝜏𝑎, 𝜏𝑚𝑎𝑥) = (18, 30)) results in a power of 0.459.

This displays the flexibility in terms of varying assumptions on study length and enrollment. The procedure could also be
expanded to accommodate non-uniform or seasonal accrual.

6 DEPENDENCE BETWEEN 𝑁∗(⋅) AND 𝐷∗

The proposed simulation procedure relies on the assumption that the rate of recurrent events while alive in order has a specific
form in order to ensure that the marginal models hold (see Section 3, equation (5)). It turns out, that assuming this particular rate
introduces independence between 𝑁∗(⋅) and 𝐷∗. Hence, if there is dependence between 𝑁∗(⋅) and 𝐷∗ this will not be correctly
reflected in the data sets simulated according to the proposed procedure. If experiencing more recurrent events increases the
probability of dying, regardless of treatment, 𝑍, it indicates that there could be some dependence between 𝑁∗(⋅) and 𝐷∗. The
following simulation studies has been conducted in order to evaluate the impact on power if there is dependence between 𝑁∗(⋅)
and 𝐷∗.
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FIGURE 12 Shapes of 𝜇0(𝑡) and Λ𝐷
0 (𝑡) for 𝜆𝐷0 = 0.25 and 𝜌 = {0.7, 0.8, 0.9, 1.0}.

A simulation procedure similar to the one proposed in Ghosh and Lin has been employed to ensure dependence using frailties.3
It holds that,

𝜇(𝑡 ∣ 𝑍) =
𝑡

∫
0

𝑆(𝑢− ∣ 𝑍) 𝑑𝑅(𝑢 ∣ 𝑍),
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Simulation 1: Independence between 𝑁∗(⋅) and 𝐷∗ Simulation 2: Dependence between 𝑁∗(⋅) and 𝐷∗

𝜌 𝛽 𝛾 𝑛 Total no. of P(reject 𝐻0), Mean Mean Total no. of P(reject 𝐻0), Mean Mean
events (per id) GL (Wald) of 𝛽 of se(𝛽) events (per id) GL (Wald) of 𝛽 of se(𝛽)

1 -0.2 0 100 249.14 (2.49) 0.157 -0.189 0.203 252.06 (2.52) 0.182 -0.211 0.203
500 1244.24 (2.49) 0.588 -0.201 0.091 1263.88 (2.53) 0.607 -0.203 0.091
1000 2489.96 (2.49) 0.872 -0.204 0.065 2522.26 (2.52) 0.855 -0.196 0.064

-0.2 100 250.45 (2.50) 0.165 -0.191 0.195 251.26 (2.51) 0.180 -0.194 0.196
500 1244.59 (2.49) 0.608 -0.196 0.088 1258.62 (2.52) 0.627 -0.199 0.087
1000 2489.95 (2.49) 0.888 -0.196 0.062 2516.68 (2.52) 0.887 -0.200 0.062

0.9 -0.2 0 100 246.89 (2.47) 0.181 -0.208 0.199 250.84 (2.50) 0.174 -0.200 0.207
500 1236.35 (2.47) 0.621 -0.203 0.090 1250.05 (2.50) 0.587 -0.204 0.094
1000 2467.74 (2.47) 0.879 -0.199 0.063 2496.36 (2.50) 0.837 -0.200 0.067

-0.2 100 247.80 (2.48) 0.178 -0.195 0.191 250.78 (2.51) 0.197 -0.218 0.199
500 1235.11 (2.47) 0.625 -0.197 0.086 1246.49 (2.49) 0.589 -0.196 0.090
1000 2472.92 (2.47) 0.903 -0.199 0.061 2499.04 (2.50) 0.880 -0.200 0.063

0.8 -0.2 0 100 246.30 (2.46) 0.192 -0.209 0.194 248.04 (2.48) 0.158 -0.192 0.215
500 1218.23 (2.44) 0.659 -0.205 0.088 1240.11 (2.48) 0.544 -0.200 0.098
1000 2437.11 (2.44) 0.900 -0.201 0.062 2471.71 (2.47) 0.845 -0.205 0.069

-0.2 100 244.54 (2.45) 0.178 -0.200 0.189 247.01 (2.47) 0.182 -0.198 0.204
500 1223.99 (2.45) 0.628 -0.195 0.084 1238.32 (2.48) 0.585 -0.198 0.093
1000 2447.83 (2.45) 0.902 -0.194 0.060 2476.02 (2.48) 0.871 -0.203 0.066

0.7 -0.2 0 100 242.14 (2.42) 0.204 -0.212 0.192 243.49 (2.43) 0.177 -0.203 0.224
500 1208.23 (2.42) 0.654 -0.202 0.086 1224.92 (2.45) 0.507 -0.204 0.102
1000 2416.57 (2.42) 0.909 -0.203 0.061 2456.95 (2.46) 0.803 -0.200 0.072

-0.2 100 241.04 (2.41) 0.198 -0.196 0.186 245.05 (2.45) 0.165 -0.199 0.211
500 1206.32 (2.41) 0.646 -0.195 0.083 1224.11 (2.45) 0.553 -0.203 0.096
1000 2416.02 (2.42) 0.910 -0.195 0.059 2450.65 (2.45) 0.839 -0.204 0.068

TABLE 6 Probability of rejecting the null based on 1000 simulations and various parameter settings. For simulation 2, data is
simulated using the described frailty models. For simulation 1, data is simulated according to the procedure described in this
article, based on the same 𝜇0(𝑡) and Λ𝐷

0 (𝑡) as for simulation 2. For each simulation, a Ghosh-Lin model has been applied to the
data in order to decide whether to reject the null. The number of recurrent events in total and per subject is averaged across the
1000 simulations.

where 𝑆(𝑡 ∣ 𝑍) = 𝑃 (𝐷∗ > 𝑡 ∣ 𝑍) and 𝑑𝑅(𝑡 ∣ 𝑍) = 𝐸(𝑑𝑁∗(𝑡) ∣ 𝐷∗ ≥ 𝑡, 𝑍).? 10 We consider the following data generating
frailty models,

𝜆𝐷(𝑡 ∣ 𝑍, 𝜈) = 𝜈 exp(𝛾𝐷𝑍)𝜆𝐷0 , (7)
𝑑𝑅(𝑡 ∣ 𝑍, 𝜈) = 𝜈𝑆0(𝑡 ∣ 𝜈)1−exp(𝛾𝐷𝑍) exp(𝛽𝑍) 𝑑𝑡, (8)

where 𝑆0(𝑡 ∣ 𝜈) = exp
(
− ∫ 𝑡

0 𝜆𝐷(𝑢 ∣ 𝑍 = 0, 𝜈) 𝑑𝑢
)

and 𝜈 > 0 is a frailty term that is assumed to be generated from a positive
stable distribution with Laplace transform exp(−𝜈𝜌), 𝜌 ∈ (0, 1]. The frailty term introduces dependence between the recurrent
events and the terminal event. The waiting times between two successive recurrent events and the survival time will have a
Kendall’s tau correlation coefficient of 1 − 𝜌. If 𝜌 < 1 (𝜌 = 1), there is a positive (no) association between recurrent events
and death. Under this data generating model, both the proportional means model for recurrent events and proportional hazards
model for death is fulfilled. It holds that,

𝜇(𝑡 ∣ 𝑍) =
∞

∫
0

𝜇(𝑡 ∣ 𝑍, 𝜈)𝑓 (𝜈) 𝑑𝜈 = 𝜇0(𝑡) exp(𝛽𝑍),

𝑆(𝑡 ∣ 𝑍) =
∞

∫
0

𝑆(𝑡 ∣ 𝑍, 𝜈)𝑓 (𝜈) 𝑑𝜈 = exp
(
−Λ𝐷

0 (𝑡) exp(𝛾𝑍)
)
,

where 𝜇0(𝑡) and Λ𝐷
0 (𝑡) is given by using equations (8) and (7) and integrating out, such that

𝜇0(𝑡) =
1
𝜆𝐷0

(
−exp

(
−
(
𝜆𝐷0 𝑡

)𝜌) + 1
)
, Λ𝐷

0 (𝑡) =
(
𝜆𝐷0 𝑡

)𝜌 , 𝛾 = 𝛾𝐷𝜌.

A total of 1000 simulations were performed for 𝜆𝐷0 = 0.25, 𝑛 = {100, 500, 1000} with 𝛽 = −0.2, 𝛾𝐷 = {0,−0.2} and 𝜌 =
{0.7, 0.8, 0.9, 1}. The higher 𝜌, the less dependence between 𝑁∗(⋅) and 𝐷∗. Exponential censoring with a rate of 0.1 is assumed.
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Additionally, administrative censoring is added at time 10. The choice of 𝜌 and 𝜆𝐷0 dictates the form of 𝜇0(𝑡) and Λ𝐷
0 (𝑡). Figure

12 displays the shapes of 𝜇0(𝑡) and Λ𝐷
0 (𝑡) for 𝜌 = {0.7, 0.8, 0.9, 1.0}.

First, data is simulated using the outlined procedure, which allows for dependence between𝑁∗(⋅) and𝐷∗. For each simulation,
a Ghosh and Lin model is fitted. Next, an approximate power based on 1000 simulations is estimated. Following this, data
which adheres to the same 𝜇0(𝑡), Λ𝐷

0 (𝑡), censoring pattern, 𝛽 and 𝛾 is simulated according to the procedure suggested in this
paper. For each simulated data set, a Ghosh and Lin model is fitted and the overall power is approximated. As mentioned, this
procedure introduces independence between 𝑁∗(⋅) and 𝐷∗. Hence, we wish to compare the effect on the power between the
two methods, where the dependence is increased, as controlled by 𝜌. The results are displayed in Table 6. With no association
between successive recurrent events and death, 𝜌 = 1, the results from the two simulation types are similar. Here, the estimated
power is comparable when comparing the two simulation types per parameter setting. However, when as 𝜌 is decreased, such that
there is an increased dependence between successive recurrent events and death, the results from the two simulation types are
more different. Overall, it seems that the power will be slightly overestimated using simulation 1, which introduces independence
(in a scenario when this is violated). Thus, care should be taken if there is dependence between 𝑁∗(⋅) and 𝐷∗ for the specific
scenario in which the power procedure is to be applied. Most likely, the estimated power will too high due to the dependence
which is not accounted for.

Cox models for time to death with the number of previous events at 𝑡−, 𝑁∗(𝑡−), as a time-varying covariate has been fitted, in
order to judge if the dependence between 𝑁∗(⋅) and 𝐷∗ imposed by equations (7) and (8) is present in the simulated data sets. We
focus on 𝜌 = 0.7, such that there should be dependence between 𝐷∗ and 𝑁∗(⋅). Moreover, we let 𝛽 = −0.2, 𝛾 = 0 and 𝑛 = 1000.
A Cox model added to a single simulated data set according to simulation 2 (dependence imposed) results in an estimated hazard
ratio of 1.200 (�̂� = 0.182, se(�̂�) = 0.023) with a significant Wald test p-value of below 0.0001 for the effect of previous number
of events on death (𝜂). Conversely, a Cox model for time to death conditional on the number of previous events applied on a
single data set simulated using simulation 1 (independence imposed) results in an estimated hazard ratio of 0.960 (�̂� = −0.041,
se(�̂�) = 0.027) with an insignificant p-value of 0.130. 1000 data sets have been simulated using simulation 2 resulting in an
average hazard ratio of 1.222 (average �̂� = 0.201, average of se(�̂�) = 0.020) with a mean p-value of below 0.0001. Similarly,
1000 data sets simulated according to simulation 1 results in an average estimated hazard ratio of 0.999 (average �̂� = −0.001,
average of se(�̂�) = 0.027) with a mean p-value of 0.500. Thus, it is clear that the imposed dependence between 𝐷∗ and 𝑁∗(⋅) is
not apparent from the data sets simulated using the proposed simulation procedure. Still, the difference between the estimated
power using either approach may be small as seen from Table 6.

Kendall’s tau correlation coefficient estimated on LEADER data between the first recurrent events and deaths for censored
data resulted in a correlation coefficient of 0.015, which corresponds to a 𝜌 = 0.985.18 Hence, for this data, it would not be
unrealistic to assume that 𝜌 = 1. If the waiting time until death is modelled conditional on the number of recurrent events at time
𝑡−, 𝑁∗(𝑡−), using a Cox model based on the LEADER data, the hazard ratio estimate for the effect of the previous number of
events is 2.071 (�̂� = 0.728, se(�̂�) = 0.072). This effect is significant with a Wald test p-value below 0.0001. If the same model is
instead applied to the data set which was simulated according to the characteristics in the LEADER data (corresponding to the
data behind Table 3) using the procedure proposed in this paper, the estimated hazard ratio is 1.168 (�̂� = 0.155, se(�̂�) = 0.171)
with a Wald test p-value of 0.363. If we simulate 1000 data sets with the same characteristics, the mean hazard ratio was 0.998
(average �̂� = −0.002, average se(�̂�) = 0.171) with an average Wald test p-value of 0.500. This indicates that there is some
dependence between 𝐷∗ and 𝑁∗(⋅) in the LEADER data which is not correctly reflected in the data sets simulated according to
the proposed procedure.

7 DISCUSSION

Cook and Lawless distinguish between intensity and marginal models for the analysis of recurrent events.19 20 Typically, analysis
either targets marginal or conditional features of the recurrent event process. In this paper, we have focused on marginal features.
This has the benefit that the needed quantities can be obtained from simple and marginal quantities, such as the reference recurrent
event rate, the expected log-mean-ratio between two treatments, the survival rate in the reference group, etc. Methods that are
based on intensities typically involve the specification of parameters that can be hard to justify, such as frailty parameters. Frailty
models target subject specific treatment effects since the parameters are conditional on the frailty. Thus, such models will not be
able to directly estimate a population-level summary measure of the treatment effect which an estimand should target according
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to ICH E9.21 This requirement of ensuring a population-level summary measure in the estimand makes the marginal models
preferable when focusing on recurrent events with competing deaths.

Wu and Cook suggested closed form solutions for trial design when the intention is to model the processes using Prentice,
Williams, Peterson (PWP) type models, which are stratified Andersen-Gill models.22 23 24 However, as argued by Cook and
Lawless and discussed in Furberg et al., if the randomised treatment has an effect on the number of recurrent events, the PWP
model stratified according to the number of events may in turn remove some of the treatment effect which is an undesirable
feature for analysing recurrent events in a randomised controlled trial.19 1

Fritsch et al. considered power calculations for recurrent event endpoint in the presence of terminal events with a comparison
to time-to-event analysis.12 Their simulations are based on a joint frailty model approach, where non-compatible models are
applied afterwards. As the authors note, this makes it hard to compare power across methods and type I error control is no
longer maintained. Moreover, several of the models are mis-specified if there is a treatment effect on death. Finally, an overall
estimand discussion is missing from the paper and it is unclear what the estimand of interest is when modelling recurrent events
with terminal events. The approach outlined in this paper ensures that identifiable parameters can be inserted in the simulation
procedure in a way where the marginal interpretation is kept. Moreover, type I error control and the correct power interpretation
is kept using the suggested approach regardless of the impact of treatment on recurrent events and death. Potential power gains
has also been outlined using two examples. Whether or not recurrent event methods will provide large benefits in terms of
power compared to traditional time-to-event analyses is seen to depend on the underlying recurrent event rate. The example
based on LEADER data shows that minor improvements in power can be expected if focusing on recurrent events versus first
events when the yearly recurrent event rate is low. The first example in Section 4 had more substantial improvements as well as
a high event rate.

The decision on when to close the clinical trial is governed by the selected stopping rules. A variety of stopping rules may be
applicable depending on the aim of the trial. For the purpose of this paper, we have only considered the following stopping
rules; either when each individual has had a fixed number of months of follow-up, or when the total study length has reached a
specific length. Alternatively, the study may be stopped if and only if at least 𝑥 subjects has had one recurrent event combined
with a minimum of follow-up time. Moreover, if the observed drop-out rate or enrollment rate is lower than planned, the trial
may be continued according to some pre-specified rules.

The models in this paper rely on the assumptions of proportional means for recurrent events and proportional hazards for
deaths for the two treatments groups. This proportionality may be unreasonable on both or either of the two components.
The cumulative hazard of death may be specified using alternative models to the Cox model and the simulation procedure
would only require an update in how deaths (equation (6)) and recurrent events while alive (equation (5)) are generated. More
flexible non-parametric methods can be chosen to estimate 𝜇(𝑡) and Λ𝐷(𝑡). However, in order to compare two treatments this
requires a choice of 𝑡∗ to e.g. compute the log-mean ratio, log(𝜇1(𝑡∗)) − log(𝜇0(𝑡∗)). The suggested procedure may be modified
to simulate recurrent events and death using non-parametric estimators for 𝜇0𝑗(𝑡) and 𝑆𝑗(𝑡) for treatment 𝑗 = 0, 1 (Cook and
Lawless, Ghosh and Lin, and Kaplan-Meier), which then imposes no proportionality between treatments.? 10 25 This could
be used to judge whether the proportionality assumption is reasonable for both recurrent events and deaths. Subsequently,
treatments may be compared at a chosen 𝑡∗. This is a topic for further research. Alternatively, AUC under 𝜇(𝑡) until 𝜏 may
be considered and compared for each treatment (Claggett et al.), but the interpretation of this measure is less intuitive.26 The
while-alive estimand that focuses on the ratio of the marginal mean function and the restricted mean survival time (RMST),
𝜇(𝑡)∕𝑅𝑀𝑆𝑇 (𝑡) = 𝜇(𝑡)∕ ∫ 𝑡

0 𝑆(𝑢) 𝑑𝑢, could also be targeted as another measure. However, it is less clear how to impose specific
regression models on this measure.27 28 A topic for further research, is a regression model for 𝜇(𝑡)∕𝑅𝑀𝑆𝑇 (𝑡) formulated using
pseudo-observations.

The proposed simulation procedure introduces independence between the number of recurrent events and death (𝑁∗(⋅) and 𝐷∗)
through the assumed recurrent event rate while alive (see Section 3, equation (5)). If for instance more recurrent events leads to
a higher probability of death, irrespective of treatment, there would be dependence between 𝑁∗(⋅) and 𝐷∗. However, if there
is a treatment effect on both death and recurrent events, it can be hard to disentangle if there is any additional dependence.
The bivariate pseudo-observation approach suggested by Furberg et al. which models (𝜇(𝑡), 𝑆(𝑡)) = (𝐸(𝑁∗(𝑡)), 𝑃 (𝐷∗ > 𝑡))
simultaneously given covariates could be used to characterize if there is dependence between 𝑁∗(⋅) and 𝐷∗ given treatment.29
The simulation studies in Section 6 which simulated data with dependence between 𝑁∗(⋅) and 𝐷∗ indicated that the estimated
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power may be too high if there is unaccounted dependence. This could be relaxed by considering frailty type models to generate
data which adheres to the marginal models. However, this would typically involve the choice of additional parameters, e.g.
frailty variance. If the frailty models in Section 6 fits the application and future data, 𝜆𝐷0 and 𝜌 can be estimated directly using
baseline estimates of 𝜇0(𝑡) and Λ𝐷

0 (𝑡), which then subsequently can be used to simulate trial data. A procedure which allows
one to specify dependence in a practical way as well as maintaining the correct marginal structure is a topic for future work. If
the sample size calculation is to be based on available historical data, the Kendall’s tau correlation coefficient for censored may
be calculated based on first event and death times to quantify a potential dependence. Kendall’s tau based on LEADER data for
the first recurrent event and death times is estimated to be approximately 0.015, which indicates that the dependence is low for
this example. Still, analyses of time to death conditional on the number of recurrent events at time 𝑡− based on LEADER data
seem to capture a stronger dependence than data sets simulated according to LEADER characteristics based on the procedure
proposed in this paper. Even though such a dependence may exist, the results from the simulation studies indicate that this does
not necessarily have a large impact on the estimated power. For the scenarios we have seen, the impact on power is manageable
if there is unaccounted dependence between recurrent events and death.

The simulation-based procedure provides a flexible method for performing power calculations when targeting a marginal mean
regression model in the setting with recurrent events and competing risks. The input parameters are various marginal parameters
which are possible to obtain from historic data. The procedure is available online based on R software alongside a descriptive
vignette with examples.
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APPENDIX

A DISTRIBUTION OF RECURRENT EVENTS AND DEATHS ACCORDING TO TREATMENT

Supplementary to Tables 2 and 4, the total number of recurrent events and per subject averaged across simulations and the
number of deaths per treatment group is illustrated for 𝛽 = −0.2. For both tables, the results are based on 1000 simulations.
For each table, the total number (per id) of recurrent events per treatment, 𝑍, is averaged across the simulations. The number of
deaths per treatment, 𝑍, is also averaged across the simulations. Since 𝛽 = −0.2, the treatment reduces the number of recurrent
events. When 𝛾 = 0, there is no effect of treatment on death. When 𝛾 > 0, treatment is associated with an increased mortality
rate. Conversely, when 𝛾 < 0, treatment is associated with a decreased mortality rate. The settings corresponding to Table 2 are
illustrated in Table A1. The settings corresponding to Table 4 are illustrated in Table A2.

𝛽 𝛾 𝑛 Treatment, 𝑍 Total number of events (per id) Total number of deaths
-0.2 0 100 0 250.83 (5.24) 18.82

1 204.86 (4.32) 18.68
200 0 501.66 (5.24) 37.42

1 409.29 (4.31) 37.64
500 0 1251.40 (5.23) 93.82

1 1021.36 (4.31) 93.76
-0.2 -0.2 100 0 250.62 (5.26) 18.74

1 205.80 (4.35) 16.18
200 0 496.74 (5.20) 37.58

1 410.87 (4.35) 32.48
500 0 1250.51 (5.23) 94.15

1 1027.18 (4.36) 80.91
-0.2 0.2 100 0 249.79 (5.25) 18.83

1 206.20 (4.30) 21.80
200 0 499.30 (5.22) 37.50

1 410.33 (4.29) 43.31
500 0 1254.17 (5.24) 93.97

1 1020.34 (4.28) 107.81

TABLE A1 The additional assumptions behind the simulations are identical to those in Table 2 described in Section 4.

𝛽 𝛾 𝑛 Treatment, 𝑍 Total number of events (per id) Total number of deaths
-0.2 0 5000 0 234.36 (0.093) 234.36

1 189.09 (0.076) 234.29
7500 0 350.56 (0.093) 347.15

1 284.35 (0.076) 350.61
10000 0 463.57 (0.093) 468.90

1 380.15 (0.076) 469.39
-0.2 -0.2 5000 0 231.74 (0.093) 233.75

1 190.05 (0.076) 193.47
7500 0 346.70 (0.092) 350.57

1 284.79 (0.076) 289.75
10000 0 464.07 (0.093) 468.76

1 379.18 (0.076) 386.47
-0.2 0.2 5000 0 231.40 (0.093) 234.28

1 189.61 (0.076) 283.49
7500 0 347.73 (0.093) 351.09

1 284.15 (0.076) 423.61
10000 0 462.91 (0.093) 466.74

1 379.70 (0.076) 565.45

TABLE A2 The additional assumptions behind the simulations are identical to those in Table 4 described in Section 5.
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simpowerrecurrent: Simulation-based sample size calculations for

recurrent events with competing deaths

Introduction

Let  denote the expected number of recurrent events by time  and let  denote the time of
death. Let  denote the time of censoring. Due to right-censoring,  and

 is observed. Moreover, the censoring indicator is observed, . There is only
a single binary treatment variable, . For each of the  subjects, the following is observed

, .  are assumed to be independent and identically distributed
replicates of . It is assumed that  is independent of .

It is assumed that the proportional means model of Ghosh and Lin (2002) holds, such that

where  is the baseline mean function for recurrent events, and  is the effect of treatment, , on
recurrent events.

Moreover, it is assumed that Cox’s proportional hazard model (1972) hold for the terminal events, such
that

where  is the cumulative baseline hazard for death, and  is the effect of treatment, , on death.

In order to simulate a single data set according to these models, the following should be specified

The total sample size, . It is assumed that the randomisation is 1:1.

A set of values for , i.e. the expected number of events in the reference group at times .

A set of values for , i.e. the cumulative hazard of death in the reference group at times .

The censoring rate through the trial, such that . Here,  is supplied.

The log-mean ratio, , i.e. the effect of treatment on recurrent events.

The log-hazard ratio, , i.e. the effect of treatment on death.

Max enrollment day after randomisation, . Uniform accrual until  is assumed.

Total length of study duration, . Administrative censoring occurs at .

In order to perform a power calculation or equivalently estimate a sample size, the following should
additionally be specified

The total number of simulations

The significance level, 

Download from Github

The functions can be downloaded from GitHub using the below code,

(t)N ∗ t D∗

C N(t) = (t ∧ C)N ∗

D = ∧ CD∗ δ = I( ≤ C)D∗

Z n
= { (⋅), , , }Xi Ni Di δi Zi i = 1, … , n Xi

X = {N(⋅), D, δ, Z} C Z

E( (t) ∣ Z) = μ(t ∣ Z) = (t) exp(βZ),N ∗ μ0

(t)μ0 β Z

(t ∣ Z) = (t) exp(γZ),ΛD ΛD
0

(t)ΛD
0

γ Z

n

(t, (t))μ0 t

(t, (t))ΛD
0 t

(t) = ctΛC c

β

γ

τa τa

τmax τmax

α

#require(devtools)
#devtools::install_github("JulieKFurberg/simpowerrecurrent", force = TRUE)
require(simpowerrecurrent)

# A couple of extra packages
require(ggplot2); require(survival); require(mets); require(dplyr)



Simulation of a single data set

The following example displays how to simulate data from the above model using the required input
parameters.

Here, we assume that , and that

Moreover, it is assumed that the cumulative hazard of being censored during the trial is,

Furthermore, there is uniform accrual of the  subjects during  days. The study closed after  days
from the first enrollment.

n = 100

μ(t ∣ Z) = 0.07 exp(−0.1Z), (t ∣ Z) = 0.05t exp(−0.1Z)t2 ΛD

(t) = 0.03t.ΛC

100 10 30

mu0 <- function(time, a){a  * time^2}
LamD0 <- function(time, b){b * time}

times <- seq(0, 100, by = 25)

cumhaz_mu <- data.frame(time = times,
                        cumhaz = mu0(time = times, a = 0.07))

cumhaz_S <- data.frame(time = times,
                       cumhaz = LamD0(time = times, b = 0.05))
# Visual
ggplot(aes(x = time, y = cumhaz), data = cumhaz_mu) +
  geom_line() + ggtitle(expression(mu[0]*"(t) for recurrent events")) +
  geom_point() + theme_bw()



ggplot(aes(x = time, y = cumhaz), data = cumhaz_S) +
  geom_line() + ggtitle(expression(Lambda[0]^D*"(t) for terminal events")) + 
  geom_point() + theme_bw()

# Simulating a single data set
set.seed(1234)
sim1 <- simrecurprop(n = 100, 
                     beta = -0.1,
                     gamma = -0.1,
                     mu0 = cumhaz_mu,
                     Lam0D = cumhaz_S,
                     crate = 0.03,
                     accrualtime = 10,
                     admincens = 30)

head(sim1)
#>   id    start      stop status Z
#> 1  1 8.329633  8.513353      1 0
#> 2  1 8.513353  8.598851      1 0
#> 3  1 8.598851  8.645844      1 0
#> 4  1 8.645844  9.219162      1 0
#> 5  1 9.219162  9.234392      1 0
#> 6  1 9.234392 10.357293      1 0

# Overview of the data set
with(sim1, table(Z, status))
#>    status
#> Z     0   1   2



In the output data set, the following variables are included,

id: The subject id
start: The start time of the record for individual i. Counting process style
stop: The stop time of the record for individual i. Counting process style
status: Status at the stopping time for subject i for record j.
Z: The binary treatment covariate

Estimation of power for previous example

The results from fitting a Ghosh and Lin model to each simulated data set is contained in the data.frame,
resmat, with the columns beta, sebeta, reject? and pval. There is one row per simulation in resmat. The

results correspond to the estimated  and  from the Ghosh and Lin model as well as the decision to
reject the null or not (alongside a two-sided p-value). Here, the hypotheses of interest are,

The approximate power is contained in power. The average of all  across simulations is contained in

betamean. The average of the standard errors for  across simulations is contained in betasemean.

#>   0  25 922  30
#>   1  20 906  25

simres1 <- powerest(nsims = 100, 
                    n = 100, 
                    beta = -0.1,
                    gamma = -0.1,
                    mu0 = cumhaz_mu,
                    Lam0D = cumhaz_S, 
                    alpha = 0.05, 
                    crate = 0.03,
                    accrualtime = 10,
                    admincens = 30)

head(simres1$resmat)
#>              beta    sebeta reject?       pval
#> [1,] -0.008535714 0.1703983       0 0.96004850
#> [2,] -0.311417513 0.1466871       1 0.03375334
#> [3,]  0.001625712 0.1514896       0 0.99143766
#> [4,] -0.356570420 0.1492128       1 0.01686321
#> [5,] -0.218203859 0.1600075       0 0.17265874
#> [6,] -0.238368925 0.1640195       0 0.14614148

simres1$power
#> [1] 0.09
simres1$betamean
#> [1] -0.04806245
simres1$betasemean
#> [1] 0.1555369

β̂ se( )β̂

: β = 0, : β ≠ 0.H0 Ha

β̂

β̂
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Abstract
Marginal models for recurrent events can rely on an assumption of completely independent censoring. That is, the re-
current event process should be completely independent of the censoring process. In some situations, it would desirable
to relax this assumption to conditionally independent censoring given covariates. This would allow censoring to depend
on observed baseline covariates. An example could be inference on recurrent events from a randomised controlled trial
with or without the impact of competing risks. The initial assumption may be that censoring is independent of treatment
which may be relaxed to conditionally independent censoring given treatment and potentially additional baseline covari-
ates. This paper discusses proportional means regression models for recurrent events with or without terminal events
adjusted for covariate dependent censoring using inverse censoring weights. Moreover, it proposes to formulate a regres-
sion model for the expected number of recurrent events computed using pseudo-observations based on inverse censoring
weighted non-parametric estimators. The performance and use of the methods will be illustrated through simulation
studies. Intention: Furthermore, the methods are applied to two data examples: recurrent hospital admissions among
patients with colorectal cancer and recurrent cardiovascular events among patients with diabetes.

1 Introduction
The statistical analysis of recurrent events is an area of interest for capturing treatment effects from randomised controlled
trials. Current practice focuses on the analysis of first events. In light of this, the analysis of recurrent events may bring
a better understanding of disease progression, treatment effects and utilization of data. Therefore, pharmaceutical com-
panies and regulatory agencies have expressed an interest in statistical analysis of recurrent events (Akacha et al. (2018),
EMA (2020b), FDA (2019) and Rogers et al. (2014)). Consensus on which treatment effect(s) and statistical framework
to prefer is still lacking. We suggest recurrent event models which capture a clinically relevant treatment effect.

0: No event 1: 1 event 2: 2 events

Figure 1: A recurrent event process.

0: No event 1: 1 event 2: 2 events

D: Dead

Figure 2: A recurrent event process with a terminal event.

Multi-state models are a powerful framework for describing the underlying processes of interest. Cook and Lawless
(2018) provide a detailed overview and introduction to multi-state models. Bühler et al. (2022) discuss their power in
describing treatment effects, estimands, for randomised controlled trials. The processes of interest for this paper may be
illustrated using two multi-state models; a recurrent event process with and without a terminal event. These multi-state
models are illustrated in Figures 1 and 2. With no or negligible mortality, Figure 1 may adequately describe the reality.
With high mortality rates, reality is better reflected by Figure 2.
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Cook and Lawless (2007) recommend focusing on marginal features of the recurrent event process if the goal is to ob-
tain a simple treatment effect from randomised trials. In this spirit, this paper focuses on the marginal expected number of
recurrent events. Non-parametric estimators of this quantity has been put forward (see Lawless and Nadeau (1995), Cook
and Lawless (1997), and Ghosh and Lin (2000)). Semi-parametric regression models have also been developed for the
situation with or without terminal events (see Lin et al. (2000) and Ghosh and Lin (2002)). In some cases, the aforemen-
tioned methods rely on an assumption of independence between the recurrent event and censoring process. The purpose
of this paper is to discuss extensions of the existing methods to allow for covariate dependent censoring. This has been
discussed earlier by Cook, Lawless, et al. (2009) and Ghosh and Lin (2002). We will discuss these non-parametric estima-
tors and semi-parametric regression models for the marginal mean, both based on inverse censoring weights. Moreover, a
method based on pseudo-observations of the marginal mean computed based on weighted non-parametric estimators will
be proposed. This is an extension of the method considered in Andersen, Angst, et al. (2019) and Furberg et al. (2023).

Assume that a confirmatory analysis of recurrent events has been specified using, e.g., a proportional means model un-
der an assumption of independent censoring. Then, the suggested methods will be valuable as sensitivity analyses that
explore departures from an assumption of completely independent censoring by allowing covariate dependent censoring.
Alternatively, marginal models which accommodate conditionally independent censoring given covariates may be chosen
as candidates for the primary analyses. This would more closely resemble the intensity-based models that automatically
accommodate conditionally independent censoring given covariates as specified as the history of the process.

The structure of the paper is as follows. First, the mathematical framework will be introduced and discussed. Subse-
quently, the methods will be illustrated using a simulation study. Finally, the methods will be applied to two real data
sets.

2 Mathematical framework
Let N∗(t) denote the number of recurrent events by time t. Assume that Z denotes p baseline covariates. The mathematical
framework accommodates both the situation with or without terminal events. Let D∗ denote the survival time. Without
terminal events, D∗ never occurs such that D∗ = ∞. With terminal events, N∗(t) remains constant after D∗. Let C
denote the censoring time. Due to right-censoring, both N∗(t) and D∗ are incompletely observed. Thus, the observed
data consists of X = {N(·),D,∆,Z} where N(t) = N∗(t ∧C), D = D∗ ∧C and ∆ = I(D∗ ≤ C). For each individual,
i = 1, . . . ,n, we observe the data Xi = {Ni(·),Di,∆i,Zi} which are independent replicates of X . The parameter of interest
is the expected number of recurrent events,

µ(t) = E(N∗(t)) =
∫ t

0
S(u−)dR(u), (1)

where S(t) = P(D∗ > t) and dR(t) = E(dN∗(t) | D∗ ≥ t). Without terminal events, equation (1) reduces to µ(t) =∫ t
0 E(dN∗(t)).

Non-parametric inference Without terminal events and under independent censoring, Lawless and Nadeau (1995)
argue that an approximately unbiased non-parametric estimator of µ(t) is the Nelson-Aalen estimator (Aalen (1978),
Nelson (1969), Nelson (1972)). With terminal events, Cook and Lawless (1997) and Ghosh and Lin (2000) suggest to
estimate µ(t) using the non-parametric plug-in estimator,

µ̂(t) =
∫ t

0
Ŝ(u−)dR̂(u), (2)

where Ŝ(t) denotes the Kaplan-Meier estimator of S(t) and R̂(t) denotes the Nelson-Aalen estimator of R(t) (Kaplan
and Meier (1958)). Without terminal events, µ̂(t) =

∫ t
0 dR̂(u) = R̂(t). Both estimators, however, rely an assumption of

independent censoring. That is, C is completely independent of N∗(·) such that E(N∗(t) |C ≥ t) = E(N∗(t)).
Cook, Lawless, et al. (2009) suggest extensions to non-parametric estimators for recurrent events that allow for

dependent censoring using inverse probability of censoring weights (IPCW). They suggest a non-parametric estimator
based on IPCW for the rate and mean function. To that end, let Ci(t) = I(t ≤ Ci) denote the censoring process for
individual i. Moreover, assume that the censoring probability for individual i only depends on the history until up to time
t, Gi(t) = P(Ci ≥ t | Hi(∞)) = P(Ci ≥ t | Hi(t−)). Then, the weighted rate function is given by

dµ̂(t) = ∑n
i=1 Ci(t)dNi(t)/Ĝi(t)

∑n
i=1 Ci(t)/Ĝi(t)

,
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where Ĝi(t) denotes an estimate of Gi(t) obtained by specifying a censoring model. The mean function, µ̂(t) =
∫ t

0 dµ̂(u),
corresponds to a weighted Nelson-Aalen estimate. This solves the following estimating equations,

n

∑
i=1

Ui(t) =
n

∑
i=1

Ci(t)
Gi(t)

{dNi(t)−dµ(t)}= 0.

This weighted Nelson-Aalen type estimator may be used to compute the marginal mean function under covariate de-
pendent censoring by specifying the censoring distribution conditional on the covariates. Of note, this implies that the
contribution of all individuals with events are re-weighted according to the censoring probability.

Proportional means regression model Lin et al. (2000) suggest a semi-parametric multiplicative regression model for
recurrent events. The proportional rates model states that,

dµ(t | Z(t)) = E(dN∗(t) | Z(t)) = dµ0(t)exp(β T Z(t)), (3)

where dµ0(t) denotes the unspecified baseline function. With no time-varying covariates, Z(t) = Z, and the model
simplifies to

µ(t | Z) = E(N∗(t) | Z) = µ0(t)exp(β T Z). (4)

This is known as the proportional means model. We denote this model by the LWYY model. The estimating equations
of this model are given by,

U(β ) =
n

∑
i=1

∫ τ

0
{Zi(u)− Z̄(β ,u)} dNi(u),

with

Z̄(β ,u) =
∑n

j=1 Yi(t)Zi(t)exp(β T Zi(t))

∑n
j=1 Yi(t)exp(β T Zi(t))

,

where Yi(t)= I(Ci ≥ t) denotes the at-risk process or equivalently the censoring process for individual i (Ci(t)= I(Ci ≥ t)).
The solution to U(β ) = 0 is denoted β̂ . The censoring mechanism is assumed to be conditionally independent given
covariates such that

E(dN∗(t) | Z(t),C ≥ t) = E(dN∗(t) | Z(t)), (5)

for all t ≥ 0 (Lin et al. (2000)). Ghosh and Lin (2002) suggested an extension of the proportional means or rates model
for recurrent events with terminal events. The model adheres to both equation (3) and equation (4). With terminal events,
N∗(t) still records the observed recurrent events but the observation of recurrent events may be prevented by death. We
denote it the GL model. The LWYY model targets the expected number of recurrent events in a world without mortality.
Whereas, the GL model targets the expected number of recurrent events with mortality. That is, the reason for observing
a low number of recurrent events in the presence of terminal events can be due to; a higher mortality rate, a lower rate
of recurrent events while alive or a mixture. Thus, in the presence of terminal events, it will be important to consider
mortality given covariates in addition to considering the number of recurrent events.

Inference for the GL model can be done using either inverse probability of censoring or survival weights. Technically,
the adjustment for mortality is done by acknowledging that the censoring times are unknown for individuals who already
died. The estimating equations using IPCW for the Ghosh-Lin model are given by,

UC(β ) =
n

∑
i=1

∫ τ

0

{
Zi(u)− Z̄C(β ,u)

}
ŵC

i (t)dNi(u),

with

Z̄C(β ,u) =
∑n

j=1 ŵC
i (t)Zi(t)exp(β T Zi(t))

∑n
j=1 ŵC

i (t)exp(β T Zi(t))
,

and

ŵC
i (t) =

I(Ci ≥ Di ∧ t)Ĝ(t)

Ĝ(Ci ∧Di ∧ t)
.

The censoring distribution can be allowed to depend on covariates, Z(t), but it is required that C and D∗ are conditionally
independent given Z(·). If we believe that N∗(·) and C are completely independent, such that E(N∗(t) |C ≥ t)=E(N∗(t)),
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it may be reasonable to base Ĝ(t) on a Kaplan-Meier estimate of G(t). Whereas, if N∗(·) and C are conditionally
independent given Z(·), we may wish to base Ĝ on, e.g., a Cox model, such that the censoring hazard is given by

λC(t | Z(t)) = λC
0 (t)exp(δ T Z(t)),

where λC
0 (t) denotes the baseline censoring hazard and δ the effect of covariates, Z(t). Accordingly,

Ĝ(t | Z(t)) = exp
(
−
∫ t

0
exp(δ̂ T Z(t))dΛ̂C

0 (t)
)
,

where δ̂ denotes the partial maximum likelihood estimator of δ and Λ̂C
0 (t) denotes the Breslow estimate of the cumulative

censoring hazard ΛC
0 (t) =

∫ t
0 λC

0 (u)du (Cox (1972) and Breslow (1974)). Then, the weights should be modified to

ŵC
i (t) =

I(Ci ≥ Di ∧ t)Ĝ(t | Zi)

Ĝ(Ci ∧Di ∧ t | Zi)
.

Inference on recurrent events with dependent censoring is also discussed in Ghosh and Lin (2003).

3 Pseudo-observations
Andersen, Klein, et al. (2003) proposed using pseudo-observations for the analysis of life history data. For an introduction
to pseudo-observations within survival analysis, see Andersen and Perme (2010). The parameter of interest for our
marginal model is the expected number of recurrent events, that is

θ = µ(t) = E(N∗(t)).

Furberg et al. (2023) propose a bivariate model based on pseudo-observations for analysing recurrent events and terminal
events simultaneously. For recurrent events, the parameter of interest is the expected number of recurrent events, θ .
Furberg et al. discuss the computation of pseudo-observations with completely independent censoring. We suggest
modifying this approach to use weighted non-parametric estimators that can accommodate covariate dependent censoring.
We consider the IPCW estimator (see Section 2),

µ̂(t) =
1
n

n

∑
i=1

∫ t

0

1

Ĝ(u−)
dNi(u).

Hence, for a fixed t ∈ [0,τ], the pseudo-observation for individual i is given by

µ̂i(t) = nµ̂(t)− (n−1)µ̂−i(t),

where µ̂(t) is the estimate based on the entire sample and µ̂−i(t) is the leave-one-out estimator based on the entire sample
where the observations from individual i is omitted. A generalised linear model which models the pseudo-observations
conditional on covariates may be formulated as

g(µ(t | Z)) = β T Z,

where g denotes a link function. The link functions, g(x) = x or g(x) = log(x), lead to the following two models,

Model 1: µ(t | Z) = β T Z,

Model 2: log(µ(t | Z)) = β T Z.

Model 1 targets mean differences and model 2 targets mean ratios. Model 2 corresponds to the proportional means model
(the LWYY model with no competing risks and the GL model with competing risks). Model parameters are estimated
using generalised estimating equations (GEE) as discussed in Furberg et al. (2023). Pseudo-observations may be com-
puted at more than one time point to model interaction between covariates and time. Dependence within an individual is
handled through the specification of the dependence in the GEE framework. Results indicate that little precision is gained
by computing pseudo-observations at more than five time points (Furberg et al. (2023)).

Binder et al. (2014) discussed regression models for cumulative incidences based on pseudo-observations adjusted for
covariate dependent censoring. In particular, they propose alternative ways of computing the leave-one-out estimator
which are less computationally burdensome. In their simulations, computations are faster and bias is negligible when
using the faster leave-one-out estimators. Three versions are natural to consider for the computation of the leave-one-out
estimator of the marginal mean. For illustration, assume that the censoring distribution follows a Cox model, such that

G(t | Zi) = exp(−ΛC
0 (t)exp(δ T Zi)),
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where Zi denotes the baseline covariate(s) for individual i. In particular, the leave-one-out estimators may be computed
in three ways. First, the censoring model may be fitted n times resulting in n estimates where individual i is left out, such
that we obtain δ̂−i and Λ̂C

−i,0(t). Here,

µ̂−i(t) =
1

n−1

∫ t

0
∑
k ̸=i

1

exp
(
−Λ̂C

−i,0(u
−)exp(δ̂ T

−iZk)
) dNk(u). (6)

Alternatively, the censoring distribution may be fitted a single time which results in δ̂ and Λ̂C
0 (t). Hence,

µ̂−i(t) =
1

n−1

∫ t

0
∑
k ̸=i

1

exp
(
−Λ̂C

0 (u
−)exp(δ̂ T Zk)

) dNk(u). (7)

Finally, a combination may be considered where the regression coefficient is estimated based on all subjects but the
cumulative baseline hazard of censoring is computed n times. This leads to

µ̂−i(t) =
1

n−1

∫ t

0
∑
k ̸=i

1

exp
(
−̂̃Λ

C

−i,0(u−)exp(δ̂ T Zk)

) dNk(u). (8)

where δ̂ is used in the computation of ̂̃Λ
C

−i,0(u
−). We expect the computation in equation (6) to be most expensive,

followed by equation (8) and finally equation (7). Analogous considerations apply for considering a different censoring
distribution.

Theoretical derivations and large sample properties of the suggested pseudo-observation method is beyond the scope of
this article. The asymptotic distribution of the estimator of the regression coefficient should be explored in more detail.
Overgaard et al. (2019) discuss large sample properties of pseudo-observation models for survival probabilities and cu-
mulative incidences under covariate dependent censoring.

4 Simulation studies
The suggested methods will be illustrated using simulation. For generality, data is generated from a recurrent event, death
and censoring process (see Figure 2). That is, we assume that there is non-negligible mortality. We imagine that the
aim is to infer the effect of a single binary treatment Z on the expected number of recurrent events. This inference is
complicated by the presence of death and censoring, which both is affected by Z. It is assumed that,

µ(t | Z) = E(N∗(t) | Z) = µ0(t)exp(βZ), (9)

S(t | Z) = P(D∗ > t | Z) = exp
(
−ΛD

0 (t)exp(γZ)
)
, (10)

G(t | Z) = P(C > t | Z) = exp
(
−ΛC

0 (t)exp(δZ)
)
. (11)

We consider the following data generating frailty models as suggested by Ghosh and Lin (2002),

λ D(t | Z,ν) = ν exp(γDZ)λ D
0 ,

dR(t | Z,ν) = νS0(t | ν)1−exp(γDZ) exp(βZ)dt,

where S0(t | ν) = exp
(
−∫ t

0 λ D(u | Z = 0,ν)du
)

and ν > 0 is a frailty term that is assumed to be generated from a positive
stable distribution with Laplace transform exp(−νρ), ρ ∈ (0,1]. Marginalizing over the random effect leads to,

µ0(t) =
1

λ D
0

(
−exp

(
−
(
λ D

0 t
)ρ
)
+1
)
, ΛD

0 (t) =
(
λ D

0 t
)ρ
, γ = γDρ.

Moreover, it is assumed that ΛC
0 (t) = λC

0 t. The true censoring distribution follows a Cox model. Thus, inference from a
Ghosh-Lin model where the weights are calculated assuming completely independent censoring (Kaplan-Meier used to
estimate Ĝ(t)) will be biased. If the censoring model is correctly specified as a Cox model, inference from the Ghosh-Lin
model with updated weights should again be unbiased. Additional administrative censoring was imposed at time 8. A
total of 1000 simulations will be done per parameter setting. We explore δ = {0,0.2,0.5} with n = {100,200,500},
β = {0,0.2}, γ = {0,0.2}, and ρ = 1. It is assumed that λC

0 = 0.2 and λ D
0 = 0.25. For these settings, the average number

of recurrences is 2-3 recurrent events per individual.
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Proportional means regression model For each simulated data set, three Ghosh-Lin type of models have been fitted;
Ghosh-Lin model 1 (GL 1) with weights based on a Kaplan-Meier estimate of the censoring distribution Ĝ(t), Ghosh-Lin
model 2 (GL 2) with weights based on a stratified Cox model with ĜZ(t) = exp(−Λ̂C

0Z(t)), and Ghosh-Lin model 3 (GL
3) with weights based on a Cox model with Ĝ(t | Z) = exp(−Λ̂C

0 (t)exp(β̂Z)). Models based on weights from GL 2 or 3
are expected to capture the dependent censoring imposed in the simulation procedure.

Table 1 displays the results from the simulation study for the three types of Ghosh-Lin models. The first Ghosh-Lin
model (GL 1) is only unbiased while δ = 0 as the censoring distribution is equal for the two treatments. This is captured
by estimating the censoring distribution using the Kaplan-Meier estimator. If δ > 0, GL 1 becomes biased whereas the
models based on different censoring distributions for the two treatment groups (GL 2 and 3) are still unbiased. Results
are similar for GL 2 and GL 3 where the censoring distribution is either assumed to follow a Cox model given treatment
or the censoring distribution is estimated separately per treatment group.

GL 1: GL 2: GL 3:
Ĝ(t) KM ĜZ(t) Strat. Cox Ĝ(t | Z) Cox

δ β γ ρ n E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ ))
0 0.2 0 1 100 0.200 0.200 0.192 0.202 0.196 0.193 0.202 0.195 0.193

200 0.195 0.135 0.137 0.194 0.132 0.137 0.195 0.132 0.137
500 0.201 0.088 0.087 0.201 0.086 0.087 0.201 0.086 0.087

0.2 100 0.204 0.205 0.201 0.203 0.203 0.201 0.206 0.201 0.201
200 0.201 0.145 0.143 0.200 0.141 0.143 0.201 0.141 0.143
500 0.196 0.086 0.091 0.194 0.083 0.091 0.195 0.084 0.091

0.2 0.2 0 1 100 0.174 0.192 0.192 0.199 0.190 0.193 0.199 0.188 0.192
200 0.172 0.139 0.137 0.198 0.136 0.137 0.198 0.136 0.137
500 0.178 0.088 0.087 0.204 0.086 0.087 0.204 0.086 0.087

0.2 100 0.159 0.208 0.203 0.184 0.205 0.203 0.187 0.203 0.203
200 0.174 0.143 0.144 0.199 0.139 0.144 0.200 0.139 0.144
500 0.169 0.091 0.091 0.196 0.088 0.091 0.196 0.089 0.091

0.5 0.2 0 1 100 0.125 0.197 0.194 0.187 0.195 0.194 0.192 0.193 0.193
200 0.133 0.139 0.138 0.199 0.135 0.138 0.201 0.135 0.138
500 0.125 0.089 0.088 0.195 0.086 0.088 0.194 0.087 0.088

0.2 100 0.116 0.216 0.203 0.181 0.208 0.203 0.187 0.209 0.203
200 0.124 0.147 0.145 0.195 0.142 0.144 0.199 0.142 0.145
500 0.115 0.092 0.092 0.191 0.091 0.093 0.191 0.090 0.093

Table 1: Results from simulation study based on 1000 simulations for Ghosh-Lin model types. The average of the β̂ parameter
estimates is denoted E(β̂ ). Moreover, E(se(β̂ )) denotes the average of the estimated standard errors of the β̂ estimates. The standard
deviation of the β̂ estimates is denoted SD(β̂ ). Censoring times follow a Cox model per equation (11).

GL 1: GL 2: GL 3:
Ĝ(t) KM ĜZ(t) Strat. Cox Ĝ(t | Z) Cox

β γ ρ n E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ ))
0.2 0 1 100 0.020 0.227 0.212 0.175 0.217 0.206 0.220 0.211 0.206

200 0.028 0.151 0.152 0.188 0.145 0.148 0.223 0.141 0.148
500 0.031 0.100 0.097 0.196 0.095 0.095 0.228 0.093 0.095

0.2 100 −0.007 0.244 0.227 0.165 0.232 0.221 0.223 0.221 0.221
200 0.004 0.163 0.162 0.182 0.158 0.157 0.230 0.152 0.158
500 0.009 0.104 0.103 0.195 0.099 0.100 0.236 0.097 0.101

Table 2: Results from simulation study based on 1000 simulations for Ghosh-Lin model types. The average of the β̂ parameter
estimates is denoted E(β̂ ). Moreover, E(se(β̂ )) denotes the average of the estimated standard errors of the β̂ estimates. The standard
deviation of the β̂ estimates is denoted SD(β̂ ). Censoring times follow piece-wise constant hazard ratios, see equation (12).

Instead of adhering to a Cox model, the censoring distribution could follow a piece-wise constant hazard ratios model.
To that end, we let

λC
0 (t) = 0.1,

λC
1 (t) =





0.7, for 0 ≤ t < 2,
0.1, for 2 ≤ t < 5,
0.5, for t ≥ 5,

such that

GZ(t) = G(t | Z) = P(C > t | Z) = exp
(
−λC

Z (t)t
)
, for Z ∈ {0,1}. (12)
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For such a situation, inverse censoring weights based on a model stratified for Z would be correct (GL 3) since weights
based on a Cox model would be mis-specified (GL 2). This has been explored in a simulation study where all other
assumptions are kept fixed. Table 2 displays the results. GL 1 is very biased and GL 3 also exhibits some bias. The
Ghosh-Lin model based on the stratified censoring model (GL 2) performs best.

Pseudo-observation regression model Alternatively, a model for the marginal mean based on pseudo-observations
could have been applied to the simulated data. Thus, three different models based on pseudo-observations have been
fitted for each simulated data set. All three models are based on pseudo-observations computed for µ̂(t) at time 7 using
a log-link function (Model 2). The weighted Nelson-Aalen estimators which are used in the computations of the pseudo-
observations varies between the three models. The inverse weights are as for the Ghosh-Lin type models based on;
Pseudo-observation model 1 (Pseudo 1) using a Kaplan-Meier estimate for Ĝ(t), Pseudo-observation model 2 (Pseudo 2)
using a Stratified Cox model with ĜZ(t) = exp(−Λ̂C

0Z(t)) and Pseudo-observation model 3 (Pseudo 3) using a Cox model
with Ĝ(t | Z) = exp(−Λ̂C

0 (t)exp(β̂Z)). To ease the computational burden, the leave-one-estimator suggested in equation
(7) has been used for computation of the pseudo-observations.

Pseudo 1: Pseudo 2: Pseudo 3:
Ĝ(t) KM ĜZ(t) Strat. Cox Ĝ(t | Z) Cox

δ β γ ρ n E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ ))
0 0.2 0 1 100 0.202 0.245 0.233 0.201 0.237 0.233 0.202 0.230 0.232

200 0.196 0.167 0.165 0.198 0.164 0.165 0.197 0.161 0.165
0.2 100 0.192 0.265 0.247 0.192 0.259 0.248 0.190 0.252 0.247

200 0.202 0.175 0.175 0.203 0.170 0.175 0.199 0.167 0.174
0.2 0.2 0 1 100 0.164 0.269 0.242 0.201 0.256 0.243 0.198 0.249 0.243

200 0.159 0.176 0.171 0.196 0.171 0.172 0.197 0.169 0.172
0.2 100 0.154 0.267 0.253 0.196 0.258 0.254 0.189 0.253 0.253

200 0.153 0.181 0.193 0.195 0.175 0.181 0.193 0.171 0.181
0.5 0.2 0 1 100 0.089 0.264 0.254 0.195 0.252 0.260 0.188 0.247 0.258

200 0.093 0.173 0.179 0.194 0.166 0.183 0.190 0.166 0.182
0.2 100 0.077 0.286 0.263 0.192 0.271 0.268 0.180 0.261 0.265

200 0.074 0.207 0.187 0.186 0.194 0.190 0.179 0.190 0.189

Table 3: Results from simulation study based on 1000 simulations for pseudo-observation model types. The average of the β̂ parameter
estimates is denoted E(β̂ ). Moreover, E(se(β̂ )) denotes the average of the estimated standard errors of the β̂ estimates. The standard
deviation of the β̂ estimates is denoted SD(β̂ ). Censoring times follow a Cox model per equation (11).

Pseudo 1: Pseudo 2: Pseudo 3:
Ĝ(t) KM ĜZ(t) Strat. Cox Ĝ(t | Z) Cox

β γ ρ n E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ )) E(β̂ ) SD(β̂ ) E(se(β̂ ))
0.2 0 1 100 −0.016 0.228 0.242 0.192 0.203 0.261 0.143 0.213 0.256

200 −0.010 0.161 0.172 0.196 0.146 0.185 0.156 0.150 0.182
0.2 100 −0.032 0.241 0.246 0.203 0.214 0.266 0.141 0.225 0.259

200 −0.022 0.183 0.176 0.215 0.164 0.189 0.161 0.172 0.185

Table 4: Results from simulation study based on 1000 simulations for pseudo-observation model types. The average of the β̂ parameter
estimates is denoted E(β̂ ). Moreover, E(se(β̂ )) denotes the average of the estimated standard errors of the β̂ estimates. The standard
deviation of the β̂ estimates is denoted SD(β̂ ). Censoring times follow piece-wise constant hazard ratios, see equation (12).

Table 3 displays the results from the simulation studies based on the pseudo-observation models where the true censoring
distribution follows a Cox model. Pseudo 1 is only unbiased for δ = 0 but becomes biased as δ > 0. Pseudo 2 and 3 are
unbiased for all δ ≥ 0. The results are very similar to those in Table 1 where the Ghosh-Lin models were considered.
Table 4 displays the results for the pseudo-observation models based on a true piece-wise constant censoring hazard ratios
per equation (12). Pseudo 1 is biased and Pseudo 3 also exhibits some bias. Pseudo 2 is unbiased as expected. Again,
the results for the GL and pseudo-observation type models are very similar (Tables 2 and 4). In general, the models
based on pseudo-observations have larger variance estimates compared to Ghosh-Lin type models. This is not surprising
as the true model follows the Ghosh-Lin structure for the true mean and the pseudo-observation model imposes less as-
sumptions. The variance for the pseudo-observation models can be reduced by computing pseudo-observations at several
time points, e.g., at times (5,7,10), but this is more computationally expensive (see Furberg et al. (2023)). Intention:
Additional simulations for n = 500 in Tables 3 and 4 are intended for the final manuscript.
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5 Application
The methods discussed in this paper will be illustrated using two examples.

Application 1: Hospital readmission among colorectal cancer patients The first application considers hospital read-
missions among patients diagnosed with colorectal cancer (González et al. (2005)). A total of 403 patients that were
diagnosed with colorectal cancer between January 1996 and December 1998 were actively followed up until 2002 in
Hospital Universitary in L’Hospitalet (Barcelona, Spain). The purpose was to investigate sex-based differences in hospi-
tal admission. This was an epidemiological study without randomisation but will be used for illustration of the methods
in this paper. Of the 403 patients, 112 died during follow-up and 294 were censored. Information on whether patients
received chemotherapy (‘Yes’, ‘No’) was available. The data set can be downloaded from the R-package frailtypack

(Rondeau, Mazroui, et al. (2012), Rondeau and Gonzalez (2005), Król et al. (2017), and Rondeau, Gonzalez, et al.
(2019)).

For this application, we focus on modelling the marginal expected number of hospital admissions per chemotherapy
group. Figure 3 displays non-parametric estimates of the expected number of recurrent events (µ(t)), survival function
(S(t)) and censoring distribution (G(t)) per chemotherapy treatment group. The chemotherapy group has less expected
hospital admissions, higher probability of surviving as well as a higher probability of being censored.
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Figure 3: Non-parametric estimates based on the readmission data. Left figure: Marginal mean estimate of the expected number
of hospital admissions per chemotherapy treatment computed using equation (2). Middle figure: Estimated survival function, S(t) =
P(D∗ > t), per treatment computed using Kaplan-Meier. Right figure: Estimated censoring distribution, G(t) = P(C> t), per treatment
computed using Kaplan-Meier.

Three different Ghosh-Lin models are fitted to the data set to model the expected number of hospital admissions. Thus,
the expected number of hospital admissions given treatment is assumed to follow the model,

E(N∗(t) | Z) = µ(t | Z) = µ0(t)exp(βZ),

where Z denotes treatment (Z = 0 corresponds to no chemotherapy and Z = 1 corresponds to chemotherapy). Three types
of censoring weights are used in the estimation, corresponding to those discussed in the simulation studies, where the
censoring distribution is estimated using a: 1. Kaplan-Meier estimate, 2. Stratified Cox model or 3. Cox model. Figure 4
displays the estimated censoring distributions for each situation. Situation 1 corresponds to assuming that N∗(·) and C are
independent whereas situation 2 and 3 corresponds to a conditional independence between N∗(·) and C given Z. Table 5
displays the estimates derived from each model. Overall, the estimates look very similar. Models 2 and 3 produce almost
identical results. Models 2 and 3 correspond to exploring if there is any covariate dependent censoring given treatment,
and thus a different censoring pattern. The results indicate that this does not seem to be the case. Figure 5 displays the
estimated marginal means per treatment group imposing the Ghosh-Lin models using the different weights. The estimates
are almost indistinguishable. Assume that the Ghosh-Lin model type 1 (GL 1) was pre-specified as the primary analysis
and either GL 2 or GL 3 as a sensitivity analysis exploring the independent censoring assumption. Then, this example
corresponds to a situation where the results from the primary analysis (GL 1) seem robust compared to the results from
the sensitivity analyses (GL 2 or GL 3).
The regression model based on pseudo-observations could also be fitted to the readmission data. Using a log-link, this
model assumes that,

E(N∗(t) | Z) = µ(t | Z) = µ0(t)exp(βZ).

8



Model β̂ se(β̂ ) exp(β̂ ) 95% CI for exp(β )
GL 1 (Ĝ(t) KM) −0.520 0.167 0.595 [0.428;0.826]
GL 2 (ĜZ(t) Strat. Cox) −0.507 0.168 0.602 [0.433;0.837]
GL 3 (Ĝ(t | Z) Cox) −0.507 0.168 0.602 [0.434;0.836]

Table 5: Parameter estimates from Ghosh-Lin type models based on various censoring weights for the readmission data. CI: Confi-
dence interval.

The pseudo-observations are computed at one time points, t = (1000), and three time points, t = (500,1000,1500) (see
Figure 3). The censoring weights have been calculated in three ways using the fast leave-one-out estimator suggested
in equation (7). Results are displayed in Table 6. The pseudo-observation models computed at t = (1000) and t =
(500,1000,1500) produce similar results but the standard errors are smaller for the model based on three time points as
expected. Overall, the results based on the pseudo-observation models are very similar to those based on the Ghosh-Lin
models in Table 5.

Time points Model β̂ se(β̂ ) exp(β̂ ) 95% CI for exp(β )
t = (1000) Pseudo 1 (Ĝ(t) KM) −0.541 0.183 0.582 [0.407;0.833]

Pseudo 2 (ĜZ(t) Strat. Cox) −0.539 0.183 0.583 [0.407;0.835]
Pseudo 3 (Ĝ(t | Z) Cox) −0.536 0.183 0.585 [0.409;0.838]

t = (500,1000,1500) Pseudo 1 (Ĝ(t) KM) −0.535 0.169 0.585 [0.421;0.815]
Pseudo 2 (ĜZ(t) Strat. Cox) −0.530 0.169 0.589 [0.423;0.820]
Pseudo 3 (Ĝ(t | Z) Cox) −0.523 0.169 0.593 [0.426;0.825]

Table 6: Parameter estimates from pseudo-observation type models based on various censoring weights for the readmission data. CI:
Confidence interval.
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Figure 4: Probability of remaining uncensored, G(t) = P(C > t), estimated using a Kaplan-Meier estimator, a Cox model given
treatment group, a stratified Cox model per treatment, corresponding to the censoring distributions used in the inverse censoring
weights for the three Ghosh-Lin and pseudo-observation models.
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Figure 5: Estimated µ̂(t | Z) = µ̂0(t)exp(β̂Z) for Z = {0,1} for the three Ghosh-Lin models computed using different inverse censor-
ing weights.

Application 2: Recurrent cardiovascular events for patients with diabetes Intention: Space for application to data
from Novo Nordisk with covariate dependent censoring. Potentially, the LEADER data could be used with focus on
recurrent cardiovascular events occurring while on-treatment focusing on differential treatment adherence for US
versus non-US patients (Marso et al. (2016)). This needs to be explored in more detail.

6 Discussion
The presented methods and models are intended as useful analyses for recurrent events that can explore departures from
completely independent censoring. The suggested approaches accommodate covariate dependent censoring induced by
baseline covariates. Emphasis has been placed on marginal models for recurrent events focusing on the expected number
of recurrent events with or without the influence of terminal events. This is motivated by the intention to extract a simple
treatment effect from recurrent event data from randomised controlled trials as discussed by Cook and Lawless (2007).
Other treatment effects than the effect of being randomised may be explored which would entail the causality framework
to adequately describe the target parameter(s) of interest. Su et al. (2022) discuss causal inference for recurrent event
data without terminal events based on g-formula estimators, estimators based on inverse probability of treatment weights,
doubly robust estimators as well as pseudo-observations. In order to describe an on-treatment estimand, censoring may
be caused by treatment discontinuation leading to a potentially dependent censoring pattern (EMA (2020a)). Description
of such an estimand may require both considerations from causal inference as well as dependent censoring as discussed
in this paper.

The suggested marginal models for recurrent events qualify as candidates for pre-specified sensitivity analyses of recur-
rent events which explores the censoring assumption. This would be relevant for the Novo Nordisk clinical trial ZEUS
(ClinicalTrials.gov (2023)). ZEUS is a randomised controlled trial exploring the effect of ziltivekimab versus placebo in
a population with cardiovascular disease, chronic kidney disease and inflammation. A secondary confirmatory endpoint
in this trial is a recurrent event endpoint, namely the number of heart failure hospitalisations or urgent heart failure visits.
In line with the ICH E9 (R1) addendum on estimands, this implies that robustness of the secondary confirmatory analysis
should be explored through a sensitivity analysis which targets the same estimand (EMA (2020a)).

Covariate dependent censoring has been introduced in several simulation studies either through a Cox model or with
piece-wise constants hazard ratios of censoring accommodated by a stratified Cox model. With dependent censoring,
standard models which assume completely uninformative censoring are biased. If the censoring distribution given base-
line covariates are correctly specified, this bias disappears when the inverse censoring weights are updated correspond-
ingly. The proportional means or rates regression model suggested by Ghosh and Lin (2002) was explored while focusing
on different censoring models. Moreover, a regression model based on pseudo-observations obtained by a weighted
Nelson-Aalen estimator was explored. This is an extension of the pseudo-observation regression model for recurrent
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events discussed in Andersen, Angst, et al. (2019) and Furberg et al. (2023). Theoretical properties and large sample
behaviour of the proposed pseudo-observation method should be explored in future work.

The models have been applied to two real data examples: hospital readmissions among patients with colorectal cancer
and recurrent cardiovascular outcomes for patients with diabetes. Only the latter was a randomised trial comparing two
treatments. The two examples illustrate two potential outcomes of the sensitivity analysis: either the results indicate ro-
bustness or not. For the first application to the hospital readmissions for patients with cancer, the results were very similar.
Such a situation would indicate robustness. Intention: Whereas, for the second application, cardiovascular outcomes
for patients with diabetes, the results differed more. This would be an example of the opposite, i.e., a situation which
indicates some level of covariate dependent censoring being present to the extent that the results are impacted.

Zhao et al. (2014) suggested a tipping-point style sensitivity analysis of time-to-event outcomes which imputes event
times for individuals that drop-out prior to study closure. Imputations may be done differently in each treatment arm
allowing for dependent censoring and thus ‘penalizing’ the active treatment arm relative to the placebo arm. The tipping
point is the penalty required in order for the conclusion of the analysis to change (i.e., assuming that the analysis was
met). A tipping-point type of analysis for recurrent events with terminal events is a topic for further research.

Extensions of the suggested pseudo-observation method to bivariate or higher dimensional measures that accommodates
covariate dependent censoring are a topic for further research. An example could be focusing on the marginal mean
and the survival function, θ = (µ(t),S(t)), or the marginal mean and cumulative incidences for causes 1 and 2, θ =
(µ(t),F1(t),F2(t)), as suggested in Furberg et al. (2023).
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