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Abstract

This paper argues that the Cox-model is over-used, and that a more
parsimonious approach to modelling of time-effects may have some advantages,
particularly from a conceptual point of view. Taking a demographic point of view
and visualizing follow-up data in a Lexis diagram moves the focus to time as a
covariate, and naturally to the consideration of several possible time-scales.

1 Introduction

In the last 30 years, survival analysis has been virtually synonymous with application of
the Cox-model. The common view of survival analysis (and teaching of it) from the
Kaplan-Meier-estimator to the Cox-model is based on time as the response variable,
incompletely observed (right-censored). This has automatically lent an aura of
complexity to concepts such as time-dependent covariates, stratified analysis, delayed
entry and time-varying coefficients. The aim of this paper is to show that it need no be
SO.

If survival studies is viewed in the light of the demographic tradition, the basic
observation is not one time to event (or censoring) from each individual, but rather
many small pieces of follow up from each individual. This makes concepts clearer as
modelling of rates rather than time to response becomes the focus; the basic response is
now a 0/1 outcome in each interval, albeit not independent anymore. Time is then
correctly viewed as a covariate rather than a response. Time-dependent covariates will
not have any special status relative to other covariates, except to the extent they are
intermediate responses that one conditions on. Stratified analysis becomes a matter of
interaction between time and a categorical covariate, and time-varying coefficients
becomes interactions between time and a continuous covariate. Finally, the modelling
tools needed reduces to Poisson regression.

The practical part of this change in modelling focus leads to splitting of the
follow-up into many observations, and hence Poisson modelling of datasets with 10-50
times as many observations as persons. The lack of computing power has been a
problem until recently, as has the absence of software for rational handling of this
approach. There are now solutions available for at least Stata, SAS and R, which makes
this approach widely accessible.

The only remaining advantage of the Cox-model is the ability to easily produce
estimates of survival probabilities in (clinical) studies with a well-defined common entry
time for all individuals. This can however also be produced from a Poisson model with
not too complicated methods.

2 Time: Response or covariate?

One common exposition of survival analysis is as analysis of data (X, Z), where we only
observe min(X, Z) and 6 = 1{Z < X}. This is an approach which takes the survival
time X, as response variable, albeit not fully observed, limited by the censoring time, Z.
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However from a life-table (demographical) point of view the survival time is better
viewed as a covariate, and only differences (i.e. risk time) on (any) time-scale should be
considered responses. In a life-table differences on the time-scale are accumulated as risk
time whereas the position on the age-scale for these are used as a covariate classifying
the table.

Consider a follow-up (survival) study where the follow-up time for each individual is
divided into small intervals of equal length y, say, and each with an exit status recorded
(this will be 0 for the vast majority of intervals and only 1 for the last interval for
individuals experiencing an event)

Each small interval for an individual contributes an observation of what I will term
an empirical rate, (d,y), where d is the number of events in the interval (0 or 1), and y is
the length of the interval, i.e. the risk time. This definition is slightly different from the
traditional as d/y (or Y d/ > y); it is designed to keep the entire information content in
the demographic observation, even if the number of events is 0. This is in order to make
it usable as a response variable in statistical analyses.

The theoretical rate of event occurrence is defined as a function, usually depending
on some time-scale, t:

A(t) = lim P {event in (¢,t + h)| at risk at time ¢}
AN0 A
The rate may depend on any number of covariates; incidentally on none at all. Note

that in this formulation time(scale) ¢ has the status of a covariate and risk time h the
status of risk time, which is the difference between two points on the time-scale.

Likelihood for empirical rates

This definition can immediately be inverted to give the likelihood contribution from an
observed empirical rate (d,y), for an interval with constant rate A, namely the Bernoulli
likelihood! with probability Ay:

L) = w0 = (22 ) -

A
((A(d,y)) = dln (1 yA ) +1In(1 — \y) = dIn(\) +dIn(y) — \y
—AY
where the term dIn(y) can be dispensed with because it does not depend on the
parameter \.
Observation of several independent empirical rates with the same theoretical rate

parameter will give rise to a log likelihood that depends on the empirical rates only
through D = > d and Y = > y of the form:

(A(D,Y)) = DIn(\) — AV (1)

! The random variables event (0/1) and follow-up time for each individual have in this formulation
been transformed into a random number of 0/1 variables (of which at most the last can be 1). Hence the
validity of the binomial argument, y is not a random quantity, but a fixed quantity.
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which apart from a constant is the log likelihood for a Poisson variate D with mean \Y .

The contributions to the likelihood from one individual will not be independent, but
they will be conditionally independent — the total likelihood from one individual will be
the product of conditional probabilities of the form:

P {event in (t3,%4)| alive at t3} x P {survive (tq,t3)| alive at ts}
x P {survive (t1,ty)| alive at t;}

x P {survive (to,t;)| alive at to}

Hence the likelihood for a set of empirical rates looks like a likelihood for independent
Poisson observations, but it is not, it is a product (and the log-likelihood a sum) of
conditional probabilities.

Thus follow-up studies can be analysed in any desired detail using the Poisson
likelihood for independent observations; it depends on how large intervals of constant
rate one is prepared to accept. Of course the amount and spacing of events limits how
detailed the rates can be modelled.

Note that it is only the likelihood that coincides with that of a Poisson model, not
the distribution of the response variable (d,y), so only inference based on the likelihood
is admissible. Any measures deriving from properties of the Poisson distribution as such
are in principle irrelevant.

Analysis of a multiplicative model for the rate parameter A amounts to fitting a
Poisson model which is linear in log(u) = log(AY) = log(A) + log(Y). If log()) is to be
the parameter the software must be able to handle the term log(Y') as a covariate with
fixed coefficient equal to 0, a so called offset, see e.g. [5].

3 The Cox-likelihood as a profile likelihood

The Cox-model leaves the effect of one primary time-scale unspecified:

A(t,z) = Xo(t) x exp(n), n=Xp3

Cox [2] devised the partial log-likelihood for the parameters 5 = (B, ..., ,) in the
linear predictor n; = 121 + - - + Bpxpic

Tldeath
(p) = log (e_)
( ) dea‘%mes ZieRf e

where R; is the risk set at time ¢, i.e. the set of individuals at risk at time t.

Suppose the time-scale has been divided into small time intervals with at most one
death in each, and that we in addition to the regression parameters describing the effect
of covariates use one parameter per death time to describe the effect of time (i.e. the
chosen time-scale). Thus the model with constant rates in each small interval is:

log (A(t,z;)) =1log (Ao(t)) + Brari + - + Bptps = au + 15

Assume w.l.o.g. that the ys for all these empirical rates are 1. The log-likelihood
contributions that contain information on a specific time-scale parameter ay, relating to
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time ¢ say, will be contributions from the empirical rate (d,y) = (1,1) with the death at
time ¢, and all the empirical rates (d,y) = (0,1) from all the other individuals that were
at risk at time ¢. There is exactly one contribution from each individual at risk to this
part of the log-likelihood:

li(ay, B) = Z {di(a +m) — e} =y + Ngearn — €™ Z e’

1€R: 1€RL

where 7geatn is the linear predictor for the individual that died. The derivative w.r.t. oy
is:

1
Dutanf) = 1= T 0 & o
iGZRt Zz‘eRt e

If the estimate of e* is fed back into the log-likelihood for oy, we get the profile
likelihood (with oy “profiled out”):

1 1 1 1 endeath 1
o8 (ZiERt e77i> " Mdeath = -8 (ZiE'Rt eWi) B

which is the same as the contribution from time t to Cox’s partial log-likelihood.

The Cox-model could therefore have been formulated as one where there was a
separate time-scale parameter for each time-interval.

For those intervals on the time-scale where no deaths occur, the estimate of the oy
will be —oo, and so these intervals will not contribute to the log-likelihood.

Hence, the Cox-model can be estimated by standard Poisson-regression-software by
splitting the data finely and specifying the model as having one rate parameter per time
interval. The results will be the same, also for the standard errors, because it is the
same likelihood that is maximized. This is illustrated empirically in the first part of the
program lung-ex.R listed in section 9

This is by no means a new discovery, already John Whitehead [4] pointed this
possibility out in 1980. However, the computational capacity problems connected with
this approach in the 1980s were too large for the method to catch on in practice.

4 Practical data processing

Implementation of the Poisson-approach in practice requires that follow-up for each
individual is split in small pieces of follow-up along one or more time-scales. The
relevant time-varying covariates should be computed for each interval and fixed
covariates should be carried over to all intervals for a given individual.

Presently there are tools for this in:

Stata: The function stsplit (part of standard Stata), a descendant of stlexis
written by Michael Hills & David Clayton.

SAS: A macro %Lexis, available at http://wwww.biostat.ku.dk/ bxc/Lexis, written
by Bendix Carstensen.



Practical use of the Lexis diagram 5

R: A function Lexis, written by David Clayton, included in the package Epi which is
available at the comprehensive R archive network, CRAN,
http://cran.r-project.org/.

These tools expand a traditional survival dataset with one record per individual to one
with several records per individual, one record per follow-up interval.

The split data makes a clear distinction between risk time which is the length of
each interval and time-scale which is the value of the time-scale at (the beginning of)
each interval, that be time since entry or current age of the individual.

This is apparent in analysis of tabulated data from cancer registries, where events
from the register database and population figures from the statistical bureau are
classified by age and and period of diagnosis. Here the population figures play the role
of risk time and the classification by age and period the role of the time-scale(s). The
separation of risk time and time-scale in this sense has a long standing tradition in
epidemiology and demography.

In Poisson modelling the log-risk time is used as offset and the time is used as
covariate. Thus Poisson modelling of follow-up data makes a clear distinction between
risk time as the response variable and time scale(s) as covariate(s).

Estimation in the model

Once data has been split into little pieces of follow-up time, the effect of any time-scale
can be estimated using parametric regression tools as for example splines. This will
directly produce estimated baseline rates by using a tool to predict from a generalized
linear model with a given set of covariates.

A simple illustration of this machinery, using R and the package splines would go
as follows:

# Simple model modeling time-effects with splines

#

library( splines )

# The package for time-splitting

library( Epi )

# Split the data in pieces of length 0.5,

# producing new variables Enter, Exit, Fail, Time

spl.dat <- Lexis( entry=0, exit=time, fail=D,
breaks=seq( 0, 10, 0.5 ),
include=1ist( sex, expos), data=dfr )

# Then fit a Poisson model using these new variables

ml <- glm( Fail ~ ns( Time ) + sex + expos + offset( log( Exit-Entry ) ),

family=poisson, data=spl.dat )

Estimation of baseline hazard

Suppose h(t) is a parametric function which is parametrized linearly by the parameters
in 7, h(t) = wr (w is a row vector, 7 a column vector). The model can be formulated as:

log(A(t,z)) = h(t) + 2y = wr + 2y = (wx) <;>
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Standard prediction machinery can be used to produce estimates of log-rates with
standard errors for a set of values of ¢ (and hence w), and some chosen values of the
variables in x. This is a standard tool in any statistical package for analysis of
generalized linear models. Rate estimates with. c.i.s are then derived by taking the
exponential function of the estimates for the log-rates with confidence intervals.

Estimation of survival function

The survival function is connected to the rate function A(¢) by:

S(t) = exp (— /0 t)\(s) ds)

In order to estimate this from a parametric model we need to derive the integral, i.e. a
cumulative sum of predictions. If we want standard errors for this we must have not
only standard errors for the As, but the entire the variance-covariance matrix of
estimated values of \.

From a generalized linear model we can easily extract estimates for log()\(t)) at any
set of points. This is just a linear function of the parameters, and so the
variance-covariance matrix of these can be computed from the variance-covariance
matrix of the parameters.

A Taylor approximation of the variance-covariance matrix for A(¢) can be obtained
from this by using the derivative of the function that maps log(A(t)) to A(¢). This is the
coordinate-wise exponential function, so the matrix required is the diagonal matrix with
entries ().

Finally the cumulative sum is obtained by multiplying with a matrix with 1s on and
below the diagonal, so this matrix just needs to be pre and post-multiplied in order to
produce the variance-covariance of the cumulative hazard at the prespecified points.

In technical terms, let f (t;) be estimates for the log-rates for a certain set of
covariate values (x) at points t;,i = 1,..., I, derived by:

f(t)=Bp
where 3 = (7,7) is the parameter vector in the model, including the parameters that
describe the baseline hazard. Let the estimated variance-covariance matrix of B be 3.

Then the variance-covariance of f (t;) is BYB’. The transformation to the rates is
the coordinate wise exponential function so the derivative of this is the diagonal matrix
with entries exp ( f (ti)), so the variance-covariance matrix of the rates at the points ¢; is
(by the d-method):

diag(e/)) B £ B’ diag(ef*))’
Finally, the transformation to the cumulative hazard (assuming that all intervals have
length /) is by a matrix of the form

-

I

~

X
==
— = = = O
I e T B = Rl )
= -0 O O
_ o OO O O
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so the (approximate) variance-covariance matrix for the cumulative hazard is:

L diag(ef(ti)) BXB’ diag(ef(ti))’ L/

Example: Mayo clinic lung cancer data

As an example, consider the Mayo clinic lung cancer survival data, provided in the
R-library survival.

In the section 9 is a transcript of an R-program that fits both a classical Cox-model
and a parametric model for the baseline using natural splines. Also the survival function
with confidence intervals is estimated in both models, and the results are contrasted in
figure 1.

Estimation of regression parameters

In the case where one parameter per time point is used the regression coefficients will be
exactly the same in the Poisson model and in the Cox-model, because the partial
likelihood is the profile likelihood from the Poisson model. The natural use of the
Poisson-approach is however to avoid the overly detailed modelling of the underlying
hazard inherent in the partial likelihood approach, by using a more parismonous
representation of the baseline hazard.

However the modelling should not bee too parsimonous as is suggested by the
following small simulation study: 100 survival datasets were simulated with 200
individuals in each, all with entry at time 0, and a model with baseline hazard as shown
in the left panel of figure 2, censoring at time 10, and two independently distributed
covariates, one standard normal with rate-ratio of 4 and the other log-normal with
rate-ratio of 0.25.

The following three models were fitted to each dataset: 1) a standard Cox-model, 2)
a Poisson model using natural splines with knots in 2,4,6,8 and boundary knots in 0 and
10 for the time effect (6 parameters for the baseline), and 3) a Poisson-model using a
constant effect of time (1 parameter for the baseline).

The results for the first of the two regression parameters by the three approaches
are shown in figure 2. If the baseline hazard is grossly misspecified we get a diluted effect
of the covariate, but there is virtually no difference between the results obtained from
modelling the baseline hazard by a very detailed step-function or by natural splines with
just 6 parameters. As should be expected from standard statistical theory, the standard
errors obtained by the Poisson-spline approach are on average very slightly smaller.

Thus the only reason to use the Cox-model is computational convenience and only
in the case of a single relevant time-scale and if the survival function rather than the
baseline hazard is of primary interest.

5 Multiple time-scales

The major advantage of separating time as response variable (differences on time-scales)
from time as covariate (points on a time scale) is the possibility to accommodate effects
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1
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Figure 1: Estimated underlying hazard (left) and comparison with survival function from
the classical Coz-approach (Breslow-estimator). The top panels are produced using natural
splines with knots at 0,25,75,150,250,500,1000 and the bottom ones using fractional
polynomials of t + 30 days, with powers 1/3,1/2,0 (= log), 1,1.5,2.

of multiple time-scales simultaneously.

Consider the classical situation of a mortality study which is modelled in a
Cox-model with time since entry as the time-scale and age at entry as covariate. Using ¢
for time since entry, a for current age and e = a — t for age at entry, the model is:

log(A(a, 1)) = F(t) + Be = (f(t) — Bt) + Ba

If the underlying log-hazard was assumed linear in time since entry or current age the
two approaches would coincide, i.e. replacing age at entry with current age (as a
time-dependent variable) would not change the model.
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Figure 2: Underlying hazard in the simulation study (upper left corner) and parameter es-
timates (lower left) and estimated standard errors (upper right) for the first parameter for
three different approaches to modelling. Fach point represents results from one simulated
dataset. The vertical and horizontal lines in the plots for the estimates are the parameter
values used in the simulations, whereas the vertical and horizontal lines in the plots of
standard errors are at the empirical standard errors of the parameter estimates.

However, if arbitrary effects of the three variables t, a and e are allowed we have a
genuine extension of the model. Moreover, we will have a model with the same kind of
identification problem as is seen in age-period-cohort models. If parametric functions of
the three variables are included in the model, i.e.:

log()\(a, t)) = f(t)+ g(a) + h(e)

There will be three quantities that can be arbitrarily moved between the three functions,
so they can be replaced by three others with the same sum:

F@t)=f(a) = pta — pe + 1
(a)=g(p) + ta —a
(e) = h(c) + o + e

because t —a + e = 0.
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Th phrase “age (at entry) is controlled for” in a Cox model often means that the
(log)linear effect of age (at entry or current) is included along with an arbitrary effect of
time since entry. No consideration neither qualitatively nor quantitatively has been given
to wheather a non-linear effect of age at entry and/or current age would be reasonable.

If “controlling for age at entry” is done by entering age at entry as a categorized
covariate or parametric function of some sort, the effect of current age is still assumed
only linear on the log-rate scale. Introducing a non-linear effect for the last time-scale
will open the well known can of worms: The age-period-cohort parametrization
problems, as mentioned above.

Example: Renal failure data.

As an example we shall consider an extension of the analysis of time to death among
diabetic patients with nephrotic range albuminuria (NRA), i.e. a U-albumin excretion
exceeding 300 mg/24h, as reported in [3].

The data base for this analysis is illustrated in the Lexis diagrams in figure 3. The
results from the paper’s table 3 are shown here in table 1.

There is clearly a linear effect of age at entry (or current age), but the analysis
presented does not address the question of whether there are non-linear effects of the
two time-scales.

Table 1: Results from a traditional Cox-analysis with remission as time-dependent covari-
ate, as reported in Hovind et al. (2004), table 4.

Remission

Total Yes No

No. patients 125 32 93

No. events 7 8 69

Follow-up time (years) 1084.7 259.9 824.8

Cox-model:
time-scale: Time since nephrotic range albuminuria (NRA)
Entry: 2.5 years of GFR-measurements after NRA
Outcome: ESRD or Death
Estimates: RR 95% c.i. p

Fixed covariates:
Sex (F vs. M): 0.92 (0.53,1.57) 0.740
Age at NRA (per 10 years): 1.42  (1.08,1.87) 0.011

Time-dependent covariate:
Obtained remission: 0.28 (0.13,0.59) 0.001
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Figure 3: Trajectories of the 126 patients in the study. The light gray lines is the part of
the follow-up not counted, the 2.5 years of GFR-measurements required to enter. The red
parts are follow up without remission and the blue are follow up after remission.

The left panel is age-calendar time, whereas the right panel is the age-time on study, which
15 the basis for the analysis here.

The layout of the dataset

The dataset includes 96 patients out of which 29 have a remission in the course of the
study. Since we have a time-dependent variable, “remission”, the individuals that
experience a remission are represented in the dataset with two records. The dataset
therefore includes 96 + 29 = 125 records, the first few are shown here:

ptnr sex hbalc diag entry exit fail birth rem event eventdat
1 17 1 10.46 1993.514 1996.014 1997.095 1 1967.942 O 2 1997.095
2 26 2 10.60 1987.036 1989.536 1989.815 0 1959.304 O 1 1996.137

3 26 2 10.60 1987.036 1989.815 1996.137 1 1959.304 1 1 1996.137
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4 27 2 8.00 1985.347 1987.847 1993.240 1 1962.012 O 3 1993.240
5 33 1 9.64 1992.744 1995.244 1995.718 0 1950.746 O 0 2003.994
6 33 1 9.64 1992.744 1995.718 2003.994 0 1950.746 1 0 2003.994

Patient 26 has a remission at 1989.8 and thus contributes two records, the latter
with rem=1.

Splitting the data into intervals of 3 months length will produce a dataset with 4426
observations. Here the 125 records are further split by time since entry, so the first few
records in the split dataset are:

Expand Entry Exit Fail Time ptnr sex diag birth rem
1 1 1996.014 1996.264 0 2.50 17 1 1993.514 1967.942 O
2 1 1996.264 1996.514 0 2.75 17 1 1993.514 1967.942 O
3 1 1996.514 1996.764 0 3.00 17 1 1993.514 1967.942 O
4 1 1996.764 1997.014 0 3.25 17 1 1993.514 1967.942 O
5 1 1997.014 1997.095 1 3.50 17 1 1993.514 1967.942 O
6 2 1989.536 1989.786 0 2.50 26 2 1987.036 1959.304 O
7 2 1989.786 1989.815 0 2.75 26 2 1987.036 1959.304 O
8 3 1989.815 1990.036 0 2.75 26 2 1987.036 1959.304 1
9 3 1990.036 1990.286 0 3.00 26 2 1987.036 1959.304 1
10 3 1990.286 1990.536 0 3.25 26 2 1987.036 1959.304 1

Note that patient 26 has the first record split in two, and the second in many
pieces, and that the initial two records have rem=0 while the other records originating
from the second have rem=1.

Once we have the time-scale “time since entry” in the variable Time, as well as the
variable diag (date of diagnosis of NRA) and birth (date of birth), all other time-scales
can be constructed. Any time-scale in this context is but a covariate which changes by 3
months (0.25) from one interval to the next. Hence the assumption is that the rates are
constant in 3-month intervals, but that the size of these change according to a smooth
function.

The effect of such time-scales are then modelled using standard tools as natural
splines, step functions or other parametric functions in a Poisson model, with
log(Y) = log(Exit — Entry) as offset variable.

6 The illness-death model

The example above, one categorical time dependent variable is modelled as a partial
analysis of an illness-death model as seen in figure 6, by ignoring (i.e. not modelling) the
remission rate, . The analysis presented assumes that the two rates unga and firen, only
differ by a constant, i.e. they depend in the same way on time since entry into the study,
age at entry (or current age) and sex. In particular it is assumed that time of remission
and time since remission does not have any impact on fiyen.

The likelihood for (complete) observation in the illness-death model is just a
product of the likelihoods for each transition, where other transitions out of a box are
considered as censorings.
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Figure 4: States and transition rates used in the illness-death-model: pra is the mor-
tality/ESRD rate for patients without remission, \ is the remission rate and fiyey, is the
mortality/ESRD rate for patients who at some point have had a remission.

Therefore a Cox-model can easily fit models for the three rates simultaneously with
any degree of similarity of covariate effects between the transitions, by simply combining
datasets for all the transitions. The traditional (“Andersen-Gill”) approach to inclusion
of (non-deterministic) time-dependent variables is precisely to include the records for the
[NRA—Death| and [Remission—Death] transitions in the dataset. For those with a
remission we will have both records, otherwise only the record relating to the
[INRA—Death]| transition.

However, the drawback of the Cox-modelling approach is that transitions that are
modelled simultaneously require the same baseline time-scale?. Rates where effects of
covariates are required (i.e. assumed) to be identical must be included in a common
model for a combined dataset.

The most severe drawback of Cox-modelling is the problems arising when needing
to deal with multiple time-scales. In an illness-death model as for example the one
shown in figure 6 it will be natural to have both time since entry into the study and
time since (first) remission as time-scales. Several time-scales can only be incorporated
in a Cox-modelling approach if all other time-scales than the baseline are included as
time dependent covariates.

However, it seems more reasonable to be able to include the effects of any kind of
time-scale in the same fashion. If follow-up and events for each transition are split in
little pieces, then modelling of time-scale effects is merely a question of including a
suitable parametric function of each of the time-scales in a Poisson model — all
time-scales will be available as covariates in the split dataset.

2Strictly speaking, only time-scales modelled the same way. In principle one could use time since entry
for unra and A, and time since remission for piyen, but that would hardly make any clinical sense
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7 Stratified models

A stratified Cox-model is a model where the underlying hazard is allowed to differ
between strata, i.e. the effect of time varies across the levels of a categorical variable.
Thus this is merely an interaction between time and a categorical variable. If a
spline basis has been chosen as model for the time variable, a model with separate
baseline hazards for each level of a factor F' this is easily modelled by saying:

# Simple model with splines modeling time-effects, proportional hazards

#

ml <- glm( D ” -1 + ns( t, knots=i.kn, Boundary.knots=b.kn ) + sex + expos +
offset( log( Y ) ), family=poisson )

# Model with stratified baseline, non-proportional hazards

#

ml <- glm( D © - 1 + ns( t, knots=i.kn, Boundary.knots=b.kn ):F + sex + expos +
offset( log( Y ) ), family=poisson )

The underlying hazards in the points tp can then be extracted by multiplying the
coefficients from each of the F-levels by the matrix:

bs( tp, knots=i.kn, Boundary.knots=b.kn )

The period method for survival analysis

Brenner et al. [1], suggests a method of adjusting survival for cancer patients by using a
so called period analysis. The idea is to use only the survival experience for a fairly
recent calendar period, basically because cancer patient mortality in remote
time-periods is considered irrelevant. This is best illustrated with reference to a Lexis
diagram of cancer patient follow up as shown in figure 5.

Brenner et al. propose to restrict analysis to the most recent period and then report
results by survival curves, based on the mortality observed in this period only. One way
of seeing this proposal is a re-invention of the cross-sectional life-table, it is but a special
case of interaction between current date and time since diagnosis. If an interaction
model is fitted and only the estimates from the last period are given, then we have the
period analysis. Instead one could report separate (cross-sectional) survival curves for
each period, and assess whether there is an interaction with calendar time, and if there
is report it. Period analysis reports only the last set of parameters, because it is
considered the clinically most relevant, but apparently without assessing whether this is
relevant or not.

8 So who needs the Cox-model?

Since everything which is possible using the Cox-model can be done using the Poisson
modelling of split data, there is no loss of capability by switching to Poisson modelling.
The Cox-model is computationally vastly more efficient, and it is easier to produce
a survival curve by standard software, which is relevant in clinical studies. The
computational efficiency of the Cox-model is presumably one of the reasons for its
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Figure 5: Lexis diagrams illustrating follow-up of cancer patients. Period analysis suggest
to use only the follow-up in the box on the left panel. A stratified model or interaction
model assumes different mortality pattern by time since diagnosis in each of the boxes in
the right panel. In this case we would even have time-varying strata!

success. In the 1980s it was effectively the only possibility; the use of Poisson models for
datasets with 10000+ observations was out of the question in practical analyses due to
lack of computing power. An entire generation of statisticians have learnt to think in
terms of one time scale and was never exposed to the demographic way of looking at
individual-based follow-up studies. The demographic thinking was restricted to
tabulated data from cancer registries and the like, and the intimate connection between
the two is still not widely recognized, particularly in the epidemiological community.

A drawback of the Cox-model is the overly detailed modelling of survival curves
that may lead to over-interpretation of little humps and notches on the survival curve.

When stratification or time-dependent variables are involved, the facilities in the
standard Cox-analysis programs limits the ways in which the desired interactions can be
modelled, and moreover distracts the user from realizing that other interactions between
covariates may be of interest.

Thus it seems that the Cox-model is useful in the following cases:

e Clinical follow-up studies with only one relevant timescale and the focus on the
effect of other covariates than time.

e Studies where a pathologically detailed modelling of one time-scale is desired.

e Studies analysed on computing equipment pre-1985.

In other settings it seems preferable to split time and use the Poisson approach,
because it:

e Clarifies the distinction between (risk) time as response variable and time(scales)
as covariates.
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e Enables smoothing of the effects of time-scales using standard regression tools. In
particular it allows more credible estimates of survival functions in the simple case
with only time since entry as time-scale.

e Enables sensible modelling of interactions between time-scales and other variable
(and between time-scales).

As the necessary computing power and software is available, the computational
problems encountered previously are now non-existent.

However, the user-interface to the Poisson modelling is more complex than that
offered by standard packages for the Cox-model. This is partly because the Poisson
approach requires a more explicit specification of time-scales and how to model them.
The latter should however be considered an advantage from a scientific point of view,
because it explicitly requires the researcher to make informed choices about which
time-scales are relevant, how to model the effect of them, and in particular how to
report these effects.
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9 Programs used

lung-ex.R

Program that takes the Mayo clinic lung cancer survival data, and analyses it both by
the Cox-model and by the Poisson-model for split follow-up data.
Ilustrates that the Cox-likelihood and the Poisson-approach gives ezxactly the same
results whereas the approaches smoothing the underlying hazard gives almost the same.
Also illustrates how to compute the survival function with confidence limits using
the Poisson-approach with smooth underlying hazard.

R 1.9.0

Program: lung-ex.R
Folder: C:\Bendix\Artikler\WntCma\R
Started: tirsdag 10. august 2004, 14:29:38

> library( splines )
> library( Lexis )

Attaching package 'Lexis':

The following object(s) are masked from package:Useful :

ci.lin steplines

The following object(s) are masked from package:Epi :
interp lines.est nice plot.est points.est print.floated ROC ROC.tic steplines tabplot twoby2 weeks

> library( survival )

> data( lung )

> str( lung )

“data.frame': 228 obs. of 10 variables:

$ inst cnum 33351127 1117 ...
$ time : num 306 455 1010 210 883 ...
$ status tnum 2212212222 ...
$ age : num 74 68 56 57 60 74 68 71 53 61 ...
$ sex tnum 1111112211 ...
$ ph.ecog :num 1001012212 ...
$ ph.karno : num 90 90 90 90 100 50 70 60 70 70 ...
$ pat.karno: num 100 90 90 60 90 80 60 80 80 70 ...
$ meal.cal : num 1175 1225 NA 1150 NA ...
$ wt.loss : num NA 15 15 11 0 0 10 1 16 34 ...
>
> table( lung$status )
1 2
63 165
> table( table( lung$time ) )
1 2 3
146 38 2

>

> system.time(

+ c.res <- coxph( Surv( time, status==2 ) ~ age + factor( sex ),

+ ; method="breslow", eps=10"-8, iter.max=25, data=lung )

+

[1] 0.01 0.00 0.02 NA NA

> summary( c.res )

Call:

coxph(formula = Surv(time, status == 2) ~ age + factor(sex),
data = lung, method = "breslow", eps = 10°-8, iter.max = 25)

n= 228
coef exp(coef) se(coef) z P
age 0.017 1.017 0.00922 1.84 0.0650
factor(sex)2 -0.513 0.599 0.16746 -3.06 0.0022
exp(coef) exp(-coef) lower .95 upper .95
age 1.017 0.983 0.999 1.036
factor(sex)2 0.599 1.670 0.431 0.832

Rsquare= 0.06 (max possible= 0.999 )
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Likelihood ratio test= 14.1 on 2 df, p=0.000874
Wald test = 13.4 omn 2 df, p=0.00121
Score (logrank) test = 13.7 on 2 df, p=0.00107

# Cut data at all entry and exit times to form another data frame

#

dx <- Lexis( exit=time, fail=(status==2), breaks=sort( c(0,unique( time )) ),
include=list( age, sex ), data=lung )

str( dx )

data.frame': 20022 obs. of 7 variables:

$ Expand: num 1111111111 ...

$ Entry : num 2.85e-07 5.00e+00 1.10e+01 1.20e+01 1.30e+01 ...

$ Exit : num 511 12 13 15 ...

g Fail : num 00000000O0O0 ...

$

$

'V +VVVYV

Time : num O 5 11 12 13 15 26 30 31 53 ...
age cnum 74 74 T4 T4 74 T4 T4 T4 TATA ...
sex tnum 1111111111 ...

# Fit the detailed Posisson model
#

system.time(
p.res <- glm( Fail ~ factor(Time) - 1 + age + factor( sex ) + offset( log(Exit-Entry) ),
family=poisson, data=dx, eps=10"-8, maxit=25 )

1] 63.50 2.30 71.45 NA NA

# Define internal and boundary knots for the spline basis and fit the
# spline model
#
i

.kn <- ¢(25,75,150,250,500)
kn <- ¢(0,1000)
system.time(
s.res <- glm( Fail ~ ns( Time, knots=i.kn, Bo=b.kn, intercept=F )
+ age + factor( sex ) + offset( log(Exit-Entry) ),
family=poisson, data=dx, eps=10"-8, maxit=25 )

o

1] 2.55 0.14 2.92 NA NA

# Function to define fractional polynomials and degress to use
fp <- function( x, deg ) outer( x, deg, FUN=function( x, y ) ifelse( y==0, log(x), x7y ) )
f.dg <- c(1/3,1/2,0,1,1.5,2)
f.of <- 30
system.time(
f.res <- glm( Fail ~ fp( Time + f.of, deg=f.dg ) +
+ age + factor( sex ) + offset( log(Exit-Entry) ),
family=poisson, data=dx, eps=10"-8, maxit=25 )

1] 2.32 0.02 2.53 NA NA

Show only the relevant estimates and compare them

VVVVMA++++VVVVVVA++++VVVVVVVMA+++VVVYV

#

#

( cr <- ci.lin( c.res )[,1:2] )

Estimate StdErr

age 0.01701289 0.009221954

factor(sex)2 -0.51256479 0.167462063

> ( pr <- ci.lin( p.res, subset=length( coef( p.res ) )-1:0 )[,1:2] )
Estimate StdErr

age 0.01701289 0.009221954

factor(sex)2 -0.51256480 0.167462060

> ( sr <- ci.lin( s.res, subset=length( coef( s.res ) )-1:0 )[,1:2] )
Estimate StdErr

age 0.01636881 0.009204915

factor(sex)2 -0.51200146 0.167452705

> ( fr <- ci.lin( f.res, subset=length( coef( f.res ) )-1:0 )[,1:2] )
Estimate StdErr

age 0.01689966 0.00921589

factor(sex)2 -0.51427541 0.16736859

>

> all <- cbind(

+ rbind( cr(1,], pr[1,], sr[1,], fr[1,], (cr/pr)[1,], (cr/sr)[1,], (cr/fr)[1,] ),
+ rbind( cr[2,], pr(2,]1, sr[2,], fr[2,]1, (cr/pr)[2,]1, (cr/sr)[2,]1, (cr/fr)[2,]1 ) )
> rownames( all ) <- c("Cox","Poisson","Spline","Fract","C/P","C/S","C/F")

> colnames( all ) <- paste( rep( rownames( pr ), rep( 2, 2 ) ),

+ rep( c("Est","SE"), 2 ) )

> print( round( all, 5 ) )
age Est age SE factor(sex)2 Est factor(sex)2 SE

Cox 0.01701 0.00922 -0.51256 0.16746
Poisson 0.01701 0.00922 -0.51256 0.16746
Spline 0.01637 0.00920 -0.51200 0.16745
Fract 0.01690 0.00922 -0.51428 0.16737
C/P 1.00000 1.00000 1.00000 1.00000
C/s 1.03935 1.00185 1.00110 1.00006
C/F 1.00670 1.00066 0.99667 1.00056

>



20 lung-ex.

# Compute the estimated cumulative itensity over 10-day periods

# for 60 year old men, and then the survival function

new <- data.frame( Time=1:100%10, Entry=rep(0,100), Exit=rep(10,100),
sex=rep(1,100), age=rep(60,100) )

This is the simple way to get the survival function, but the standar
erros does not come with it this way.

.pr <- predict( s.res, newdata=new, type="link", se.fit=T )

.surv <- exp( -cumsum( c(0,exp( s.pr$fit )) ) )

n n #*H#

In order to get the predictions from the spline model we need to
devise the right contrast matrix because we need the covaiance
between the pointestimates for log-incidence rates.

HHH

# Points where we evaulate the rates
tt <- 0:100%10
# The explicit model matrix
cm <- cbind( rep( 1, 101 ),
ns( tt, knots=i.kn, Bo=b.kn, intercept=F ),
rep( 60, 101 ),
rep( 1, 101 ) )
Coefficients from the model
.cf <= coef( s.res )[1:9]
.vc <- vecov( s.res )[1:9,1:9]
Estimates and variance-covariance for the log-rates at times tt
.es.lrate <- cm %*}% s.cf
.vc.lrate <- cm %*% s.vc %*} t(cm)
The variance-covariance of rates ( exp( log-rates ) ), using a first
order Taylor-approximation:
.es.rates <- exp( s.es.lrate )
.vc.rates <- diag( s.es.rates[,1] ) %*) s.vc.lrate %x) diag( s.es.rates[,1] )
Finally the transformation to cumulative rates:
cum.mat <- 10 * ( 1 - upper.tri( diag( 101 ) ) )
cum.mat[1:10,1:10]
[,11 C,2]1 [,3] [,4] [,5] [,e] C,7]1 [,8] [,9] [,10]
0 0 0 0

VVVVVVVVVVVVV+++VVVVVVVVVVVVVYV+VYVYV
Hn 0 HEHOO HFOL O H

[1,1] 10 0 0 0 0 0
[2,] 10 10 0 0 0 0 0 0 0 0
[3,] 10 10 10 0 0 0 0 0 0 0
[4,] 10 10 10 10 0 0 0 0 0 0
[5,] 10 10 10 10 10 0 0 0 0 0
[6,] 10 10 10 10 10 10 0 0 0 0
[7,] 10 10 10 10 10 10 10 0 0 0
[s,] 10 10 10 10 10 10 10 10 0 0
[9,] 10 10 10 10 10 10 10 10 10 0
[10,1] 10 10 10 10 10 10 10 10 10 10

s.es.crate <- cum.mat %*J, s.es.rates

s.vc.crate <- cum.mat %*), s.vc.rates %*% t( cum.mat )

s.surv <- exp( - cbind( s.es.crate, sqrt( diag( s.vc.crate ) ) ) %*J ci.mat() )
# Finally adjustmen of the times to match the end of the intervals

tt <- c( tt, 1010 )

s.surv <- rbind( c(1,1,1), s.surv )

# Now for all the plots:
# First the estimated rates:
plt( "Lung-rate-s" )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matplot( 1:100%10, exp( cbind( s.pr$fit, s.pr$se.fit ) %*) ci.mat() ) * 36.525,
type="1", lwd=c(2,1,1), 1lty=1, col="black", log="y",
x1im=c(0,900), xaxs="i", ylim=c(1/4,5),
xlab="Days since diagnosis",
ylab="Mortality rate per year")

# Then the survival curves by the two methods
plt( "Lung-surv-s" )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
sf <- survfit( c.res, newdata=data.frame( sex=factor(1:2), age=60:61 ) )
plot( sf, lwd=1, col=c("white","red"), conf.int=T,
xlab="Days since diagnosis",
ylab="Survival", xlim=c(0,900),xaxs="i"
par( new=T)
plot( sf, lwd=3, col=c("white","red"), conf.int=F, xlim=c(0,900),xaxs="i")
matlines( tt, s.surv, lwd=c(3,1,1), col="black", lty=1 )

Repeat the exercise for the fractional polynomials

This is the simple way to get the survival function, but the standar
erros does not come with it this way.

.pr <- predict( f.res, newdata=new, type="link", se.fit=T )

.surv <- exp( -cumsum( c(0,exp( f.pr$fit )) ) )

In order to get the predictions from the spline model we need to
devise the right contrast matrix because we need the covaiance
between the pointestimates for log-incidence rates.

VVVVVVVVVVVVVVVV++VVVVVV++++VVVVVVVVVVYVYV
HHEH Hh Hh o H* #
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> # Points where we evaulate the rates

> tt <- 0:100%10

> # The explicit model matrix

> cm <~ cbind( rep( 1, 101 ),

+ fp( tt + f.of, deg=f.dg ),

+ rep( 60, 101 ),

+ rep( 1, 101 ) )

> # Coefficients from the model

> f.cf <- coef( f.res )[1:9]

> f.vc <- vcov( f.res )[1:9,1:9]

> # Estimates and variance-covariance for the log-rates at times tt

> f.es.lrate <- cm %*% f.cf

> f.vc.lrate <- cm %*% f.vc %x*} t(cm)

> # The variance-covariance of rates ( exp( log-rates ) ), using a first

> # order Taylor-approximation:

> f.es.rates <- exp( f.es.lrate )

> f.vc.rates <- diag( f.es.rates[,1] ) %x% f.vc.lrate %}, diag( f.es.rates[,1] )

> # Finally the transformation to cumulative rates:

> cum.mat <- 10 * ( 1 - upper.tri( diag( 101 ) ) )

> cum.mat[1:10,1:10]

(,11 €,2]1 [,31 C,4] [,8] [,6] C,7]1 [,8] [,9] [,10]

[1,] 10 0 0 0 0 0 0 0 0 0
[2,] 10 10 0 0 0 0 0 0 0 0
[3,] 10 10 10 0 0 0 0 0 0 0
[4,] 10 10 10 10 0 0 0 0 0 0
[5,] 10 10 10 10 10 0 0 0 0 0
[6,] 10 10 10 10 10 10 0 0 0 0
[7,] 10 10 10 10 10 10 10 0 0 0
[8,] 10 10 10 10 10 10 10 10 0 0
[9,] 10 10 10 10 10 10 10 10 10 0
[10,] 10 10 10 10 10 10 10 10 10 10

f.es.crate <- cum.mat %x% f.es.rates

f.vc.crate <- cum.mat %% f.vc.rates %*J) t( cum.mat )

f.surv <- exp( - cbind( f.es.crate, sqrt( diag( f.vc.crate ) ) ) %*% ci.mat() )
# Finally adjustmen of the times to match the end of the intervals

tt <- c( tt, 1010 )

f.surv <- rbind( c(1,1,1), f.surv )

# Now for all the plots:
# First the estimated rates:
plt( "Lung-rate-f" )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matplot( 1:100%10, exp( cbind( f.pr$fit, f.pr$se.fit ) =% ci.mat() ) * 36.525,
type="1", lwd=c(2,1,1), lty=1, col="black", log="y",
x1im=c(0,900), xaxs="i", ylim=c(1/4,5),
xlab="Days since diagnosis",
ylab="Mortality rate per year" )

# Then the survival curves by the two methods
plt( "Lung-surv-f" )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
sf <- survfit( c.res, newdata=data.frame( sex=factor(1:2), age=60:61 ) )
plot( sf, lwd=1, col=c("white","red"), conf.int=T, x1lim=c(0,900), xaxs="i",
xlab="Days since diagnosis",
ylab="Survival")
par( new=T)
plot( sf, 1lwd=3, col=c("white","red"), conf.int=F, x1lim=c(0,900), xaxs="i" )
matlines( tt, f.surv, lwd=c(3,1,1), col="black", 1lty=1 )

VVVV++VVVVVV++++VVVVVVVVVVYVYV

Program: lung-ex.R

Folder: C:\Bendix\Artikler\WntCma\R
Ended: tirsdag 10. august 2004, 14:30:59

Elapsed: 00:01:21

Cox-sim-c.R

Program that simulates survival datasets and anlyses them by three different models,
and produces plots to compare them.

R 1.9.0

Program: Cox-sim-c.R
Folder: C:\Bendix\Artikler\WntCma\R
Started: mandag 02. august 2004, 14:53:35

> library( survival )
> library( splines )
> library( Lexis )
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Attaching package 'Lexis':

The following object(s) are masked from package:Useful

ci.lin steplines

The following object(s) are masked from package:Epi

interp lines.est nice plot.est points.est print.floated ROC ROC.tic steplines tabplot twoby2 weeks

Sim.const <-

function( fu = 10,
N = 200,
haz = 1/fu,
bi = log( 2 ),
bo = -log( 2 ) )

Function to sumulate N data points from a Cox-model with constant
baseline hazard haz and two continuos covariates with a normal
(ping) resp. log-normal (pong) distribution with RRs of bi and bo,
respectively. Times are censores at time fu.

HHHHEA

# Simulate covariates and compute RR
ping <- rnorm( N )

pong <- exp( rnorm( N ) )

RR  <- exp( ping * bi + pong * bo )

# Simulate the survival times

time <- -log( runif( N ) ) / ( haz * RR )
# Which ones were deaths

fail <- as.numeric( time < fu )

# Censor the times

time <- pmin( fu, time )

# Return data

data.frame( time=time, fail=fail, ping=ping, pong=pong )

Sim.haz <-

function( hz
ni
N
bi
bo

rep( 1/10, 10 ),
length( hz ),
200,

log( 2 ),

-log( 2 ) )

Function to sumulate N data points from a Cox-model with

baseline hazard hz (given as hazards in intervals of length 1) and
two continuos covariates with a normal (ping) resp. log-normal
(pong) distribution with RRs of bi and bo, respectively. Times are
censored at time length(hz).

H oA

# First simulate covariates and RR
ping <- rnorm( N )

pong <- exp( rnorm( N ) )

RR  <- exp( ping * bi + pong * bo )

# Useful function
sint <-
function( x, y )

# Function to sumulate length(x) survival times with a cumulative
# hazard xx*y
pmin( 1, -log( runif( x ) ) / (x *xy ) )

# Simulate for each person (i.e. for each RR) the survival time in

# each of the intervals of length 1 (i.e. for each hz)

si  <- outer( RR, hz, sint )

# Then multiply together as long as we had a survival time exceeding 1
# (i.e. put Os from the first death time less than 1)

ok <- t( apply( ( si >= 1), 1, cumprod ) )

# Then compute the simulated survival time

time <- apply( cbind( si[,1], si[,2:ni] * ok[,1:(ni-1)] ), 1, sum )
fail <- as.numeric( time < ni )

data.frame( time=time, fail=fail, ping=ping, pong=pong )

# Define the baseline hazard function
x <= 1:10

# haz <- abs( (x-2.3)*(x-12.7) )

haz <- rep( 1, 10 )

haz <- 3 * haz / sum( haz )

VVVVVV+H4++++++++++++++++++++++++++++++++++++VVVrttttttrtrtttrtrtttrtttrtrtt+r+tvy
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>
> plt( "haz-c" )
> par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.5 )
> plot( c(0,x), haz[c(1:10,10)], type="s",
+ ylim=c(0,0.7), 1lwd=3, xlab="Time", ylab="Hazard" )
>
> Sim.haz( hz = haz, N=20 )
time fail ping pong

1 10.00000000 0 -2.36311150 1.7970969
2 10.00000000 0 -1.23325934 2.1082490
3 0.81456026 1 0.83391569 0.8713003
4 10.00000000 0 0.05474751 2.0151734
5 1.96800055 1 1.73760142 1.3494013
6 0.11602405 1 1.64865673 0.8118940
7 4.50134461 1 0.33638008 0.6004780
8 0.06443735 1 0.22310678 1.2611728
9 0.94988150 1 2.08837050 0.3567075
10 3.73566349 1 0.77143651 0.3887416
11 10.00000000 0 -3.19908283 0.3413883
12 1.54290184 1 1.66640833 0.3189720
13 8.37089382 1 1.22283849 1.0488130
14 0.32142153 1 2.45633169 0.1730299
15 1.46654335 1 0.19312621 0.4166438
16 10.00000000 0 -0.61977668 2.6851711
17 10.00000000 0 -0.70285032 0.8428157
18 1.66896876 1 0.62371878 0.3818595
19 6.84896792 1 0.97933566 2.1948316

0.75159817 1 0.16429308 2.1726228

si <- Sim.haz( hz = haz )
cx <- coxph( Surv( time, fail ) ~ ping + pong, data = si )

# Number of datasets to simulate

n.sim <- 100

# Array to collect results: for each dataset, type of model and
# regression parameter we collect estimates and standard errror.
res <- array( NA, dim=c(n.sim,3,2,2),

dimnames = list( sim = 1:n.sim,
model = C(HCX"’IIPSII,IIplll) .
par = names( coef( cx ) ),
what = c("Estimate","StdErr") ) )

pct.cens <- numeric( n.sim )

system.time(
for( i in 1:n.sim )
{
si <- Sim.haz( hz=haz, bi=log(4), bo=-log(4) )
cx <- coxph( Surv( time, fail ) ~ ping + pong, data = si )
ps <- glm( Fail ~ ping + pong + ns( Time, knots=seq(2,8,2), Bo=c(0,10) ) +
offset( log( Exit-Entry ) ),
family=poisson, eps=10e-8,
data=Lexis( exit=time, fail=fail,
breaks=seq(0,10,0.25),
data=si, include=list( ping, pong ) ) )
pl <- glm( fail ~ ping + pong + offset( log( time ) ),
family=poisson, eps=10e-8, data=si )
pct.cens[i] <- mean( 1-si$fail )
res[i,"cx",,] <- ci.lin( cx )[,1:2]
res[i,"ps",,] <- ci.lin( ps, subset=2:
res[i,"pl",,] <- ci.lin( pl, subset=2:

)

[1] 126.62 0.29 138.45 NA NA

There were 32 warnings (use warnings() to see them)
>

3)[,1:2]
3)[,1:2]

tEAEEF AR H I EVVVEE AV VVVVVVVVY

> save( res, haz, file="../data/sim.cox-c.Rdata" )
>
> quantile( pct.cens )

0% 25% 50% 75% 100%

0.4550 0.5000 0.5225 0.5500 0.6150
> ftable( as.table( apply( res, 2:4, mean ) ), row.vars=2:1 )
what Estimate StdErr
par model
ping cx 1.3991046 0.1444929
ps 1.4124915 0.1439325
pl 1.3975393 0.1247730
pong cx -1.4118479 0.1888851
ps -1.4238519 0.1888828
pl -1.4093158 0.1775310
> ftable( as.table( apply( res, 2:4, sd ) ), row.vars=2:1 )
what Estimate StdErr
par model
ping cx 0.133164100 0.010333584
ps 0.132485457 0.010187820

pl 0.117803505 0.009650702
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pong cx 0.177357215 0.018393848
ps 0.182237184 0.018573384
pl 0.172392458 0.016801579
> ftable( as.table( apply( res, 2:4, quantile ) ), row.vars=4:2 )
0% 25% 50% 75% 100%
what par model
Estimate ping cx 1.1336794 1.3060459 1.3979503 1.4742146 1.7866718
ps 1.1281195 1.3254112 1.4143950 1.4949118 1.7947056
pl 1.0354242 1.3354874 1.3974619 1.4878014 1.6971339
pong cx -1.9389250 -1.5160139 -1.3968602 -1.2903697 -1.0350829
ps -1.95627297 -1.5228097 -1.4020293 -1.2963813 -1.0404059
pl -1.8955430 -1.5360770 -1.4034182 -1.2884372 -1.0518593
StdErr ping cx 0.1180908 0.1374335 0.1432891 0.1520282 0.1672459
ps 0.1181869 0.1365541 0.1432674 0.1509713 0.1659881
pl 0.1007091 0.1182328 0.1255017 0.1303183 0.1439568
pong cx 0.1508149 0.1750003 0.1903099 0.2012243 0.2279669
ps 0.1498236 0.1740911 0.1907421 0.2009992 0.2271104
pl 0.1432627 0.1650412 0.1789040 0.1907630 0.2177002

>

> ( lse <- range( resl[,,,"StdErr"] ) )

[1] 0.1007091 0.2279669

> ( leo <= -( lei <- range( c( range( resl[,,"ping","Estimate"] ),
+ range(-res[,,"pong","Estimate"] ) ) ) ) )
[1] -1.035083 -1.952730

#

plt( "ping-c" )

par( mfrow=c(3,3), mar=c(0,0,0,0), oma=c(3,3,3,3), las=1)
#

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )
text( 0. 5 0.5, "Cox", cex=2, font=2 )

text( O, O, "Estimates", cex=1.5, adj=c(0,0) )

#

plot( res[,"ps","ping","StdErr"], res[,"cx","ping","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1 )
box ()
abline( 0, 1, v=sd( res[,"ps","ping","Estimate"] ),
h=sd( res[,"cx","ping","Estimate"] ), col=gray(0.7) )
axis( side=3 )
#
plot( res[,"pl","ping","StdErr"], res[,"cx","ping","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1
box ()
abline( 0, 1, v=sd( res[,"pl","ping","Estimate"] ),
h=sd( res[,"cx","ping","Estimate"] ), col=gray(0.7) )
axis( side=3)
axis( side=4)
#
plot( resl, “cx“,"ping","Estimate"], res[,"ps","ping","Estimate"],
xaxt="n", yaxt="n", xlim=lei, ylim=lei, pch=1 )
box ()
abline( 0, 1, h=log(4), v=log(4), col=gray(0.7) )
axis( side=2)
#

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )
text( 0.5, 0.5, "Poisson\n\nSpline", cex=2, font=2 )

#

plot( resl, "pl“ "ping","StdErr"], res[,"ps","ping","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1

box ()

abline( 0, 1, v=sd( res[,"pl","ping","Estimate"] ),

h=sd( res[,"ps","ping","Estimate"] ), col=gray(0.7) )

axis( side=4 )

#

plot( res[,"cx","ping","Estimate"], res[,"pl","ping","Estimate"],
xaxt="n", yaxt="n", xlim=lei, ylim=lei, pch=1 )

box ()

abli?e( 0, 15 h=log(4), v=log(4), col=gray(0.7) )

axis( side=1

axis( side=2)

#

plot( res[,"ps","ping","Estimate"], res[,"pl","ping","Estimate"],
xaxt="n", yaxt="n", xlim=lei, ylim=lei, pch=1 )

box ()

abline( 0, 1, h=log(4), v=log(4), col=gray(0.7) )

axis( side=1)

#

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )

text( O. 5 0.5, "Poisson\n\nConstant", cex=2, font=2 )
text( 1, 1, "Standard errors", cex=1.5, adj=c(1,1) )

#
plt( "pong-c" )
par( mfrow=c(3,3), mar=c(0,0,0,0), oma=c(3,3,3,3), las=1)

VVVVVVVVVVVV+VVVVVV+VVV+VVH+FHVVVVVVVVH+HVVVVH+HVVHVVVHVVHEVVVVVVVYVYVY
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VVVVVVVV+VVVVVV+VVVV+HVV+HVVVVVVVVH+HVVVVVH+VVH+HVVV+HVV+HEVVVVYVY

# 1st row

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )
text( 0.5, 0.5, "Cox", cex=2, font=2 )

text( 0, 0, "Estimates", cex=1.5, adj=c(0,0) )

plot( res[,"ps","pong","StdErr"], res[,"cx","pong","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1 )
box ()
abline( 0, 1, v=sd( res[,"ps","pong","Estimate"] ),
h=sd( res[,"cx","pong","Estimate"] ), col=gray(0.7) )
axis( side=3 )

plot( res[,"pl","pong","StdErr"], res[,"cx","pong","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1 )
box ()
abline( 0, 1, v=sd( res[,"pl","pong","Estimate"] ),
h=sd( res[,"cx","pong","Estimate"] ), col=gray(0.7) )
axis( side=3)
axis( side=4)

# 2nd row

plot( res[,"cx","pong","Estimate"], res[,"ps","pong","Estimate"],
xaxt="n", yaxt="n", xlim=leo, ylim=leo, pch=1 )

box ()

abline( 0, 1, h=-log(4), v=-log(4), col=gray(0.7) )

axis( side=2)

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )
text( 0.5, 0.5, "Poisson\n\nSpline", cex=2, font=2 )

plot( res[,"pl","pong","StdErr"], res[,"ps","pong","StdErr"],
xaxt="n", yaxt="n", xlim=lse, ylim=lse, pch=1 )
box ()
abline( 0, 1, v=sd( res[,"pl","pong","Estimate"] ),
h=sd( res[,"ps","pong","Estimate"] ), col=gray(0.7) )
axis( side=4 )

# 3rd row

plot( res[,"cx","pong","Estimate"], res[,"pl","pong","Estimate"],
xaxt="n", yaxt="n", xlim=leo, ylim=leo, pch=1 )

box ()

abli?e( 0, 1S h=-log(4), v=-log(4), col=gray(0.7) )

axis( side=1

axis( side=2)

plot( res[,"ps","pong","Estimate"], res[,"pl","pong","Estimate"],
xaxt="n", yaxt="n", xlim=leo, ylim=leo, pch=1 )

box ()

abline( 0, 1, h=-log(4), v=-log(4), col=gray(0.7) )

axis( side=1)

plot( NA, type="n", x1im=0:1, ylim=0:1, xaxt="n", yaxt="n", bty="n" )
text( 0.5, 0.5, "Poisson\n\nConstant", cex=2, font=2 )
text( 1, 1, "Standard errors", cex=1.5, adj=c(1,1) )

Program: Cox-sim-c.R

Folder: C:\Bendix\Artikler\WntCma\R
Ended: mandag 02. august 2004, 14:55:55

Elapsed: 00:02:20

Renal-ex.R

Program that reads the renal failure data and performs both the reported Cox-analysis
as well as the corresponding Poisson analysis after splitting data. Also checks if 1) there
are non-linear effects of age at entry or current age, and if there is any interaction
between remission and time since entry (called either time-varying coefficients, or

S

>

tratified analysis).

R 2.2.0

Program: Renal-ex.R
Folder: C:\Bendix\Artikler\WntCma\R
Started: torsdag 08. december 2005, 17:41:40

library( survival )
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Loading required package: splines

> library( splines )
> library( Epi )
>
> load( file="c:/Bendix/Steno/PHov/nefro/data/ESRD.Rdata" )
> names( tot ) [grep("diag",names(tot))] <- "ddate"
> str( tot )
“data.frame': 154 obs. of 11 variables:
$ ptnr : num 17 26 26 27 33 33 42 42 46 47 ...
$ sex tnum 1222112221 ...
$ hbalc : num 10.46 10.60 10.60 8.00 9.64 ...
$ ddate : num 1994 1987 1987 1985 1993 ...
$ entry : num 1996 1990 1990 1988 1995 ...
$ exit : num 1997 1990 1996 1993 1996 ...
$ fail :int 1011000011 ...
$ birth : num 1968 1959 1959 1962 1951 ...
$ rem :num 0010010100 ...
$event :num 2113000021 ...
$ eventdat: num 1997 1996 1996 1993 2004 ...
> tot[1:10,]
ptnr sex hbalc ddate entry exit fail birth rem event eventdat
1 17 1 10.46 1993.513 1996.013 1997.094 1 1967.944 0 2 1997.094
2 26 2 10.60 1987.035 1989.535 1989.814 0 1959.306 0 1 1996.136
3 26 2 10.60 1987.035 1989.814 1996.136 1 1959.306 1 1 1996.136
4 27 2 8.00 1985.346 1987.846 1993.239 1 1962.014 0 3 1993.239
5 33 1 9.64 1992.743 1995.243 1995.717 0 1950.747 0 0 2003.993
6 33 1 9.64 1992.743 1995.717 2003.993 0 1950.747 1 0 2003.993
7 42 2 NA 1985.384 1987.884 1996.650 0 1961.296 0 0 2003.955
8 42 2 NA 1985.384 1996.650 2003.955 0 1961.296 1 0 2003.955
9 46 2 NA 1980.919 1983.419 1991.484 1 1952.374 0 2 1991.484
10 a7 1 9.30 1984.404 1986.904 1993.650 1 1956.064 0 1 1993.650
> # There is a bug in the coding of date of birth
> tot$birth <- tot$birth - 100 * ( tot$birth > 2000 )
>
> # Fit the Cox-models as reported in the paper
> # Date of birth as explanatory variable
> mb <- coxph( Surv( entry-ddate, exit-ddate, fail ) ~
+ sex + I((birth-1955)/10) + rem, data=tot )
> summary( mb )
Call:
coxph(formula = Surv(entry - ddate, exit - ddate, fail) ~ sex +
I((birth - 1955)/10) + rem, data = tot)
n= 154
coef exp(coef) se(coef) z P
sex -0.0432 0.958 0.275 -0.157 0.8800
I((birth - 1955)/10) -0.3776 0.686 0.130 -2.908 0.0036
rem -1.2593 0.284 0.385 -3.275 0.0011
exp(coef) exp(-coef) lower .95 upper .95
sex 0.958 1.04 0.559 1.642
I((birth - 1955)/10) 0.686 1.46 0.531 0.884
rem 0.284 3.52 0.134 0.603
Rsquare= 0.146  (max possible= 0.984 )
Likelihood ratio test= 24.4 on 3 df, p=2.10e-05
Wald test = 20.4 on 3 df, p=0.000138
Score (logrank) test = 22.2 on 3 df, p=5.89e-05
>
> # Age at entry as explanatory variable
> ma <- coxph( Surv( entry-ddate, exit-ddate, fail ) ~
+ sex + I((ddate-birth-50)/10) + rem, data=tot )
> summary( ma )
Call:
coxph(formula = Surv(entry - ddate, exit - ddate, fail) ~ sex +
I((ddate - birth - 50)/10) + rem, data = tot)
n= 154
coef exp(coef) se(coef) z )
sex -0.0553 0.946 0.275 -0.201 0.84000
I((ddate - birth - 50)/10) 0.5219 1.685 0.137 3.822 0.00013
rem -1.2624 0.283 0.385 -3.280 0.00100
exp(coef) exp(-coef) lower .95 upper .95
sex 0.946 1.057 0.5562 1.622
I((ddate - birth - 50)/10) 1.685 0.593 1.290 2.202
rem 0.283 3.534 0.133 0.602

Rsquare= 0.179 (max possible= 0.984 )

Likelihood ratio test= 30.3 on 3 df, p=1.19e-06
Wald test 27.1 on 3 df, p=5.68e-06
Score (logrank) test = 29.4 on 3 df, p=1.84e-06

>
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> # Age at entry as explanatory variable plus hbalc as explantory

> # variable

> mh <- coxph( Surv( entry-ddate, exit-ddate, fail ) ~

+ sex + I((ddate-birth-50)/10) + hbalc + rem, data=tot )

> summary( mh )

Call:

coxph(formula = Surv(entry - ddate, exit - ddate, fail) ~ sex +
I((ddate - birth - 50)/10) + hbalc + rem, data = tot)

n=119 (35 observations deleted due to missing)

coef exp(coef) se(coef) z P

sex -0.250 0.778 0.3607 -0.694 0.4900
I((ddate - birth - 50)/10) 0.516 1.676 0.1573 3.282 0.0010
hbalc 0.261 1.299 0.0879 2.975 0.0029
rem -1.210 0.298 0.5323 -2.273 0.0230
exp(coef) exp(-coef) lower .95 upper .95

sex 0.778 1.285 0.384 1.578
I((ddate - birth - 50)/10) 1.676 0.597 1.231 2.281
hbalc 1.299 0.770 1.093 1.543
rem 0.298 3.353 0.105 0.847

Rsquare= 0.25  (max possible= 0.975 )

Likelihood ratio test= 34.2 on 4 df, p=6.7e-07
Wald test = 32.6 on 4 df, p=1.41e-06
Score (logrank) test = 34.9 on 4 df, p=4.97e-07

attach( tot )
# Plot the Lexis ddaterams

plt( "ESRD-p-a", height=11, width=6, pointsize=18 )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

Lexis.diagram( age=c(10,70), date=c(1975,2005) )

segments( ddate, ddate-birth, entry, entry-birth, lwd=2, col=gray(0.7) )

segments( entry, entry-birth, exit, exit-birth, lwd=2, col=c("red","blue") [rem+1] )
points( eventdat, eventdat-birth, pch=c(NA,1) [(event>1)+1], col=c("red","blue") [rem+1] )
poi?gs( exit, exit-birth, pch=c(NA,16) [fail+1], col=c("red","blue") [rem+1] )

box

plt( "ESRD-t-a", height=11, width=6, pointsize=18 )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

Lexis.diagram( age=c(10,70), date=c(0,30), dlab="Time since entry" )

segments( ddate-ddate, ddate-birth, entry-ddate, entry-birth, lwd=2, col=gray(0.7) )

segments( entry-ddate, entry-birth, exit-ddate, exit-birth, lwd=2, col=c("red","blue") [rem+1] )
points( eventdat-ddate, eventdat-birth, pch=c(NA,1) [(event>1)+1], col=c("red","blue") [rem+1] )
poi?gs( exit-ddate, exit-birth, pch=c(NA,16) [fail+1], col=c("red","blue") [rem+1] )

box

plt( "ESRD-p-t", height=11, width=6, pointsize=18 )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

Lexis.diagram( age=c(0,60), date=c(1975,2005), alab="Time since diagnosis" )

segments( ddate, ddate-ddate, entry, entry-ddate, lwd=2, col=gray(0.7) )

segments( entry, entry-ddate, exit , exit-ddate, 1lwd=2, col=c("red","blue") [rem+1] )
points( eventdat, eventdat-ddate, pch=c(NA,1) [(event>1)+1], col=c("red","blue") [rem+1] )
poiﬁ?s( exit, exit-ddate, pch=c(NA,16) [fail+1], col=c("red","blue") [rem+1] )

box

# Split the follow-up time i 3-month intervals after time since entry
spl <- Lexis( entry = entry,

++++++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

exit = exit,
fail = fail,

origin = ddate,

breaks = seq(2.5,25,0.25),

include = list(ptnr,sex,ddate,birth,rem),
data = tot )

The following object(s) are masked from tot :
birth ddate entry event eventdat exit fail hbalc ptnr rem sex

> str( spl )

“data.frame': 4426 obs. of 10 variables:

Expand: num 1111122333 ...

Entry : num 1996 1996 1997 1997 1997 ...

Exit : num 1996 1997 1997 1997 1997 ...

Fail : num 0000100000 ...

Time : num 2.5 2.75 3 3.25 3.5 2.5 2.75 2.75 3 3.25 ...
ptnr : num 17 17 17 17 17 26 26 26 26 26 ...
sex tnum 1111122222 ...

ddate : num 1994 1994 1994 1994 1994 ...
birth : num 1968 1968 1968 1968 1968 ...

rem t:num 0000000111

> spl[1:10,]

BAB AP AA DN SD
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Expand Entry Exit Fail Time ptnr sex ddate birth rem
1 1996.013 1996.263 0 2.50 17 1 1993.513 1967.944 O

1 1996.263 1996.513 02.75 17 1 1993.513 1967.944 O

1 1996.513 1996.763 0 3.00 17 1 1993.513 1967.944 0

1 1996.763 1997.013 0 3.256 17 1 1993.513 1967.944 O

1 1997.013 1997.094 1 3.50 17 1 1993.513 1967.944 0

2 1989.535 1989.785 0 2.50 26 2 1987.035 1959.306 O

2 1989.785 1989.814 02.75 26 2 1987.035 1959.306 O

3 1989.814 1990.035 02.75 26 2 1987.035 1959.306 1

3 1990.035 1990.285 0 3.00 26 2 1987.035 1959.306 1

0 3 1990.285 1990.535 0 3.25 26 2 1987.035 1959.306 1

V+++VVVVVVVVVEOONODUTPEWNF

summary( pa )

Call:

pa <- glm( Fail ~

# Define relevant timing variables
spl$age.in <- spl$ddate - spl$birth
spl$age.cur <- spl$age.in + spl$Time
spl$Y <- spl$Exit - spl$Entry

# Poisson model that resembles the Cox-model with
# ma <- coxph( Surv( entry-ddate, exit-ddate, fail ) ~
# sex + I((ddate-birth-50)/10) + rem, data=tot )

ns( Time, kn=c(6,10,14), Bo=c(2.5,20) ) +
sex + I((age.in-50)/10) + rem +
offset( log( Y ) ),

family=poisson, data=spl )

glm(formula = Fail ~ ns(Time, kn = c(6, 10, 14), Bo = c(2.5,
20)) + sex + I((age.in - 50)/10) + rem + offset(log(Y)),

family = poisson, data = spl)
Deviance Residuals:

Min 1Q Median 3Q Max
-0.4157 -0.2149 -0.1618 -0.1124 3.5342
Coefficients:

Estimate Std. Error z value

(Intercept) -3.32793 0.67638 -4.920
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))1 1.94131 0.59924  3.240
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))2 1.67060 0.61828 2.702
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))3 4.42812 1.38326 3.201
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))4 1.41944 0.57593 2.465
sex -0.07126 0.27467 -0.259
I((age.in - 50)/10) 0.53021 0.13679 3.876
rem -1.27862 0.38517 -3.320

(Dispersion parameter for poisson family taken to be 1)

Null deviance:
Residual deviance:
AIC: 871.86

746.99
701.86

on 4425 degrees of freedom
on 4418 degrees of freedom

Number of Fisher Scoring iterations: 7

> # Show only the relevant regression parameters
> round( ci.lin( pa, subset=length(coef(pa))-2:0, E=T )[,5:7], 3 )
exp(Est.) 2.5% 97.5),

sex
I((age.in - 50)/10)
rem

sex

0.931 0.544 1.595
1.699 1.300 2.222
0.278 0.131 0.592
> # - and then the ones from the Cox-model
> round( exp( ci.lin( ma )[,-(2:4)] ), 3 )

Estimate

I((ddate - birth - 50)/10)

rem

2.5% 97.5}

0.946 0.552 1.622
1.685 1.290 2.202
0.283 0.133 0.602

# But we are using a spline form of the time since entry
# and a linear form of age at entry / current age.
# We could enter either or both of these in non-linear form.

# First all three (t: time, a: current age, e: entry age)

p.tae <- glm( Fail ~ ns( Time , kn=c(6,10,14), Bo=c(2.5,20) ) +
ns( age.in , kn=c(35,45,55), Bo=c(20,65) ) +
ns( age.cur, kn=c(35,45,55), Bo=c(20,65) ) +
sex + rem +
offset( log( Y ) ),

family=poisson, data=spl )
summary( p.tae )

V+++++VVVVVVY

Call:
glm(formula = Fail ~ ns(Time, kn = c(6, 10, 14), Bo = c(2.5,
20)) + ns(age.in, kn = c(35, 45, 55), Bo = c(20, 65)) + ns(age.cur,
kn = c(35, 45, 55), Bo = c(20, 65)) + sex + rem + offset(log(Y)),
family = poisson, data = spl)

Pr(>lzl)
8.64e-07

0.001197
0.006892
0.001368
0.
0
0
0

013717

. 795286
.000106
.000902
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Deviance Residuals:

Min 1Q Median 3Q Max
-0.5578 -0.2193 -0.1567 -0.1142 3.5351
Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|zl|)

(Intercept) -4.78877 1.76205 -2.718 0.006573
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))1 2.16107 0.62954  3.433 0.000597
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))2 1.84368 0.63497 2.904 0.003690
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))3 4.63042 1.40163 3.304 0.000955
ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20))4 1.55921 0.68703 2.269 0.023239
ns(age.in, kn = c(35, 45, 55), Bo = c(20, 65))1 1.30910 0.88453 1.480 0.138873
ns(age.in, kn = c(35, 45, 55), Bo = c(20, 65))2 2.66273 1.29501 2.056 0.039768
ns(age.in, kn = c(35, 45, 55), Bo = c(20, 65))3 4.69927 2.04627 2.297 0.021647
ns(age.in, kn = c(35, 45, 55), Bo = c(20, 65))4 2.41245 3.18608 0.757 0.448940
ns(age.cur, kn = c(35, 45, 55), Bo = c(20, 65))1 -0.83482 1.64040 -0.509 0.610814
ns(age.cur, kn = c(35, 45, 55), Bo = c(20, 65))2 -0.87304 1.47137 -0.593 0.552943
ns(age.cur, kn = c(35, 45, 55), Bo = c(20, 65))3 -1.26074 3.46039 -0.364 0.715608
ns(age.cur, kn = c(35, 45, 55), Bo = c(20, 65))4 NA NA NA NA
sex -0.02424 0.27839 -0.087 0.930612
rem -1.27360 0.38701 -3.291 0.000999
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 746.99 on 4425 degrees of freedom
Residual deviance: 699.02 on 4412 degrees of freedom
AIC: 881.02
Number of Fisher Scoring iterations: 7
>
> # Then test for the non-linear components of each effect
> p.ta <- update( p.tae, ~ . - ns( age.in , kn=c(35,45,55), Bo=c(20,65) ) )
> p.te <- update( p.tae, . - ns( age.cur, kn=c(35,45,55), Bo=c(20,65) ) )
> p.ae <- update( p.tae, ~ . - ns( Time , kn=c(6,10,14) , Bo=c(2.5,20) ) )
>
> anova( p.tae, p.ta,
+ p.tae, p.te,
+ p.tae, p.ae,
+ test="Chisq" )
Analysis of Deviance Table
Model 1: Fail ~ ns(Time, kn = c(6, 10, 14), Bo = c(2.5, 20)) + ns(age.in,

kn = c(35, 45, 55), Bo = c(20, 65)) + ns(age.cur, kn = c(35,

45, 55), Bo = c(20, 65)) + sex + rem + offset(log(Y))

Model 2: Fail ~

kn = c(35,

Model 3: Fail ~

kn = c(35,

45, 55), Bo
Model 4: Fail ~

kn = c(35,

Model 5: Fail ~

kn = c(35,

45, 55), Bo
Model 6: Fail ~

kn = c(35,

Resid. Df Resid. Dev

4412
4415
4412
4415
4412
4415

lin(
ci.lin(
ci.lin(
ci.lin(
ci.lin(
ci.lin(
rownames (

ci. ma

pa

V+++++V++++++VVVOOAWNF

Estimate
0.283
0.278
0.280
0.284

p.tae,
p-ta ,
p.te
p.ae , subset="rem"
rem.res ) <- c(

ns(Time, kn = c(6,
45, 55), Bo = c(20,
ns(Time, kn = c(6,
45, 55), Bo = c(20,
= c(20, 65)) + sex
ns(Time, kn = c(6,
45, 55), Bo = c¢(20,
ns(Time, kn = c(6,
45, 55), Bo = c(20,
= c(20, 65)) + sex
ns(age.in, kn = c(35,
45, 55), Bo =

Df Deviance
699.02
700.33 -3 -1.31
699.02 3 1.31
699.58 -3 -0.55
699.02 3 0.55
707.09 -3 -8.07

, subset="rem"
, subset="rem"
subset="rem"
subset="rem"
, subset="rem"

“COX"

.

n .t"

..g.ta;‘ "
.

round( exp( rem.res[,-(2:4)]'), 3)
2.5

5% 97.5%
0.133
0.131
0.131
0.133

0.602
0.592
0.597
0.607

10, 14), Bo =

10, 14), Bo =
65)) + ns(age.cur, kn
+ rem + offset(log(Y))
10, 14), Bo =

10, 14), Bo =
65)) + ns(age.cur, kn
+ rem + offset(log(Y))

45, 55), Bo =
P(>IChil)

0.73
0.73
0.91
0.91
0.04

# Extract the estimates of remission
rem.res <- rbind(

c(2.5, 20)) + ns(age.
65)) + sex + rem + offset(log(Y))
c(2.5, 20)) + ns(age.
c(35,

c(2.5, 20)) + ns(age.
65)) + sex + rem + offset(log(Y))
c(2.5, 20)) + ns(age.

cur,

in,

in,

in,

c(35,

c(20, 65)) + ns(age.cur,

c(20, 65)) + sex + rem + offset(log(Y))



30 Renal-ex.R

.te 0.277 0.130 0.590
.ae 0.271 0.126 0.580

plt( "ESRD-rates" )

par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

# Estimates of the estimated occurrence rates in the model with
# time since entry as the underlying timescale and age at entry
# as a linear effect:

nd <- data.frame( Time = rep( seq(2.5,20,,100), 2),

sex = rep( 1, 200 ),
age.in = rep( 50, 200),
rem = rep( 0:1, each=100 ),
Y = rep( 1000, 200 ) )

pr.pa <- predict( pa, newdata=nd, se.fit=T )
pr.ci <- cbind( pr.pa$fit, pr.pa$se.fit ) %*) ci.mat()
pr.ci <- cbind( pr.ci[1:100,], pr.ci[101:200,] )
matplot( nd$Time[1:100], exp( pr.ci ), type="1",
log="y", xlab="Time since diagnosis (years)",
ylim=c(5,2000), ylab="Rate of ESRD/death per 1000 person-years",
lwd=rep(c(3,1,1),2), 1lty=1, col=rep(c("black","red"),each=3) )
text( cnr(2,98), "50 year old male", adj=c(0,1) )

Dr <- (spl$Exit-spl$ddate) [spl$Fail==1 & spl$rem==1]
Dn <- (spl$Exit-spl$ddate) [spl$Fail==1 & spl$rem==0]
points( Dn, rep(5,length(Dn)) )

points( Dr, rep(5,length(Dr)), pch=16, col="red" )

plt( "ESRD-rates-i" )
par( mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )
matplot( nd$Time[1:100], exp( pr.ci ), type="1",
log="y", xlab="Time since diagnosis (years)",
ylim=c(5,2000), ylab="Rate of ESRD/death per 1000 person-years",
lwd=rep(c(3,1,1),2), 1lty=1, col=rep(c("black","red"),each=3) )
text( cnr(2,98), "50 year old male", adj=c(0,1) )

# Now a model with interaction (timevarying coefficients)

pai <- update( pa, . ~ . + rem:ns( Time, kn=c(6,10,14), Bo=c(2.5,20) ) )

Warning message:

fitted rates numerically O occurred in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,

VVVV+++VVVVVVVVVV+++VVVV++++VVVYVYVYV VOO

pr.pai <- predict( pai, newdata=nd, se.fit=T )
pri.ci <- cbind( pr.pai$fit, pr.pai$se.fit ) %*), ci.mat()
pri.ci <- cbind( pri.ci[1:100,], pri.ci[101:200,] )
matlines( nd$Time[1:100], exp( pri.ci ), type="1",
lwd=rep(c(3,1,1),2), 1lty=2, col=rep(c("black","red"),each=3) )
points( Dn, rep(5,length(Dn)) )
points( Dr, rep(5,length(Dr)), pch=16, col="red" )

VVVV+VVVVYV

Program: Renal-ex.R

Folder: C:\Bendix\Artikler\WntCma\R

Ended: torsdag 08. december 2005, 17:41:51
Elapsed: 00:00:11
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